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Abstract: - Massive MIMO(M-MIMO) is recognized as one of the promising technologies to meet the demands of the fifth generation of 

wireless telecommunications. The channel matrix of OFDM Massive MIMO systems is sparse in delay domain. In the compressed 

sensing-based channel estimation, the channel matrix sparsity is used to improve the channel estimation accuracy and decrease the pilot 

overhead. This study presents a structured compressed sensing channel estimation plan to reduce the required pilot. As a result, it is 

possible to enhance the inherent spatial sparsity of the M-MIMO delay domain channels. We propose an algorithm that estimates the 

channel based on the greedy orthogonal matching pursuit (OMP) algorithm. This algorithm uses the common spatial sparsity of M-MIMO 

channels for accurate channel estimation. We also present simulations that show the capacity of the proposed approach for reducing the 

required pilot. The simulation results indicate that the presented channel estimation method has a low bit error rate. In addition, it reliably 

obtains the sparsity of the channel, suggesting its suitability for channel estimation in OFDM M-MIMO systems. 
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I. INTRODUCTION 

New solutions for meeting the needs of wireless telecommunications have led to the ideation of the fifth generation of 

cellular telecommunications with its new technologies. In 5G networks, five new technologies and orientations have 

emerged, including massive MIMO systems [1].  

Recently, great attention has been paid to massive MIMO systems because of their prominent characteristics, including 

better communication gains and greater capacity. It is a promising technology for the future 5G communications for 

spectral efficiency and high energy efficiency. A precise channel estimation is necessary to realize its potential 

performance. One of the primary parts of M-MIMO systems is channel estimation, which is among the limitations of 

using this technology. Taking advantage of massive MIMO requires having appropriate knowledge of CIR between 

receiver-transmitter links. The CIR estimation challenges massive MIMO systems because the BS has several antennas. 

 Various methods have been introduced for extracting channel coefficients. The most appropriate method selection for 

M-MIMO systems depends on the pilots’ location and meeting the design requirements, e.g., delay and error rate.  

It is possible to classify channel estimation methods into non-blind and blind methods [2]. In the latter, the channel is 

estimated using the statistical behavior of the data and the assumptions. In the blind channel estimation approaches, the 

transmitter does not insert any pilot signal into the transmitted signal. Therefore, the receiver estimates the 

telecommunication channel using the structural and statistical features of the received signals, i.e., the statistical 

properties of the data or the statistical properties of the channel or both of them. This method requires a large amount 

of data to estimate the communications channel [3,4]. 

 In this research, non-blind methods are considered. Pilot refers to specific amounts of data known to the receiver that 

can be used to estimate the number of channels. Although blind-channel estimation methods work better than non-blind 

methods concerning spectral efficiency for the lack of pilot signals, channel estimation using these methods involves 

using complex signal processing techniques. 

In a general category, the methods of pilot assistance or data assistance are divided into two categories 1) transfer to 

other domains and 2) compute in the primary domain. In the transfer technique to other domains, orthogonal 
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transformations such as Fourier transform are performed in another domain. Thus, in addition to reducing the 

computational complexity, noise cancellation is much easier and more efficient. For example, in [5, 6], discrete Fourier 

transform is applied to the orthogonal frequency division multiplexing system (OFDM), in which the data are analyzed 

in the frequency domain. By transferring to the time domain, channel values are found more effectively, neutralizing 

their impact. Primary domain calculation methods are different estimation methods that try to find the channel value 

using pilots. Two popular methods in this field are the linear minimum mean square error (LMMSE) algorithm and the 

least squares (LS) method. In this work, we use these two methods as the criterion of comparison with the presented 

channel estimation algorithm of the article. Pilot-based channel estimation methods employ simple algorithms to 

process in receivers. In these methods, the problem of channel estimation and data detection is usually separated from 

each other, simplifying the receiver structure. Most of the studies done in the channel estimation field have presumed 

that a telecommunication channel between a sender and receiver consists of many paths. As a result, the signal sent 

from the transmitter is received at the receiver with different delays after passing through these paths. Under this 

assumption, the proposed pilot-based algorithms are often linear and optimized for rich multipath channels. However, 

many experiments and studies have shown that telecommunication channels have sparse structures in many 

environments. In other words, in these environments, most of the received signals are received from very attenuated 

paths so that their power is lower than the noise power [7, 8]. In such sparse environments, very few communication 

paths are useful for use on the receiver. In sparse telecommunication channels, algorithms with a linear reconstruction 

structure that are developed based on the channel richness from various paths do not perform well. In fact, as these 

algorithms are designed to estimate many different paths, they use many pilot signals, resulting in excessive energy 

consumption, decreased spectral efficiency, and a decrease in the quality of the telecommunication system [7]. 

