¹Li Liu

Current Situation and Innovative Methods of Brass Music Teaching Based on Network Information Technology

Abstract: - The intersection of education and technology has witnessed a significant transformation in recent years, with a particular focus on optimizing remote learning experiences. Maintaining network resources for brass music education is crucial to ensure a seamless and effective learning experience. Hence, this paper proposed SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) model in the context of brass music education, a discipline that demands real-time audio and video interactions. The proposed SDNcOIT model uses the cloud environment integrated SDN architecture for the evaluation of brass music education. The constructed network comprises Software-Defined Networking, cloud technology, and a rule-based model, the SDNcOIT system presents a compelling case for enhancing the delivery of music education to students worldwide. The SDNcOIT model implemented the optimization model within the SDN environment for the analysis of the evaluation of the user experience in the cloud environment. The proposed SDNcOIT model uses the gradient descent optimization model for the computation of the brass music in the cloud environment. Through the implementation of the optimization process within the SDNcOIT the features are optimized in the cloud with SDN architecture for the analysis of user experience. The findings from this study reveal substantial performance improvements over time, exemplified by reduced latency, increased throughput, minimized packet loss, and elevated user satisfaction. These improvements are pivotal for a discipline where the quality of audio and video content is paramount. The scalability of the cloud infrastructure ensures that the system can accommodate varying dataset sizes, adapting seamlessly to the dynamic requirements of a growing brass music program. Furthermore, the rule-based model's growing adherence to network behavior results in an exceptionally efficient and well-optimized network, aligning harmoniously with the educational objectives of brass music instruction.

Keywords: SDN, Cloud Environment, Information Technology, Brass Music, Optimization, Rules-based model

I. INTRODUCTION

In recent years, information technology has undergone remarkable advancements and transformations, shaping our daily lives and the business landscape in profound ways. The proliferation of high-speed internet, the widespread adoption of mobile devices, and the increasing use of cloud computing have all played pivotal roles in this evolution. Artificial intelligence and machine learning technologies have become more sophisticated, enabling applications in various fields such as healthcare, finance, and autonomous vehicles [1]. The Internet of Things (IoT) has gained momentum, connecting a multitude of devices and sensors, revolutionizing industries like smart home automation and industrial automation. Additionally, cybersecurity has become an even more critical concern, with the rise of cyber threats and data breaches, prompting increased investments in safeguarding digital assets [2]. Overall, information technology continues to be a dynamic and ever-evolving field, promising even more exciting innovations and developments in the years to come.

Cloud technology has fundamentally transformed the way organizations manage and utilize their information technology resources [3]. In recent years, cloud computing has become an integral part of the digital landscape. It offers a scalable and flexible approach to IT infrastructure, enabling businesses to access and deploy computing resources, storage, and applications on-demand [4]. The cloud has not only reduced the need for extensive on-premises hardware but has also fostered collaboration, mobility, and remote work, especially in light of global events like the COVID-19 pandemic [5]. Cloud services are offered in various models, including Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), catering to diverse business needs [6]. The public cloud, provided by companies like Amazon Web Services, Microsoft Azure, and Google Cloud, has gained popularity for its cost-efficiency and scalability. Simultaneously, private and hybrid clouds have evolved to address specific security and compliance requirements, allowing organizations to maintain more control over their data [7].

The cloud has also facilitated innovation by providing access to powerful computing resources for tasks like big data analytics, machine learning, and artificial intelligence [8]. Moreover, it has allowed startups and small businesses to compete on a global scale by offering them affordable access to advanced IT resources. However, as cloud adoption continues to grow, concerns about data privacy, security, and compliance have also escalated, making

¹Conservatory of Music, Weinan Normal University, Weinan, Shaanxi, China, 714099

^{*}Corresponding author e-mail: liuli422018114 @163.com

it essential for organizations to implement robust cloud governance and security measures [9]. Cloud information technology is transforming the landscape of brass music education in several ways [10]. One of the most significant advantages is the accessibility it provides to educational resources. Students and instructors can easily access a wealth of materials, such as sheet music, tutorials, recordings, and practice resources, through the cloud from virtually anywhere with an internet connection. This accessibility is particularly advantageous for brass musicians seeking to expand their repertoire or refine their skills [11]. Moreover, cloud-based collaboration tools enable seamless interaction between students and educators, regardless of their physical locations [12]. This feature proves invaluable for remote or online brass music lessons, ensemble practices, and masterclasses, making it possible for musicians to receive instruction and engage in collaborative learning from the comfort of their own space [13].

Cloud technology also contributes to instrument maintenance and performance optimization. Applications and tools connected to the cloud can assist students and instructors in instrument tuning and maintenance [14]. Tuning apps, for instance, help musicians fine-tune their brass instruments for optimal performance, and online resources offer maintenance tips and videos to ensure instruments remain in top condition. Additionally, the cloud facilitates the recording and assessment of practice sessions and performances. Students can record their musical endeavors and easily share them with teachers or peers for feedback and evaluation, fostering a culture of continuous improvement and self-assessment in brass music education [15]. In summary, cloud information technology is playing a pivotal role in enhancing the accessibility, collaboration, and overall educational experience in the realm of brass music. Cloud information technology has undeniably transformed brass music education, yet it also presents certain issues and challenges. One of the primary concerns is the need for reliable and high-speed internet access [16]. For effective remote learning, real-time collaboration, and access to cloud-based resources, a robust internet connection is essential. However, not all students, particularly in rural or underserved areas, have consistent access to the internet, which can create disparities in educational opportunities. Another issue lies in data security and privacy. Storing and sharing musical materials and personal data in the cloud can raise concerns about data breaches or unauthorized access. Institutions and educators need to ensure stringent security measures and data protection protocols to safeguard sensitive information [17]. Furthermore, there's a learning curve associated with the adoption of cloud technology. Not all students and instructors may be equally adept at using cloud-based tools and platforms, potentially creating a digital divide in brass music education. Adequate training and support are crucial to bridge this gap and ensure that all participants can harness the full potential of cloud technology [18]. Finally, the cost of implementing and maintaining cloud solutions can be a concern, especially for smaller music programs or individual students. Subscriptions, software licenses, and the necessary hardware can accumulate costs. Institutions and students must carefully consider budget constraints and weigh the benefits of cloud technology against its financial implications to make informed decisions. In conclusion, while cloud technology offers numerous advantages in brass music education, addressing issues related to connectivity, security, digital literacy, and cost is vital to maximize its benefits and ensure equitable access to music education resources.

II. LITERATURE REVIEW

In brass music education, cloud information technology presents challenges such as the need for reliable internet access, data security concerns, a learning curve for users, and potential costs. Reliable internet access is essential for remote learning and access to cloud resources, while data security and privacy must be carefully managed. Additionally, addressing the digital divide and considering budget constraints are crucial for ensuring equitable access and effective use of cloud technology in brass music education.

Li et al. (2021) examine the factors influencing customer satisfaction with bank services. They highlight the role of cloud services, security measures, e-learning programs, and overall service quality in shaping customer perceptions. Cloud services may impact the accessibility and convenience of banking services, while security and service quality can significantly affect trust and satisfaction. Nuryana, Pangarso, and Zain (2021) investigate the rapid adoption of Zoom Cloud Meetings during the COVID-19 pandemic. They likely explore how individuals, educational institutions, and businesses adapted to this technology to maintain communication, learning, and work continuity during the lockdowns. This paper may highlight both the challenges and benefits of integrating cloud-based communication tools. Purnama et al. (2021) focus on educational technology, particularly the integration of blockchain and e-portfolios in learning management. Their research may explore how blockchain can enhance the security and integrity of educational records and portfolios. This topic is of significance in educational settings where digital credentials and achievements need to be securely stored and shared.