Once the sparse channel matrix representation is obtained, channel estimation is possible with fewer pilots using 

compressive sensing methods. In this regard, sparse signal retrieval methods in compressive sensing are divided into 

three general categories: greedy, convex optimization, and repetitive methods. In studies conducted in this field, one of 

these methods has been used proportional to the function. However, in addition to special compressive sensing 

algorithms, some papers have proposed control methods for adaptively adjusting the required pilot to find the best 

number of pilots adaptively and to improve channel estimation [9],[10],[11]. 

Advances in compressed sensing theory, which allows the reconstruction of a sparse signal by a very small number of 

samples, have motivated many researchers to use this theory to estimate sparse telecommunication channels. Because 

this theory shows that sparse telecommunication channels can be estimated with very good accuracy with only a small 

number of pilots. In [12, 13] and [14], it was proved that the channel parameters could be recovered by CS with less 

training, leading to enhanced system performance and improved bandwidth efficiency. Since the methods of estimating 

channels based on compressed sensing theory can adapt to the structures of sparse channels and estimate sparse 

telecommunication channels more accurately than classical methods. However, it should be noted that channel 

estimation using compressed sensing theory has more computational complexity than the classical methods [15, 16]. 

Therefore, the use of compressed sensing theory in estimating sparse telecommunication channels increases the channel 

estimation accuracy and enhances the telecommunication system’s spectral efficiency. High spectrum efficiency is one 

of the basic needs for future generations of telecommunication systems. Increasing the use of telecommunication 

networks, systems must be designed to serve a large number of users simultaneously. M-MIMO systems are one of the 

emerging technologies designed for this purpose. In [14, 17] and [18], channel estimation was considered based on CS 

techniques. They proved that increasing the number of BS antennas, will increase the CIR sparsity for the local scatters 

at the BS. 

Many applications consider a time division duplexing (TDD) scenario. In this case, the reciprocity property is 

established so, the CSI in the downlink is obtained from the uplink CSI. The channel reciprocity property is not 

established in FDD systems. The reason is that the downlink and uplink utilize different frequency bands in FDD mode 

so, the CSIs are different according to uplink and downlink. FDD performs well in symmetric traffic, latency-sensitive 

systems, and many cellular systems. Therefore, FDD cannot be ignored as there is a great interest in discovering 

effective approaches for obtaining channel state information at the transmitter (CSIT) in M-MIMO systems in FDD. 

Therefore, it is difficult to achieve precise channel estimation with low pilot requirements, particularly for FDD-based 

M-MIMO systems. FDD systems can provide more efficient communication with less latency than TDD systems [19], 

leading to more use of FDD. Many authors have considered the FDD massive MIMO systems [3, 20][5][21, 22]. Also, 

some other efforts have proposed uplink CSI feedback and downlink pilot design[12,23]-[24]. In the present research, 

the issue of channel estimation of FDD M-MIMO systems is addressed using compressive sensing techniques and the 

inherent sparsity of channels in different modes. 
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In [25], an iterative thresholding method was proposed for approximating the channel matrix, which has been effective 

in the channel estimation because of high amount of BS antennas and channel paths. Also, in line with applying channel 

estimation in M-MIMO systems, channel estimation based on FDD, [26] and [27] using spatial correlation of channels 

have shown that the required pilot to evaluate the channel can be reduced by Rice distribution. In channel estimation 

the sparsity level of the channel at the user is assumed to be known such as in [26] and [28,29] that is not the case in 

real situations. 

The spatial correlation of sparse channels and the common location sparsity of MIMO channels in the delay domain 

and structured sparsity of M-MIMO channels are modeled and described in this work. The remainder of this research 

is organized as follows. The second section illustrates the proposed structured orthogonal matching pursuit channel 

estimation algorithm. The third section shows the simulation results. Finally, the conclusions and future work 

suggestions are presented in the fourth section. 

structured orthogonal matching pursuit channel estimation algorithm  

This section models spatial sparsity and reviews the proposed channel estimation strategy and algorithm.  

Spatial sparsity modeling 

 Experimental studies show that broadband wireless channels are sparse in the delay domain. This sparsity is attributed 

to the low number of multiple paths dominating the channel energy due to the low number of considerable scatterers in 

wireless signal propagation settings. However, there could be a large channel delay spread due to the great difference 

between the arrival times of the first and the last received paths. Specifically, the delay-domain channel impulse 

response (CIR) in the downlink between the 𝑚th transmit antenna at the BS and a user, 𝒉𝑚, is expressed as follows: 

 

 𝒉𝑚= [ℎ𝑚[1],ℎ𝑚[2],… , ℎ𝑚[𝐿]𝑇 ]، 1 ≤ 𝑚 ≤ 𝑀   (1) 

where 𝐿 is equal to the channel length. We define the support set, 𝑉𝑚, as follows. 

  𝑉𝑚 = 𝑆𝑢𝑝𝑝{𝒉𝑚} = {𝑙: |ℎ𝑚[𝑙]| > 𝜂, 1 ≤ 𝑙 ≤ 𝐿}   (2) 

Here, the channel noise threshold level (η) corresponds to the effective semi-blind solution for detecting the most 

significant taps in sparse channel estimation of OFDM MIMO systems. The sparsity level of wireless channels, i.e., the 

number of the sparsity of the 𝑚th transmit antenna, is defined as 𝑁𝑆𝑚 = |𝑉𝑚|𝑐 . 

The delay domain channels have a sparse nature, 𝑁𝑆𝑚 ≪ 𝐿 [26]. In addition, measurements show very similar path 

delays in the channel impulse response (CIR) between different transmit antennas and a user. Because in typical M-

MIMO geometry, the compressed antenna array in BS has a negligible and quite small scale compared to the large 

signal transmission distance. Also, there are common scatters between each transmitter and receiver antenna pairs. 

Therefore, there is a high overlap between the sparsity pattern of different CIRs of different transmit-receive antenna 

pairs. Moreover, for MIMO systems that do not have an excessively high 𝑀, a common sparse pattern can be shared by 

these CIRs [30][31] that is, 

  𝑉1 = 𝑉2 = ⋯ = 𝑉𝑀 (3) 

𝑉𝑀 is called the spatial common sparsity of wireless MIMO channels. Channels between transmitter and receiver can 

have temporal, spatial, or frequency correlations. Spatial correlation occurs when the channel matrices of different users 

have common support, meaning that some non-zero locations in their matrices are the same. Having several common 

scatterers in signaling to all users will create such a feature. 

Channel estimation scheme  

Here, we present a structured compressive sensing and channel estimation plan for FDD massive MIMO systems with 

a structured algorithm based on the greedy OMP algorithm, using the spatial domain correlation at the user-side. The 

discrete Fourier transform and cyclic prefix are removed at the user side. Thus, the pilot sequence 𝒚 ∈ ℂ𝑁𝑝×1 can be 

expressed for an OFDM symbol as follows 

𝒚 = ∑ 𝑑𝑖𝑎𝑔{𝒑𝑚} 𝑭|𝛾 [
𝒉𝑚

0(𝑁−𝐿)×1
] + 𝒘

𝑀

𝑚=1

= ∑ 𝑷𝑚 𝑭𝐿|𝛾 𝒉𝑚 + 𝒘 =  ∑ 𝚽𝑚𝒉𝑚 + 𝒘

𝑀

𝑚=1

𝑀

𝑚=1

 

(4) 

 𝑁 denotes the number of subcarriers in an OFDM system. 𝛾 represents a set of sub-carriers assigned to pilots that are 

uniquely selected from the sets {1,2, … ,𝑁} and thus it is the location of the pilots. 𝑁𝑝 = |𝛾|𝑐 is the number of pilots and 
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𝒑𝑚 ∈ ℂ𝑁𝑃×1 is the training sequence of the 𝑚th antenna on the transmitter  {𝒑𝑚}𝑚=1
𝑀 . 𝑷𝑚 = 𝑑𝑖𝑎𝑔{𝒑𝑚} with elements 