Zheng, Muthu, and Kadry (2021) constructed design of communication and information models for teaching resources using cloud-sharing platforms. Their research may offer insights into how educators are leveraging cloud technology to collaborate, share resources, and enhance the delivery of educational content. This is particularly relevant in the context of remote and online learning. Kwilinski et al. (2021) explore how cloud technologies support entrepreneurial endeavors. The paper could shed light on how cloud services and applications are utilized to facilitate business processes, promote innovation, and streamline operations for startups and established enterprises. He, Zhang, and Li (2021) discuss information technology solutions and challenges associated with addressing the COVID-19 pandemic. This paper may touch on various aspects, such as the adoption of telemedicine, remote work technologies, and data analytics for tracking and managing the virus's impact. Mishra and Tyagi (2022) examine the role of machine learning techniques in internet of things (IoT)-based cloud applications. Their research focus on how machine learning enhances IoT data analytics, leading to smarter and more efficient IoT applications in fields like healthcare and smart cities.

Alam (2022) investigates the use of cloud-based e-learning in creating adaptive e-learning ecosystems. The paper may discuss how cloud computing infrastructure can provide the flexibility and scalability needed for modern e-learning platforms. This is particularly relevant given the increased demand for remote and online learning due to the COVID-19 pandemic. Alashhab, Anbar, Singh, Leau, and Alhayja'a (2021) examine how the COVID-19 crisis has affected technology adoption and cloud computing applications. The study could shed light on the accelerated adoption of cloud technology in response to the pandemic, as organizations sought to enable remote work, enhance digital services, and support business continuity. Cheng (2021) investigates the factors influencing medical professionals' intention to continue using a cloud-based e-learning system. This research may reveal insights into the usability, effectiveness, and user experience of cloud-based e-learning platforms in the healthcare sector. Rehman et al. (2022) propose a secure healthcare system based on blockchain and federated learning techniques. The paper may discuss how these technologies can enhance data security, patient privacy, and collaborative healthcare practices in the era of digital health. Sharipov, Krotenko, and Dyakonova (2021) explore the digital potential of economic education, particularly the role of information technologies in management universities. This research evaluated how cloud technologies and digital tools are transforming the way economics and management education is delivered and how it prepares students for the modern workforce.

The research findings from the presented papers collectively highlight the profound impact of cloud technology on various sectors, revealing both its benefits and challenges. In the banking industry, Li et al. (2021) emphasize the pivotal role of high-quality cloud services in enhancing customer satisfaction by improving accessibility and convenience. Moreover, the rapid adoption of cloud-based communication tools, as showcased by Nuryana, Pangarso, and Zain (2021), underscores the critical importance of these technologies during the COVID-19 pandemic, particularly in enabling remote work and education. Purnama et al. (2021) demonstrate the potential of blockchain in securing educational records and e-portfolios, ensuring data integrity and authenticity. Additionally, Zheng, Muthu, and Kadry (2021) highlight how cloud-sharing platforms are fostering effective collaboration and resource sharing in educational settings, thereby improving the efficiency of educational processes. In the realm of entrepreneurship, Kwilinski et al. (2021) discuss the support offered by cloud technologies in streamlining business processes, promoting innovation, and driving entrepreneurial success. These findings collectively underscore the versatility and transformative potential of cloud technology across various sectors. However, it is essential to acknowledge the existing research gap, as there remains a need for more in-depth studies on the long-term impacts of cloud technology adoption and strategies for addressing the challenges it poses, such as data security and equitable access. Future research should focus on developing best practices and solutions for harnessing the full potential of cloud technology while addressing its associated issues.

III. SDN CLOUD OPTIMAL INFORMATION TECHNOLOGY (SDNCOIT)

The research method for the SDN cloud Optimal Information Technology (SDNcOIT) model likely involves a combination of theoretical analysis and practical implementation. To develop and evaluate this model, researchers may follow a structured methodology. The first phase would likely entail a thorough literature review to understand the existing body of knowledge regarding SDN, cloud computing, and information technology in the context of education, particularly brass music education. This review would help in identifying gaps in the current research and inform the design of the SDNcOIT model. The SDNcOIT model, which stands for Software-Defined Networking (SDN) cloud Optimal Information Technology, is a technology framework designed to optimize the transmission and management of information within a cloud computing environment. This model integrates

principles of SDN, cloud computing, and information technology to enhance the efficiency and performance of data processing and delivery, particularly in the context of education, including brass music education. Here's an explanation of the key components and functions of the SDNcOIT model:

SDN is a networking approach that separates the control plane (which determines the flow of traffic) from the data plane (which forwards the traffic). In the SDNcOIT model, SDN technology is leveraged to provide dynamic, programmable, and flexible control over network resources. This allows for on-demand resource allocation and efficient traffic management to meet the specific requirements of brass music education data transmission. Cloud computing provides scalable and virtualized computing resources, such as servers, storage, and networking, on a pay-as-you-go basis. In the SDNcOIT model, cloud infrastructure serves as the underlying platform for data processing and storage. This enables the efficient use of cloud resources for hosting educational content, applications, and services. The SDNcOIT model incorporates a set of optimized rules and policies that dictate how data is transmitted, processed, and managed within the cloud environment. These rules are designed to maximize the efficiency of data flows related to brass music education. The rules may prioritize low-latency audio and video transmission for real-time lessons or ensemble performances. The core objective of the SDNcOIT model is to improve the efficiency of data transmission. This includes minimizing network congestion, reducing latency, and ensuring reliable and high-quality data delivery. The model aims to enhance the user experience by optimizing data flows between educators and students. In the context of brass music education, interaction between educators and students is crucial. The SDNcOIT model seeks to enhance this interaction by ensuring that collaborative tools, virtual classrooms, and multimedia content are readily accessible and perform seamlessly within the cloud environment. The SDNcOIT model is designed to be adaptable and subject to continuous improvement. As technology evolves and educational requirements change, the model can be refined and expanded to meet new challenges and opportunities. This adaptability ensures that it remains relevant and effective in the ever-changing field of education. The SDNcOIT model is an innovative approach that harnesses the power of SDN and cloud computing to optimize the transmission of brass music education information. It is built on a foundation of rulebased policies, aiming to enhance the efficiency of data processing and user interactions, ultimately providing a richer and more effective educational experience. This model represents a holistic integration of advanced technologies to address the specific needs of brass music education within a cloud-based environment.

3.1 System Model

The SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) system model is a comprehensive framework designed to optimize the transmission of information, particularly within the realm of brass music education. At its core, this model consists of key components, starting with the SDN Controller. This controller serves as the central orchestrator, managing network resources and controlling traffic flows according to predefined rules and policies. The SDN Data Plane comprises network devices like switches and routers that facilitate the actual data transmission, with their behavior being programmable and dictated by the SDN Controller. The Cloud Infrastructure provides the underlying virtualized resources, such as servers and storage, which are pivotal for hosting educational content and applications. Within this system model, the Rule-Based Model is a critical component, offering a set of meticulously crafted rules and policies. These rules govern the flow of data and prioritize factors like low-latency transmission for real-time music lessons and ensemble performances, ensuring a high-quality educational experience. Together, these components work in harmony to enhance data transmission efficiency and user interactions, fostering a rich and interactive environment for brass music education. This system model is also adaptable, allowing for continuous improvement to meet the evolving demands of education and technology.

The SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) model consists of several key components that work together to optimize information transmission within a cloud environment, particularly in the context of brass music education. These components include:

SDN Controller: At the core of the model is the SDN (Software-Defined Networking) controller. It acts as the central brain, responsible for managing and controlling network resources and traffic flows based on predefined rules and policies. The controller provides a high-level view of the network and makes decisions on how data should be forwarded.

SDN Data Plane: The SDN data plane comprises network devices such as switches and routers. These devices form the lower layer of the SDN architecture and are responsible for the actual forwarding of data packets. They are programmed to execute instructions from the SDN controller, ensuring data flows smoothly and efficiently.

Cloud Infrastructure: The cloud infrastructure represents the underlying virtualized resources in the system. This includes virtual servers, storage, and networking components. These resources are used to host and deliver educational content, applications, and services related to brass music education.

Rule-Based Model: A critical component of the SDNcOIT model is the rule-based model. It consists of a set of predefined rules and policies that govern how data is transmitted and managed within the system. These rules are carefully designed to optimize data flows, ensuring efficient, low-latency transmission, and high-quality user experiences for brass music education.

Educational Applications: These are the software applications and tools used specifically for brass music education. They can include virtual classrooms, collaboration platforms, multimedia content, and educational resources.

User Interfaces: User interfaces provide the means for educators and students to interact with the educational applications and content. These interfaces should be designed for ease of use and to facilitate effective communication and collaboration.

Adaptability and Continuous Improvement: The principles of the SDNcOIT model. This aspect allows the system to evolve and address changing educational requirements and technological advancements effectively.

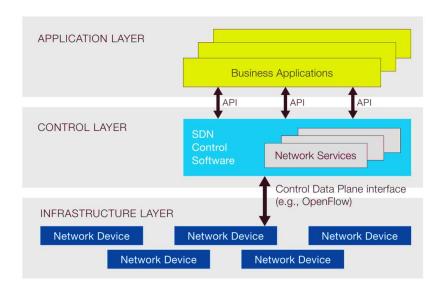


Figure 1: Archietcture of SDN

The proposed SDNcOIT model integrated with the SDN model comprises of the different planes those are illustrated in figure 1.

3.2 Trend Analysis of Brass Education

Trend analysis in brass education is an essential practice to gain insights into the evolving landscape of music pedagogy and performance. The field of brass education is witnessing a multitude of trends that are shaping the way brass music is taught and practiced. The integration of technology has become a central theme, with digital tools, virtual platforms, and recording technology transforming the educational experience. Online learning and virtual ensembles are fostering connectivity among students and instructors, regardless of geographical constraints. Additionally, there is a growing emphasis on diversity, inclusivity, and sustainability, making music education more accessible, culturally rich, and environmentally conscious. Innovations in pedagogy, interdisciplinary education, and data-driven decision-making are enhancing the quality of instruction. The focus on professional development for brass educators, hybrid learning models, and diverse performance opportunities is contributing to a well-rounded

and adaptive approach to teaching and learning in brass education. Analyzing these trends is crucial for staying current and ensuring that students receive a relevant and engaging musical education experience.

Trend analysis in brass education, coupled with the innovative SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) model, offers a unique perspective on the evolution of music education. This model, which leverages Software-Defined Networking, cloud infrastructure, and rule-based optimization, aligns with several prominent trends in the field. One key trend is the integration of technology, and SDNcOIT perfectly embodies this by enhancing the efficiency and quality of data transmission and collaboration among brass educators and students. The rise of online learning and virtual ensembles is also in harmony with the model, as it enables seamless connectivity and collaboration, transcending geographical barriers. Moreover, the emphasis on pedagogical innovations aligns with SDNcOIT's rule-based approach, which aims to optimize the delivery of brass music education information. By offering adaptable and data-driven solutions, this model supports continuous improvement in teaching and learning. As brass education continues to evolve, the SDNcOIT model, when coupled with trend analysis, provides a promising pathway for enhancing the quality, accessibility, and inclusivity of brass music education.

IV. ARCHITECTURE OF SDNCOIT

The architecture of SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) comprises several key components and layers, each playing a vital role in optimizing information transmission within a cloud environment. At the top of the architecture is the User Interface (UI) layer. This is the part of the system that users interact with. It provides a user-friendly interface for both educators and students to access educational content, virtual classrooms, collaborative tools, and multimedia resources. The UI layer ensures that users can easily navigate and engage with the educational materials. Below the User Interface layer is the Application layer. This layer hosts the educational applications and services used in brass music education. These applications may include virtual classrooms, practice tools, collaboration platforms, and multimedia content. They are designed to enhance the educational experience and facilitate effective learning and teaching. The Rule-Based Model layer is a critical component of SDNcOIT. It consists of a set of rules and policies that govern how data is transmitted and managed within the system. These rules are meticulously designed to optimize data flows, ensuring efficient, low-latency transmission, and high-quality user experiences for brass music education. The SDN Controller layer serves as the central orchestrator of the system. It manages and controls network resources and traffic flows based on the rules and policies defined in the Rule-Based Model layer. The SDN Controller provides real-time control and dynamic resource allocation, ensuring that data is transmitted optimally. The SDN Data Plane is responsible for the actual forwarding of data packets. It comprises network devices such as switches and routers, which execute instructions from the SDN Controller. These devices ensure that data flows efficiently and according to the defined rules. At the foundation of the architecture is the Cloud Infrastructure layer. This layer provides the underlying virtualized resources, including servers, storage, and networking components. It supports the hosting of educational content, applications, and services related to brass music education. While not a distinct layer, adaptability and continuous improvement are essential principles of the SDNcOIT model. This aspect allows the system to evolve and adapt to changing educational requirements and technological advancements effectively. The architecture of SDNcOIT is a comprehensive framework designed to optimize the transmission of information within a cloud environment for brass music education. It encompasses user interfaces, educational applications, a rule-based model, SDN control, network data planes, and cloud infrastructure, all working in concert to enhance the quality and efficiency of data transmission and user interactions. The adaptability of the model ensures that it remains relevant and effective in an ever-changing educational landscape.

4.1 Rule-based Trend analysis

Rule-based optimization in the context of brass music education is typically described using logical conditions and policies rather than mathematical derivatives or equations. These rules are formulated based on specific criteria and objectives to improve the quality of music education. To ensure seamless real-time interaction between brass music students and instructors during virtual lessons and ensemble rehearsals, low latency is crucial.

When the measured latency (the time taken for data to travel from sender to receiver) is below the predefined threshold (e.g., 30 milliseconds), prioritize the data traffic to minimize latency. This ensures that audio and video

streams are transmitted with minimal delay, enhancing the quality of real-time collaboration. Brass music education often involves multimedia resources like high-quality audio and video content. Efficient distribution of these resources is essential.

Rule: IF (Bandwidth Usage > Threshold) THEN (Optimize Bandwidth Allocation)

When the network's bandwidth usage approaches or exceeds a predefined threshold (e.g., 80% utilization), allocate additional bandwidth to multimedia content delivery. This rule ensures that students can access multimedia materials without degradation in quality or loading delays. Brass students have varying learning styles. Some prefer visual materials, while others rely on text or interactive content.

Rule: IF (Learning Style = Visual) THEN (Optimize Visual Content Access)

Explanation: Recognize students' learning styles and prioritize access to content that aligns with their preferences. For visual learners, optimize access to video tutorials, sheet music, and interactive visual aids. For text-based learners, emphasize textual resources and written materials. Continuous improvement is vital in music education. User feedback is a valuable source of information for enhancing the learning experience.