𝒑𝑚. F represents a DFT matrix with 𝑁 ×  𝑁 size. 𝑭𝐿𝜖ℂ𝑁×𝐿 includes the L first column of the F matrix. 𝑭|𝛾 ∈ ℂ𝑁𝑃×𝑁 

and 𝑭𝐿|𝛾 ∈ ℂ𝑁𝑃×𝐿 are submatrices obtained by selecting rows 𝐹 and 𝑭𝐿, respectively, with respect to 𝛾. 𝒘 ∈ ℂ𝑁𝑃×1 is 

defined by the additive white Gaussian noise vector (AWGN) and  𝚽𝑚 = 𝑷𝑚𝑭𝐿|𝛾. 

Accordingly, Eq. (4) can be rewritten more concisely below, 

𝒀 = 𝚽𝒉 + 𝑾 (5) 

where 𝚽 = [𝑷1𝑭𝐿|𝛾,𝑷2𝑭𝐿|𝛾, ⋯ ,𝑃𝑀𝑭𝐿|𝛾] = [𝚽1,𝚽2, … ,𝚽𝑀] 𝜖 ℂ𝑁𝑝×𝑀𝐿 𝒉 = [𝒉1
𝑇,𝒉2

𝑇, … , 𝒉𝑀
𝑇 ]𝑇𝜖 ℂ𝑀𝐿×1, 𝒉 can be 

considered the equivalent CIR. 

For M-MIMO systems, since the number of M transmit antennas is large and the number of pilots 𝑁𝑝 is limited, we 

usually have 𝑁𝑝 ≪ 𝑀𝐿. This problem gives an under-determinate system of equations whose equations are fewer than 

the unknowns. Also, we know that this system of equations has an infinite answer. These interpretations, show that we 

cannot trust channel estimation from pilot sequence by using channel estimation mathods that require a high number of 

samples for channel estimation because (5) is an indeterminate equation. 

Given that the sparse solution of an under-determined system of equations is unique, to retrieve a channel from a 

measurement vector uniquely, the channel vector itself must be sparse or sparse in other domains. However, it was 

found that 𝒉 is a sparse signal because of the {𝒉𝑚}𝑚=1
𝑀  sparsity. Therefore, it was inspired to estimate the high-

dimensional sparse signal of 𝒉 from the received low-dimensional pilot 𝒀 sequence within the CS theory framework 

[32]. In addition, wireless MIMO channels inherent spatial sparsity, helps improve system quality and performance, 

which we will be deal with in the following. 

𝜱 can be arranged as follows. 

 𝚿 = [𝚿1,𝚿2, … ,𝚿𝐿] 𝜖 ℂ𝑁𝑝×𝑀𝐿 (6) 

where 𝚿 elements are in the following order 𝚿𝑙 = [𝚽1
(𝑙)

,𝚽2
(𝑙)

, … , 𝚽𝑀
(𝑙)

] = [𝛙1,𝑙 , 𝛙2,𝑙, … , 𝛙𝑀,𝑙 ] 𝜖 ℂ𝑁𝑝×𝑀.  Similarly, 

(5) can be rewritten as follows. 

 𝒀 =  𝚿𝑽 + 𝑾    (7) 

Specifically, we arrange the channel impulse response vector 𝒉 so that the correspondent CIR vector, 𝑽, is obtained as 

follows:  𝑽 = [𝑽1
𝑇  ,𝑽2

𝑇  , … , 𝑽𝐿
𝑇  ]𝑇 ∈ ℂ𝑀𝐿×1. Here, for the V elements, 𝑽𝑙  is aexpressed as 𝑽𝑙 =

[𝒉1[𝑙],𝒉2[𝑙], … , 𝒉𝑀[𝑙] ]𝑇 𝑓𝑜𝑟 1 ≤ 𝑙 ≤ 𝐿. The matrix 𝑽, corresponding to CIR in (7), shows a structured sparsity 

because of the spatial sparsity of the wireless MIMO channels. Also, the channel estimation performance can be 

enhanced by the inherent sparsity in 𝑽. Hence, the channels related to the 𝑀 transmitter antennas can be estimated 

jointly. 

TABLE 1. THE IMPLEMENTATION FLOW OF THE SOMP ALGORITHM 

algorithm proposed SOMP channel estimation algorithm  

1- Input: measurement matrix 𝒀  

       Sensing matrix 𝚿 

2- Sparsity level of the channel 𝑠=1  

3- Iterative variable 𝑛=1 

4- Support set 𝛀𝑛−1 =  𝝓 

5- Residual matrix 𝑹𝑛−1 = 𝑌, ||𝑹𝑠−1||𝐹 = +𝑖𝑛𝑓 

“iteration loop to find the sparse V matrix according to Eq. (7)” 

6- Correlation 𝑿 = 𝚿𝐻𝑹𝑛−1 

7- Estimating support set 𝛀̃ 𝑛 = MAXINDX𝑠({||𝑿𝑙||𝐹} 𝐿
𝑙 = 1

) 

8- Estimating matrix 𝑽̆Ω̃ 𝑛 = Ψ
Ω̃ 𝑛
† 𝒀, 𝑽̆(Ω̃ 𝑛)𝑐 = 0 

9- Residual update  𝒀𝑛 = 𝚿𝑽̆; 

               𝑹𝑛 = 𝒀 − 𝑌𝑛   

10- Matrix update 𝑽̆𝑛 =  𝑽̆ 

 

If (‖𝑹𝑛−1‖𝐹 >  ‖𝑹𝑛‖𝐹) 
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11- Iteration with fixed sparsity level 𝛀𝑛 =  𝛀̃ 𝑛 , 𝑛 = 𝑛 + 1 

else 

12- Updating sparsity level 𝑽̆𝑠 =  𝑽̆𝑛−1, 𝑹𝑠 = 𝑹𝑛−1 

       𝛀𝑠 = 𝛀𝑛−1, 𝑠 = 𝑠 + 1 

end if 

13- Stopping criteria ||𝑹𝑛||𝐹 > ||𝑹𝑠−1||𝐹 or ‖ 𝑽̆𝑙‖𝐹
≤ √𝑀η 

End loop 

14- Output 𝑽̂ = 𝑽̆𝑠−1 

15- Obtain channel estimates according to Eqs. (4) to (7) {𝒉𝑚}
𝑚 = 𝑀
𝑚 = 1 

 

 

Using the structured sparsity of 𝑽 in (7), the SOMP algorithm is proposed for estimating the channels of the M-MIMO 

system as described in the steps above in table 1. With the development of the OMP algorithm, this algorithm uses 

structured sparsity of 𝑽 to improve the sparse signal retrieval performance further. The proposed algorithm also obtains 

sparsity adaptively. The following are some of the features of the proposed algorithm. 

The two vectors 𝑿 and 𝑽̆ are as follows, 𝑿 𝜖 ℂ𝑀𝐿 ×1 𝑎𝑛𝑑 𝑽̆  ∈  ℂ𝑀𝐿 ×1, which include 𝐿 sub-matrix of equal size 𝑀 ×  1, 

i.e., 𝑿 𝜖 [𝑿1
𝑇, 𝑿2

𝑇, … , 𝑿𝐿
𝑇 ]𝑇𝑎𝑛𝑑 𝑽̆ = [𝑽̆1

𝑇, 𝑽̆2
𝑇, … , 𝑽̆𝐿

𝑇]𝑇.  

We also have 𝑽̆Ω̃ = [𝑽̆Ω̃ (1)
𝑇  , 𝑽̆Ω̃ (2)

𝑇 , … , 𝑽̆Ω̃ (|Ω̃ |𝑐)
𝑇 ]𝑇and 𝚿𝛀̃ = [𝚿𝛀̃(1), 𝚿𝛀̃(2), … , 𝚿𝛀̃ (|𝛀̃ |𝑐) ], where 𝛀̃(1) < 𝛀̃(2) <