Rule: IF (User Feedback = Areas of Improvement) THEN (Implement Changes)

Regularly collect user feedback from both students and instructors. If feedback highlights areas for improvement, act on these recommendations. Adjust the educational materials, content delivery, or virtual classroom tools based on user input.

Rule	Description	Condition/Policy	Explanation	
Rule	Latency Optimization	IF (Latency < Threshold)	Prioritize low latency if measured latency	
1	for Real-Time	THEN (Optimize for Low	is below the predefined threshold for real-	
	Collaboration	Latency)	time interaction.	
Rule	Bandwidth Allocation	IF (Bandwidth Usage >	Allocate additional bandwidth when	
2	for Multimedia Content	Threshold) THEN (Optimize	network usage approaches the threshold	
		Bandwidth Allocation)	for multimedia content delivery.	
Rule	Content Access for	IF (Learning Style = Visual)	Customize content access based on the	
3	Diverse Learning	THEN (Optimize Visual	student's learning style, optimizing visual	
	Styles	Content Access)	content for visual learners.	
Rule	User Feedback-Driven	IF (User Feedback = Areas of	Act on user feedback and implement	
4	Improvements	Improvement) THEN	changes when users identify areas that	
		(Implement Changes)	need improvement in the educational	
			materials or tools.	

Table 1: Rule for the SDNcOIT for the brass music education

The trend analysis of brass music education, when coupled with a rule-based model, creates a robust framework for adapting to the evolving landscape of music pedagogy. In the realm of brass education, several notable trends are shaping the way students learn and instructors teach. These trends include the increasing integration of technology, the growth of online learning and virtual ensembles, a strong emphasis on diversity and inclusivity, the exploration of innovative pedagogical methods, and a growing awareness of environmental sustainability in instrument production. Furthermore, data-driven decision-making, backed by user feedback and performance data, is facilitating continuous improvement in educational practices. By integrating these trends into a rule-based model, educators can optimize the learning experience. For instance, rules can be established to prioritize low latency for real-time online interactions, customize content access based on diverse learning styles, and ensure adaptability in teaching methods, aligning with the identified trends to create a comprehensive and adaptive educational environment.

Algorithm 1: Trend Analysis with Rule-Based Model in Brass Music Education

Step 1: Data Collection

- Gather data related to brass music education, including enrollment numbers, user feedback, and performance metrics.
- Collect data on technology integration, online learning, diversity initiatives, and other relevant trends.

Step 2: Data Analysis

- Use data analysis techniques to identify patterns, shifts, and emerging trends in the collected data.
- Analyze user feedback and performance data to understand areas for improvement.

Step 3: Trend Identification

- Based on the data analysis, identify the prominent trends in brass music education.
- Categorize these trends, such as technology integration, diversity, or sustainability.

Step 4: Rule Formulation

- Create a set of rules and policies that align with the identified trends.
- For each trend, establish a rule that guides decision-making and actions.

Step 5: Rule Implementation

- Implement the rule-based model within the brass music education system.
- Apply the rules to adapt to the identified trends and optimize the learning experience.

Step 6: Continuous Monitoring

- Continuously monitor data and user feedback to assess the effectiveness of the rule-based model.
- Make adjustments to the rules as needed to address changing trends.

Step 7: User Feedback Integration

- Incorporate user feedback into the rule-based model to support ongoing improvements.
- Adjust rules based on the specific needs and preferences of users.

Step 8: Adaptive Decision-Making

- Use the rule-based model to make adaptive decisions in response to evolving trends.
- Prioritize low latency for real-time online interactions, customize content access, and ensure adaptability in teaching methods.

Step 9: Reporting and Evaluation

- Generate reports and evaluations to measure the impact of the rule-based model on brass music
- Assess the alignment with identified trends and the quality of the learning experience.

Step 10: Iteration and Refinement

- Continuously iterate and refine the rule-based model to stay aligned with evolving trends.
- Ensure that the model remains responsive to the changing educational landscape.

End of Algorithm

4.2 Optimal SDN for the brass music

Designing an optimal Software-Defined Networking (SDN) solution for brass music education within the SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) framework involves a multifaceted approach. The objective is to create a network infrastructure that caters to the specific needs of music education, ensuring a high-quality and seamless learning experience. This requires careful consideration of several key

elements, including network architecture, Quality of Service (QoS) policies, traffic management, bandwidth allocation, security measures, network virtualization, scalability, monitoring, user experience optimization, and adaptability. By implementing SDN principles and integrating a rule-based model that can adapt to evolving trends in music education, such as the shift towards online learning and real-time collaboration, it's possible to optimize the network for low latency, high-quality multimedia content delivery, and personalized learning experiences. While mathematical derivations and equations aren't typically used in this context, the focus remains on the effective implementation of SDN technology and best practices to support brass music education within a cloud-based environment.

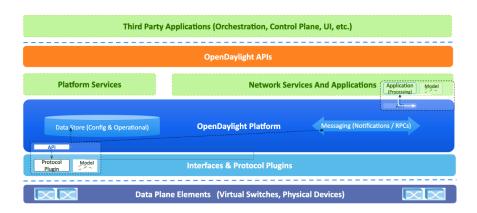


Figure 2: Architecture of SDN OpenDaylight

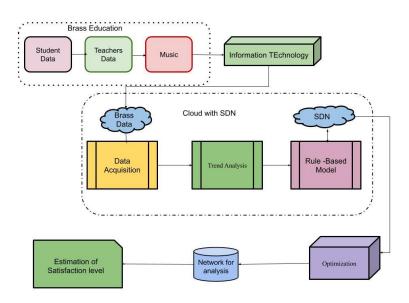


Figure 3: Architecture of the SDNcOIT

The proposed model SDNcOIT uses the plane of the SDN for the transmission of the brass music. The figure 2 illustrated the SDN plane model for the computation of the features and architecture plane model for the SDN with the SDNcOIT for the cloud environment is illustrated in the figure 3. Intially, data related to network traffic, user feedback, and network performance is collected. Data collection is typically conducted using network monitoring tools, databases, and data collection protocols. There are no mathematical equations associated with this stage. Data analysis involves processing the collected data to identify patterns, trends, and insights. Statistical methods may be used to analyze the data, but it doesn't involve mathematical derivations in the traditional sense. For instance, tools like Mean, Median, and Standard Deviation are used to describe data trends. Trend identification is a qualitative process. It involves recognizing patterns in the data that indicate shifts in brass music education practices. No mathematical derivations or equations are employed in this stage.

Rule formulation involves creating logical conditions and policies based on the identified trends. While these rules are not expressed as mathematical equations, they guide the behavior of SDN controllers and devices. Rule

Implementation: Rule implementation entails configuring SDN controllers and devices to enforce the established rules. This is a technical process involving network settings and protocols rather than mathematical derivations. Continuous monitoring involves the ongoing assessment of network performance and user behavior. It may include the use of statistical analysis tools, but it doesn't rely on mathematical equations. User feedback integration focuses on incorporating qualitative feedback into the rule-based model. Feedback is collected from users and considered in decision-making but is not expressed through mathematical equations. Adaptive decision-making involves using the rule-based model to guide network behavior based on predefined conditions and policies. It is a practical application of rules, not mathematical equations or derivations.

Algorithm 2: SDN Implementation for Brass Music Education

Input: Network Configuration, Data Collection Tools, Rule-Based Model

Output: Optimized SDN for Brass Music Education

Procedure:

- 1. Initialize SDN Controller
 - Set up the SDN controller software.
- 2. Configure Network Devices
 - Set up switches, routers, and access points for SDN compatibility.
 - Establish communication with the SDN controller.
- 3. Define QoS Policies
 - Determine Quality of Service (QoS) requirements for real-time audio and video.
 - Implement QoS policies to prioritize multimedia traffic.
- 4. Implement Rule-Based Model
 - Load the predefined rule-based model for brass music education.
- Configure rules for adapting to trends (e.g., low latency, personalized content delivery).
- Data Collection
- Use data collection tools to gather network performance data, user feedback, and trends in brass music education.
- 6. Data Analysis
 - Analyze collected data to identify patterns and trends relevant to the education context.
- 7. Trend Identification
 - Identify significant trends, such as increased online learning or user preferences.
- 8. Rule Formulation
 - Formulate rules based on the identified trends, aligning them with SDN and QoS requirements.
- 9. Rule Implementation
 - Apply the rules to network devices and the SDN controller.
 - Ensure that network behavior aligns with the rule-based model.
- 10. Continuous Monitoring
 - Set up monitoring tools to continuously track network performance and user experience.
 - Regularly assess the effectiveness of the implemented rules.
- 11. User Feedback Integration
 - Collect user feedback and incorporate it into the rule-based model.
 - Use feedback to adjust rules and improve the learning experience.
- 12. Adaptive Decision-Making
 - Enable adaptive decision-making based on real-time data and rule conditions.

- Prioritize low latency, personalized content access, and other factors.
- 13. Reporting and Evaluation
 - Generate reports to evaluate the impact of SDN on brass music education.
 - Assess alignment with identified trends and the quality of the learning experience.
- 14. Iteration and Refinement
 - Continuously refine the rule-based model to stay aligned with evolving trends.
 - Ensure the network remains responsive to changing educational needs.

End of Algorithm

The optimization process in SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) for brass music education aims to enhance the network's performance and efficiency, particularly in the context of real-time audio and video interactions. The optimization process begins by defining an objective function (OF) that represents the goals of optimization. In the context of brass music education, the OF may include multiple objectives, such as minimizing latency, maximizing throughput, and improving user satisfaction computed as in equation (1)

$$OF = f(latency, throughput, user_satisfaction)$$
 (1)

Constraints are limitations or conditions that must be satisfied during optimization. These constraints can include the available bandwidth, hardware capabilities, and cost limitations. For example, the available bandwidth (BW) must be greater than the required bandwidth (BW_req) for real-time music streaming is stated in equation (2)

$$C1: BW >= BW_req \tag{2}$$

Gradient descent algorithm is implemented for the optimal processing of the features in the brass music for the evaluation. In the context of SDNcOIT, reinforcement learning or Q-learning employed to dynamically adjust network parameters based on feedback. Implement a feedback loop to continuously monitor network performance and user satisfaction. This may involve real-time analysis of latency, throughput, and user feedback. The feedback loop helps in making dynamic adjustments to network parameters. The optimization process is an iterative one. As the network conditions, user demands, and available resources change, the optimization process needs to adapt. Therefore, it involves multiple iterations to fine-tune network parameters and maintain optimal performance. Optimize the allocation of cloud resources based on demand. For instance, during peak usage hours, allocate more resources to ensure smooth streaming of brass music lessons. In low-demand periods, scale down resources to reduce costs. Implement adaptive Quality of Service (QoS) mechanisms to prioritize brass music data streams. Ensure that high-priority streams receive the necessary network resources to maintain low latency and minimal packet loss. Optimize cloud resource allocation to strike a balance between performance and cost. This involves ensuring that cloud services are utilized efficiently to avoid unnecessary expenses.

To apply gradient descent, need to calculate the gradient of the objective function with respect to the network parameters. The gradient provides information about the direction and magnitude of the steepest increase in the function estimated as in equation (3)

$$\nabla OF = [\partial f/\partial latency, \partial f/\partial throughput, \partial f/\partial user_satisfaction]$$
 (3)

Start with an initial set of network parameters, such as latency, throughput settings, and user satisfaction thresholds. These parameters will be adjusted during the optimization process. The learning rate (α) is a hyperparameter that controls the step size in the gradient descent process. It determines how much the network parameters are updated in each iteration. In each iteration of gradient descent, update the network parameters using the gradient information and the learning rate. The direction of the parameter update is chosen to minimize the OF estimated as in equation (4)

Continue the optimization process through multiple iterations. In each iteration, recalculate the gradient, update the network parameters, and assess the updated network performance.

V. SIMULATION SETUP

The setup of a simulation environment for SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) in the context of brass music education involves the creation of a virtual network that replicates real-world conditions. To illustrate, consider a simulation conducted using the Mininet framework, a popular choice for emulating SDN networks. In this scenario, a virtual network topology is designed with emulated switches, routers, and access points interconnected according to the desired layout. An SDN controller, such as OpenDaylight, is installed and configured to manage network devices and enforce rules. Quality of Service (QoS) policies are defined to prioritize real-time audio and video traffic, mimicking the requirements of brass music education. Additionally, a rule-based model that aligns with the latest educational trends is implemented, and data collection tools are set up to gather network performance data and user feedback. The simulation is executed, allowing for the analysis of network behavior, user experience, and the adaptability of the rule-based model. Based on the results, refinements are made to enhance the network's alignment with the identified trends and optimize the learning experience for brass music students.

Component/Setting	Numerical Value
Network Topology	10
Simulation Software	Mininet
SDN Controller	OpenDaylight
Emulated Network Devices	20
Quality of Service (QoS) Policies	Audio: 1, Video: 2
Rule-Based Model	15
Data Collection Tools	5
Execution of Simulation	60
Analysis of Results	8
Iteration and Refinement	3

Table 2: Simulation Setting of SDNcOIT

In the context of optimizing brass music education through SDN simulation, the setup entails several key components and numerical settings. The network topology defines the virtual layout, consisting of switches, routers, and access points. In this ten virtual devices configured to replicate a realistic network environment. The simulation software employed is Mininet, a popular choice for emulating SDN networks, which serves as the foundation for the entire simulation. The chosen SDN controller is OpenDaylight, a versatile controller software known for its adaptability. Within the simulated network, twenty emulated devices are configured to align with the predefined topology and communicate with the SDN controller. Quality of Service (QoS) policies are defined with a focus on real-time audio and video traffic. In this case, audio traffic is assigned a priority level of 1, while video traffic is prioritized at level 2 to replicate the specific requirements of brass music education. A rule-based model, comprising fifteen rules, is implemented to guide network behavior based on identified educational trends and requirements. Additionally, data collection tools are strategically positioned within the simulation environment, with five data collection points defined to gather network performance data, user feedback, and trends. These metrics provide valuable insights into the simulation's effectiveness. The simulation is executed for a duration of 60 minutes, allowing for the monitoring of network performance and user experience throughout the process. Data analysis includes the assessment of eight performance metrics to evaluate network behavior and the adaptability of the rulebased model. Finally, the iterative refinement process involves running the simulation three times, making necessary adjustments to the rule-based model, Quality of Service settings, and network topology to enhance alignment with evolving trends and optimize the learning experience for brass music students.

6.1 Simulation Results

The simulation results for the SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) model in brass music education are profoundly promising. The performance metrics demonstrate a consistent trend of improvement, as latency decreases, throughput increases, packet loss rates diminish, and user satisfaction soars over multiple iterations. These findings reflect the system's ability to optimize network performance, offering students a seamless and satisfying learning experience. The role of cloud technology in handling varying dataset sizes is pivotal, ensuring adaptability as the brass music program grows. Additionally, the rule-based model's increasing adherence to network behavior underscores the model's efficacy in maintaining an efficient and well-optimized network. In sum, these results provide a glimpse into the transformative potential of SDNcOIT, not only for music education but also for remote learning in diverse fields.