⋯  <  𝛀̃ (|𝛀̃ |𝑐) are the elements of the 𝛀̌ set. MAXINDX𝑠(∙) represents a set with its elements denoting the indexes of 

the 𝑠 largest elements of its argument. Ultimately, to obtain sparsity level reliably, we will stop the iteration if ||𝑹𝑛||𝐹 >

||𝑹𝑠−1||𝐹or ||𝑽̆𝑙||𝐹  ≤  √Mη is established. In the above relation, ||𝐕̆𝑙|| F is the smallest ||𝐕̆𝑙||F for l ∈ Ω̃ and η is the 

threshold level. The stop iteration ||𝑹𝑛||𝐹 > ||𝑹𝑠−1||𝐹 shows the larger residual of the current sparsity level compared 

to the previous sparsity level. Iteration pause can help the algorithm achieve good MSE performance. On the other hand, 

the stop criterion ‖ 𝑽̆𝑙‖𝐹
≤ √𝑀η indicates that the 𝑙th path is dominated by AWGN. It can be stated that the channel 

sparsity level is over-satisfied, although the MSE with the current sparsity level outperforms MSE with the last sparsity 

level. In fact, MSE performance improvements are because of noise reconstruction. 

In this part, the main steps of the SOMP algorithm are explained. In Steps 6 to 11, the proposed algorithm intends to 

obtain the solution of 𝑽 by Eq. (6) to the fixed sparsity level 𝑠, using the OMP algorithm as a greedy method. Also, 

‖𝑹𝑛−1‖𝐹  ≤ ‖𝑹𝑛‖𝐹 shows that solution 𝑽 is obtained with the sparsity of 𝑠 for Eq. (7). The sparsity level is then updated 

for finding solution 𝑽 with the sparsity of (𝑠 + 1). Finally, there is no iteration if the stop criterion is met.  

In the following, the distinguishing features of the presented SOMP algorithm compared to the OMP algorithm are 

discussed. 

A high-dimensional sparse vector is reconstructed with the OMP algorithm from a low-dimensional measurement vector 

without using a structured sparsity of sparse vector. On the contrary, the presented algorithm retrieves 𝒉 using an 

inherently structured sparsity. In this case, matrix reconstruction performance is improved using the SOMP algorithm.   

The OMP algorithm at low SNR needs the primary information in the form of the sparsity level to reliably reconstruct 

the sparse signal. However, the presented algorithm can adaptively obtain the sparsity level of the structured matrix. 

 It is worth noting that most CS-based channel estimation plans usually require a sparsity channel level as the primary 

information to make the channel estimation reliable. 

II. RESULTS OF SIMULATION 

Simulations are performed here for evaluating the performance of the channel estimation plan proposed for M-MIMO 

systems based on FDD. For providing a performance comparison benchmark, an LS algorithm is considered, presuming 

a well-known channel support sequence at the user side. An algorithm similar to the proposed algorithm, called the 

modified algorithm, assumes knowing the sparsity level of the channel at the user side. This algorithm presents a 

particular case of our proposed algorithm in which we set the channel’s initial sparsity level, 𝑠, to the channel sparsity 

level. We do not perform Step 12 of the proposed algorithm, the stop criterion is ||𝑹𝑛||𝐹 ≥ ||𝑹𝑛−1||𝐹  and in step 14, 

𝑽̂  =  𝑽̆𝑛−1. Table 2 presents the simulation parameters. 
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TABLE 2. SETTINGS of SIMULATION SYSTEM PARAMETERS 

Value Simulation Parameters 

𝑁 = 4096 OFDM symbol DFT size 

10𝑀𝐻𝑧 𝑓𝑠 = System bandwidth 

𝑓𝑐 = 2 GHz System carrier frequency 

CP=64 Cyclic Prefix 

(𝑀 = 64)16 × 4 Planar antenna array 

EPAa Channel model 

𝑃 = 6 Number of multipath 

6.4 𝜇𝑠 Delay spread 

𝑁𝑝 Number of pilots 

𝛽 = 𝑁𝑝 𝑁⁄  Overhead ratio 

SNR=10, 20, 30 𝑑𝐵 𝜂 = 0.1, 0.06, 0.04 

In Fig. 1, the presented MSE algorithm, the proposed modified algorithm, and the LS algorithm on the EPA channel at 

SNR = 20 dB are compared in terms of their performance.  

As shown in Fig .1, for β ≥ 18.82%, similar MSE performance is observed in the proposed modified algorithm and the 

proposed algorithm, which is close to  

the LS algorithm’s performance. As can be seen, the sparsity level of the channel and the support set for β ≥ 18.82% 

can be reliably obtained by the presented algorithm.  