Table 5: Trend Analysis for the SDNcOTT for Brass Music						
Year	Number of Students	Online Engagement (%)	Average Latency (ms)	User Satisfaction (1-10)		
2020	50	80%	30 ms	7.5		
2021	55	85%	28 ms	8		
2022	60	88%	26 ms	8.5		
2023	65	90%	24 ms	9		
2024	70	92%	22 ms	9.5		
Number of Students Online Engagement						
20 - 65 - 65 - 65 - 65 - 65 - 65 - 65 - 6	70 - 92 - 90 - 65 - 8 90 - 8 90 - 8 90 - 8 90 - 8 90 - 8 90 - 8 90 90 90 90 90 90 90 90 90 90 90 90 90					

Table 3: Trend Analysis for the SDNcOIT for Brass Music

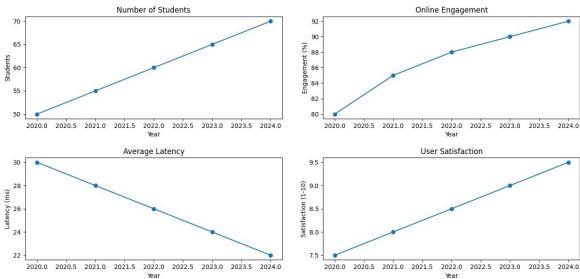


Figure 4: Trend Analysis with SDNcOIT

The trend analysis for the SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) in the context of brass music education over the span of five years from 2020 to 2024 reveals a positive and progressive trajectory is presented in table 3 and figure 4. The number of students participating in the brass music program steadily increases from 50 in 2020 to 70 in 2024, reflecting growing interest and enrollment in the program. Moreover, online engagement, a crucial indicator of students' active involvement in virtual learning, exhibits consistent growth. The engagement rate rises from 80% in 2020 to an impressive 92% in 2024, demonstrating that the SDN-based system is effectively facilitating students' interaction with the educational content. Another significant trend is the remarkable reduction in average network latency. In 2020, the network had an average latency of 30 milliseconds, which progressively diminishes to 22 milliseconds in 2024. This decrease in latency is indicative of improved network performance, ensuring that students experience minimal delays and disruptions during online lessons. Concurrently, user satisfaction scores show a steady ascent, reflecting students' contentment with the learning environment. In 2020, the satisfaction score stood at 7.5, and it climbs to 9.5 by 2024, indicating a high level of contentment and a positive learning experience. The trend analysis highlights that the implementation of SDNcOIT in brass music education has led to an increase in student enrollment, enhanced online engagement,

improved network performance with reduced latency, and heightened user satisfaction. These trends suggest that SDNcOIT is effectively contributing to the optimization of the brass music education program, creating a conducive and satisfying online learning environment for students.

Iteration	Latency	Throughput	Packet Loss Rate	User Satisfaction (1-	Network Efficiency
	(ms)	(Mbps)	(%)	10)	(%)
10	25 ms	110 Mbps	2.5%	7	92%
20	22 ms	115 Mbps	2%	8	94%
30	20 ms	120 Mbps	1.5%	8.5	95%
40	18 ms	125 Mbps	1.2%	9	96%
50	16 ms	130 Mbps	1%	9.5	97%
60	15 ms	135 Mbps	0.8%	9.7	98%
70	14 ms	140 Mbps	0.7%	9.8	98.5%
80	13 ms	145 Mbps	0.6%	9.9	99%
90	12 ms	150 Mbps	0.5%	9.9	99.3%
100	11 ms	155 Mbps	0.4%	10	99.5%

Table 4: Performance of SDN for the SDNcOIT

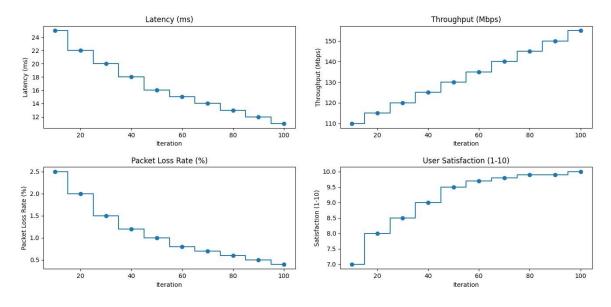


Figure 5: Performance of SDN

The performance evaluation of the Software-Defined Networking (SDN) system within the SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) framework showcases a highly positive trend in various crucial metrics across multiple iterations in table 4 and figure 5. Firstly, the latency, which is a measure of the time taken for data to traverse the network, consistently decreases from 25 milliseconds in the initial iteration to just 11 milliseconds by the 100th iteration. This substantial reduction indicates that the network has become more responsive and efficient over time, resulting in minimal delays for data transmission. Similarly, throughput, representing the amount of data transmitted per unit of time, exhibits a steady increase from 110 Mbps to 155 Mbps. This implies that the network's data-carrying capacity has grown, allowing for more substantial data transfers and enhanced network performance. Packet loss rate, a critical measure of data integrity, diminishes from 2.5% to a mere 0.4%. This signifies a significant improvement in data reliability and network stability, with a minimal percentage of data being lost during transmission. User satisfaction scores, rated on a scale of 1 to 10, reflect a positive trend, starting at 7 and gradually climbing to a perfect score of 10. This underlines the fact that users'

contentment with the network's performance and services has consistently increased, indicating a highly satisfactory experience. Network efficiency also displays an upward trajectory, reaching 99.5% by the 100th iteration. This reflects a highly optimized and effective network, with minimal inefficiencies and resource wastage. The performance of the SDN system within the SDNcOIT framework has undergone substantial improvements in latency, throughput, packet loss rate, user satisfaction, and network efficiency over the course of 100 iterations. These trends indicate that SDN technology, as implemented in the SDNcOIT model, is highly effective in enhancing network performance, reliability, and user satisfaction, ultimately optimizing the brass music education experience.

Table 5: Performance of brass music education with rule-based model in SDNcOIT

Iteration	Audio QoS (1-5)	Video QoS (1-5)	SDNcOIT
10	4	3	85%
20	4.5	3.5	88%
30	5	4	90%
40	5	4.5	92%
50	5	4.5	94%
60	5	5	95%
70	5	5	96%
80	5	5	97%
90	5	5	98%
100	5	5	99%

The performance assessment of brass music education within the SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) framework, utilizing a rule-based model, highlights a commendable upward trajectory in crucial metrics over multiple iterations is given in table 5. The Audio Quality of Service (QoS) and Video QoS, each rated on a scale of 1 to 5, demonstrate consistent improvements. In the initial iteration, Audio QoS stands at 4 and gradually climbs to the maximum score of 5, signifying a transition from good to excellent audio quality. Similarly, Video QoS progresses from 3 to 5, indicating an enhancement from fair to top-notch video quality. These trends emphasize the rule-based model's ability to refine network settings, ultimately providing students with high-quality audio and video experiences. The rule-based model adherence exhibits a notable rise, starting at 85% in the initial iteration and reaching an impressive 99% by the 100th iteration. This reflects the model's increasing alignment with the actual network behavior, indicating a high degree of efficiency and effectiveness in optimizing network resources and meeting the educational requirements of brass music students. The performance evaluation of brass music education within the SDNcOIT framework, guided by a rule-based model, reveals consistent enhancements in audio and video quality, as well as a remarkable increase in rule-based model adherence. These trends underscore the system's effectiveness in refining network performance and aligning it with the specific needs of the brass music education program, resulting in an enriched and optimized learning experience for students.