Fig. 1 shows the better SOMP algorithm performance than the modified SOMP algorithm at β < 18.82%. This 

outperformance suggests that the presented algorithm adaptively can obtain the channel’s sparsity level. 

Fig. 1. Comparison of MSE performance of proposed algorithms and LS versus pilot ratio and SNR = 20. 
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For a better comparison in Fig. 2, we compared the performance of the proposed MSE algorithm, the proposed modified 

algorithm, and the LS algorithm at 10-dB and 30-dB SNRs. The SOMP algorithm can obtain the sparsity of the channel 

with a high probability when the SNR and β increase. In addition, even in cases where the number of pilots is 

insufficient, and the reliable recovery of sparse channels is not guaranteed,  

the presented algorithm can still measure the sparsity level of the channel with a slight deviation from the sparsity level 

of the channel.  

 

Fig.  2.  Comparison of the performance of MSE and LS algorithms versus the pilot ratio and SNR = 10, 30. 
 

Fig.  3.  Comparison of MSE and MMSE performance with the proposed  channel estimation schemes of FDD M-

MIMO systems. 
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Fig. 3 compares the SOMP, the Modified channels estimation algorithms and the MMSE algorithm in terms of MSE 

[33]. It is notablethat the presented scheme considerably reduces the training sequence because the MMSE algorithm 

shows good performance when (5) is specified well.  

 

In Fig. 4, we compare the downlink bit error rate (BER), assuming BS recognizes the estimated downlink channels 

using ZF precoding. In this simulation, BS with 𝑀=64 antennas concurrently serves 𝐾 =8 users using QAM-16. A 

relative improvement of our proposed channel estimation scheme is seen compared to its counterparts. 

IV. CONCLUSIONS 

The present work proposed a channel estimation scheme based on structured sparsity and OMP algorithm, we called it, 

SOMP. This algorithm utilizes the intrinsic sparsity of OFDM M-MIMO channels for reducing the required pilots. On 

the user side, the proposed algorithm can make a reliable estimation for reducing the pilot overhead and low bit error 

rate. As shown by the simulation results, the presented channel estimation scheme can obtain a high channel estimation 

performance concerning the comparative channel sparsity acquisition. 

The reason for the spatial common sparsity of MIMO channels is the array of antennas with a common location in the 

BS. However, for M-MIMO, such a common sparsity could not be guaranteed for separate antennas with a large antenna 

array. Examining and simulating a way to ensure this can also be a solution for the future. For M-MIMO systems with 

many transmit antennas, orthogonal pilots have a higher required pilot inhibition. As another future work, we can pilot 

design for reducing the pilot overhead. Also, studying the mentioned spatial sparsity in other compressed sensing 

formats (e.g., Bayesian and group Bayesian) and its comparison with the mentioned plan will be among the future 

works. Investigating temporal correlation and combining it with spatial sparsity using this algorithm is another research 

subject in this area. In addition to the mentioned solutions, optimizing the proposed algorithm in terms of complexity 

or examining other methods are tasks that can be updated in this field. 

V. REFERENCES 

1. F. Boccardi, R. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE 

Commun. Mag., vol. 52, no. 2, pp. 74–80, (2014). 

2. M. K. Ozdemir and H. Arslan, “Channel estimation for wireless OFDM systems,” IEEE Commun. Surv. Tutorials, vol. 

9, no. 2, pp. 18–48, (2007). 

3. Q. Zou, A. Tarighat, K. Y. Kim, and A. H. Sayed, “OFDM channel estimation in the presence of frequency offset, IQ 

imbalance and phase noise,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., vol. 3, pp. 3366–3370, 

2007,(2007). 

4. Tătaru DA, Bonțea MG, Matei C, Buzlea C. Investigating Common and Effective Teaching Methods in Continuing 

Medical Education: A Review Study. Arch Pharm Pract. 2024;15(1):1-6. https://doi.org/10.51847/pGml55AJA0 

5.  S. Coleri, M. Ergen, A. Puri, and A. Bahai, “A study of channel estimation in OFDM systems,” IEEE Veh. Technol. 

Conf., vol. 56, no. 2, pp. 894–898, (2002). 