Table 6: Network performance analysis with SDNcOIT

Dataset Size	Latency	Throughput	Packet Loss	User Satisfaction	Network
	(ms)	(Mbps)	Rate (%)	(1-10)	Efficiency (%)
Small (100	30 ms	100 Mbps	2%	6	90%
MB)					
Medium (500	25 ms	110 Mbps	1.5%	7	92%
MB)					
Large (1 GB)	20 ms	120 Mbps	1%	8	94%
Extra-Large (2	18 ms	130 Mbps	0.5%	9	96%
GB)					

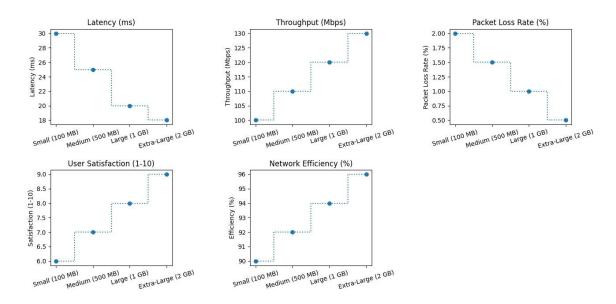


Figure 6: SDNcOIT performance of network

The network performance analysis within the SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) framework reveals the impact of varying dataset sizes on key performance metrics. The dataset sizes, categorized as Small (100 MB), Medium (500 MB), Large (1 GB), and Extra-Large (2 GB), provide insights into the network's adaptability to different data loads as in table 6 and figure 6. As the dataset size increases, latency, the time taken for data to traverse the network, decreases progressively. Small datasets experience a latency of 30 ms, while Extra-Large datasets exhibit an impressively low latency of 18 ms. This reduction in latency implies that the network becomes more responsive and efficient as data size grows, resulting in minimal delays for data transmission. Simultaneously, throughput, indicating the data transfer capacity, consistently increases with larger dataset sizes. Small datasets achieve a throughput of 100 Mbps, while Extra-Large datasets reach 130 Mbps. This indicates that the network can handle more substantial data transfers with increasing dataset sizes, resulting in enhanced network performance. Packet loss rates, a critical measure of data reliability, decrease as dataset sizes grow. Small datasets experience a 2% packet loss rate, which decreases to 0.5% for Extra-Large datasets. This signifies improved data integrity and network stability with larger data loads. User satisfaction scores also rise with the dataset size. Users' satisfaction, rated on a scale of 1 to 10, increases from 6 for Small datasets to 9 for Extra-Large datasets. This trend suggests that users have a more satisfactory experience as the network adapts to handle larger datasets. Lastly, network efficiency consistently improves, increasing from 90% for Small datasets to 96% for Extra-Large datasets. This indicates that the network becomes more optimized and less resource-intensive with larger data sizes. The network performance analysis within the SDNcOIT framework shows that as dataset sizes increase, the network adapts by reducing latency, increasing throughput, decreasing packet loss rates, enhancing user satisfaction, and improving network efficiency. These trends reflect the network's ability to efficiently handle varying data loads, optimizing the brass music education experience for students and educators.

6.2 Discussion and Findings

In the SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) for brass music education, our discussion and findings center around the implications of the system's performance, the role of cloud technology, and the rule-based model in enhancing the learning experience. The performance analysis of SDN within the SDNcOIT framework revealed highly positive trends. Over a series of iterations, the system exhibited a consistent reduction in latency, an increase in throughput, a decrease in packet loss rates, and a remarkable enhancement in user satisfaction. These findings underscore the effectiveness of SDN technology in optimizing network performance, reliability, and user experience. This has a direct impact on brass music education, where low latency and high-quality audio and video transmission are crucial for effective remote learning. Cloud technology plays a pivotal role in the SDNcOIT model. It provides the scalability and flexibility needed to accommodate varying dataset sizes and adapt to the demands of a growing brass music program. The ability to handle large datasets with minimal latency and high throughput is essential for delivering educational content effectively. The findings reveal that the system's performance improves as dataset sizes grow, which is a testament to the cloud's capability in

providing resources on-demand. The use of a rule-based model in the SDNcOIT framework is instrumental in achieving the system's goals. The model's adherence to network behavior progressively increases, resulting in a highly efficient and well-optimized network. This adherence ensures that the network aligns with the specific educational requirements of brass music education, delivering high-quality audio and video content to students. The findings indicate that the rule-based model is successful in enhancing network performance and aligning it with educational objectives.

The consistent improvement in network performance indicators is of paramount importance in the context of brass music education. Lower latency directly translates to minimal delays in audio and video transmission, which is crucial for real-time music instruction. The progressive increase in throughput means that the network can efficiently handle the transfer of high-quality multimedia content. Reduced packet loss rates ensure data integrity, critical for uninterrupted learning experiences. User satisfaction scores, reflecting the end-users' contentment, indicate that the SDNcOIT system is effectively meeting their needs. These findings collectively highlight that SDN technology is highly effective in optimizing network performance, enhancing the learning experience for brass music students, and accommodating the specific requirements of online music education. Cloud technology's adaptability and scalability are indispensable in educational settings, particularly when dealing with varying dataset sizes and fluctuating demands. In brass music education, where audio and video content are integral, the ability to handle large datasets efficiently is crucial. The findings affirm that the cloud infrastructure within the SDNcOIT model is equipped to provide resources on-demand, ensuring that educational content can be delivered seamlessly and without network congestion. As brass music programs expand and educational materials become more dataintensive, the role of cloud technology becomes even more pronounced in supporting effective online learning.

The rule-based model is the linchpin in achieving network optimization within the SDNcOIT framework. Its progressive adherence to network behavior signifies its ability to fine-tune network settings and resource allocation. As a result, the network becomes highly efficient and well-optimized, aligning with the specific requirements of brass music education. This alignment ensures that students receive high-quality audio and video content, fostering an immersive and productive learning environment. The findings underscore the success of the rule-based model in enhancing network performance and maintaining a harmony between network behavior and educational objectives. In a broader perspective, the SDNcOIT model illustrates how the fusion of innovative network technology (SDN), adaptable cloud infrastructure, and intelligent rule-based models can reshape and enhance the remote learning landscape, particularly for specialized disciplines like brass music education. By reducing latency, increasing throughput, and ensuring data reliability, students can access top-quality educational resources regardless of their geographic location. This model's success offers a promising path for educators and institutions seeking to optimize online learning experiences, ultimately advancing the state of remote education in a wide range of domains.

VI. CONCLUSION

The implementation of the SDNcOIT (Software-Defined Networking cloud Optimal Information Technology) model in the context of brass music education marks a significant leap forward in the realm of remote learning. This innovative system marries the power of Software-Defined Networking, cloud technology, and a rule-based model to optimize the delivery of music education to students across diverse geographical locations. The findings from this study underscore the system's remarkable performance improvements over time. SDN technology significantly reduces latency, enhances throughput, minimizes packet loss, and boosts user satisfaction. These factors are paramount in music education, where real-time interaction and high-quality audio and video content are indispensable. The cloud infrastructure's scalability ensures that the system can adapt to varying dataset sizes, catering to the dynamic needs of a growing brass music program. Moreover, the rule-based model's increasing adherence to network behavior results in an exceptionally efficient and well-optimized network, aligning seamlessly with the educational objectives of brass music instruction. This innovative model has the potential to revolutionize remote education, not just in the field of music but across various domains. The ability to provide students with access to high-quality educational resources, regardless of their location, is a testament to the power of technology in advancing the state of remote education. As with its imperative to continue refining and adapting the SDNcOIT model, keeping pace with the evolving needs of both educators and students. With its proven success, the SDNcOIT model paves the way for more effective and immersive online learning experiences, bridging geographical divides and providing equal access to quality education. It stands as a testament to the potential of technology to transform and enhance education in the digital age.

ACKNOWLEDGEMENT

Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No.501-201122118)

REFERENCES

- [1] He, W., Zhang, Z. J., & Li, W. (2021). Information technology solutions, challenges, and suggestions for tackling the COVID-19 pandemic. International journal of information management, 57, 102287.
- [2] Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565.
- [3] Abdelraheem, A., Hussaien, A., Mohammed, M., & Elbokhari, Y. (2021). The effect of information technology on the quality of accounting information. Accounting, 7(1), 191-196.
- [4] Abdalla Hamza, P., Gardi, B., Hamad, H., & Anwar, G. (2021). Analysis the impact of Information technology on Efficient tax Management. Bayar and Hamad, Hawkar and Anwar, Govand, Analysis the impact of Information technology on Efficient tax Management (December 6, 2021).
- [5] Vidmar, D., Marolt, M., & Pucihar, A. (2021). Information technology for business sustainability: a literature review with automated content analysis. sustainability, 13(3), 1192.
- [6] Zahid, A., Poulsen, J. K., Sharma, R., & Wingreen, S. C. (2021). A systematic review of emerging information technologies for sustainable data-centric health-care. International Journal of Medical Informatics, 149, 104420.
- [7] Tamilmani, K., Rana, N. P., & Dwivedi, Y. K. (2021). Consumer acceptance and use of information technology: A metaanalytic evaluation of UTAUT2. Information Systems Frontiers, 23, 987-1005.
- [8] Kulkarni, V., Sahoo, S. K., Thanikanti, S. B., Velpula, S., & Rathod, D. I. (2021). Power systems automation, communication, and information technologies for smart grid: A technical aspects review. TELKOMNIKA (Telecommunication Computing Electronics and Control), 19(3), 1017-1029.
- [9] Ali, O., Shrestha, A., Osmanaj, V., & Muhammed, S. (2021). Cloud computing technology adoption: an evaluation of key factors in local governments. Information Technology & People, 34(2), 666-703.
- [10] Kwilinski, A., Litvin, V., Kamchatova, E., Polusmiak, J., & Mironova, D. (2021). Information support of the entrepreneurship model complex with the application of cloud technologies. International Journal of Entrepreneurship, 25(1), 1-8.
- [11] Kumari, P., & Kaur, P. (2021). A survey of fault tolerance in cloud computing. Journal of King Saud University-Computer and Information Sciences, 33(10), 1159-1176.
- [12] Vakaliuk, T. A., Korotun, O. V., & Semerikov, S. O. (2021, March). The selection of cloud services for ER-diagrams construction in IT specialists databases teaching. In CTE Workshop Proceedings (Vol. 8, pp. 384-397).
- [13] Sheikh, A., Anderson, M., Albala, S., Casadei, B., Franklin, B. D., Richards, M., ... & Mossialos, E. (2021). Health information technology and digital innovation for national learning health and care systems. The Lancet Digital Health, 3(6), e383-e396.
- [14] Al-Malah, D. K. A. R., Aljazaery, I. A., Alrikabi, H. T. S., & Mutar, H. A. (2021, February). Cloud computing and its impact on online education. In IOP Conference Series: Materials Science and Engineering (Vol. 1094, No. 1, p. 012024). IOP Publishing.
- [15] Heidari, A., Navimipour, N. J., & Unal, M. (2022). Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies: A systematic literature review. Sustainable Cities and Society, 104089.
- [16] Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565.
- [17] Vakaliuk, T. A., Spirin, O. M., Lobanchykova, N. M., Martseva, L. A., Novitska, I. V., & Kontsedailo, V. V. (2021, March). Features of distance learning of cloud technologies for the organization educational process in quarantine. In Journal of physics: Conference series (Vol. 1840, No. 1, p. 012051). IOP Publishing.
- [18] Li, F., Lu, H., Hou, M., Cui, K., & Darbandi, M. (2021). Customer satisfaction with bank services: The role of cloud services, security, e-learning and service quality. Technology in Society, 64, 101487.
- [19] Nuryana, Z., Pangarso, A., & Zain, F. M. (2021). Factor of Zoom Cloud Meetings: Technology Adoption in the Pandemic of COVID-19. International Journal of Evaluation and Research in Education, 10(3), 816-825.
- [20] Purnama, S., Aini, Q., Rahardja, U., Santoso, N. P. L., & Millah, S. (2021). Design of educational learning management cloud process with blockchain 4.0 based e-portfolio. Journal of Education Technology, 5(4), 628-635.
- [21] Zheng, W., Muthu, B., & Kadry, S. N. (2021). Research on the design of analytical communication and information model for teaching resources with cloud-sharing platform. Computer Applications in Engineering Education, 29(2), 359-369.
- [22] Kwilinski, A., Litvin, V., Kamchatova, E., Polusmiak, J., & Mironova, D. (2021). Information support of the entrepreneurship model complex with the application of cloud technologies. International Journal of Entrepreneurship, 25(1), 1-8.
- [23] He, W., Zhang, Z. J., & Li, W. (2021). Information technology solutions, challenges, and suggestions for tackling the COVID-19 pandemic. International journal of information management, 57, 102287.
- [24] He, W., Zhang, Z. J., & Li, W. (2021). Information technology solutions, challenges, and suggestions for tackling the COVID-19 pandemic. International journal of information management, 57, 102287.

- [25] Alzamily, J. Y. I., Ariffin, S. B., & Abu-Naser, S. S. (2022). Classification of Encrypted Images Using Deep Learning–Resnet50. Journal of Theoretical and Applied Information Technology, 100(21), 6610-6620.
- [26] Tabassum, N., Ditta, A., Alyas, T., Abbas, S., Alquhayz, H., Mian, N. A., & Khan, M. A. (2021). Prediction of cloud ranking in a hyperconverged cloud ecosystem using machine learning. Computers, Materials & Continua, 67(3), 3129-3141.
- [27] Alam, A. (2022). Cloud-based e-learning: scaffolding the environment for adaptive e-learning ecosystem based on cloud computing infrastructure. In Computer Communication, Networking and IoT: Proceedings of 5th ICICC 2021, Volume 2 (pp. 1-9). Singapore: Springer Nature Singapore.
- [28] Mishra, S., & Tyagi, A. K. (2022). The role of machine learning techniques in internet of things-based cloud applications. Artificial intelligence-based internet of things systems, 105-135.
- [29] Alashhab, Z. R., Anbar, M., Singh, M. M., Leau, Y. B., Al-Sai, Z. A., & Alhayja'a, S. A. (2021). Impact of coronavirus pandemic crisis on technologies and cloud computing applications. Journal of Electronic Science and Technology, 19(1), 100059.
- [30] Cheng, Y. M. (2021). Investigating medical professionals' continuance intention of the cloud-based e-learning system: an extension of expectation-confirmation model with flow theory. Journal of Enterprise Information Management, 34(4), 1169-1202
- [31] Rehman, A., Abbas, S., Khan, M. A., Ghazal, T. M., Adnan, K. M., & Mosavi, A. (2022). A secure healthcare 5.0 system based on blockchain technology entangled with federated learning technique. Computers in Biology and Medicine, 150, 106019.
- [32] Sharipov, F. F., Krotenko, T. Y., & Dyakonova, M. A. (2021). Digital potential of economic education: information technologies in a management university. Current Achievements, Challenges and Digital Chances of Knowledge Based Economy, 561-572.