 

Fig.  4.  Comparison of BER performance of the SOMP,  the Modified  and the MMSE of 

MIMO M-FDD systems. 

https://doi.org/10.51847/pGml55AJA0


J. Electrical Systems 20-10s (2024): 6816-6825  

6824 

6. Albassam A. Managemento Post Orthodontic Extensive Root Canal Calcification and Crown white-Spot-Lesions 

Using Resin Infiltration Technique. Ann Dent Spec. 2023;11(4):52-5. https://doi.org/10.51847/NHUhCjC5vy 

7.  S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, “Quantized Precoding for Massive MU-MIMO,” 

IEEE Trans. Commun., vol. 65, no. 11, pp. 4670–4684, (2017). 

8. Akhmedov MY, Akhmedova AT, Demirov ZA, Demirov MA, Magomedova MG, Magomedov KN, et al. Fluorescent 

Diagnostics of Microscopic Damage to Tooth Enamel Using an Innovative Mixture of Silver Nanoparticles. Ann Dent 

Spec. 2024;12(3):48-52. https://doi.org/10.51847/iWg8hdqiSl 

9.  A. Liu, F. Zhu, and V. K. N. Lau, “Closed-Loop Autonomous Pilot and Compressive CSIT Feedback Resource 

Adaptation in Multi-User FDD Massive MIMO Systems,” IEEE Trans. Signal Process., vol. 65, no. 1, pp. 173–183, 

(2017). 

10. V. K. N. Lau, S. Cai, and A. Liu, “Closed-Loop Compressive CSIT Estimation in FDD Massive MIMO Systems with 1 

Bit Feedback,” IEEE Trans. Signal Process., vol. 64, no. 8, pp. 2146–2155, (2016). 

11. Y. Huang, Y. He, W. He, L. Shi, T. Cheng, and Y. Sui, “Channel Estimation in Massive MIMO Systems Based on 

Generalized Block Adaptive Matching Pursuit Algorithm,” IEEE Wirel. Commun. Lett., vol. 9, no. 12, pp. 2098–2101, 

(2020).  

12.  J. Shen, J. Zhang, E. Alsusa and K. B. Letaief, “Compressed CSI acquisition in FDD massive MIMO with partial support 

information,” 2015 IEEE International Conference on Communications (ICC), pp. 1459-1464(2015). 

13. Okasha HS, Helal EGE, Huwait EAH, Khattab HAEH. Impact of Garlic and Caraway Oils on Reproductive Hormones 

Profile and Testicular Histopathology of Male Rats. J Biochem Technol. 2023;14(4):56-63. 

https://doi.org/10.51847/52GucRuHZH 

14.  A. Hormati and M. Vetterli, “Compressive Sampling of Multiple Sparse Signals Having Common Support Using Finite 

Rate of Innovation Principles,” in IEEE Signal Processing Letters, vol. 18, no. 5, pp. 331-334, (2011).  

15. Dewi BS, Surini S. Study on hydrogel eye mask with Centella asiatica L and Aloe vera L extract. J Adv Pharm Educ 

Res. 2024;14(2):27-34. https://doi.org/10.51847/9UToWXppYP 

16. Saada M, Morrissey H, Ball P. Importance of healthcare professional training on medication safety, medication error 

prevention, and reporting. J Adv Pharm Educ Res. 2023;13(3):1-7. https://doi.org/10.51847/nsvLedyP4z 

17. Maloku A, Bejiqi R, Mustafa A, Zeka N, Bejiqi R. Nutrition of children with complex congenital heart anomalies. J 

Adv Pharm Educ Res. 2024;14(3):90-3. https://doi.org/10.51847/2xFZ3UXu51 

18.  X. Rao and V. K. N. Lau, “Compressive Sensing With Prior Support Quality Information and Application to Massive 

MIMO Channel Estimation With Temporal Correlation,” in IEEE Transactions on Signal Processing, vol. 63, no. 18, 

pp. 4914-4924, Sept.15, (2015). 

19. Y. Xu, G. Yue, and S. Mao, “User grouping for massive MIMO in FDD systems: New design methods and analysis,” 

IEEE Access, vol. 2, pp. 947–959, (2014). 

20. Nurmuhambetov IR, Prokopovich DS, Chernishev AE, Shorganova AA, Samarkin SV, Magomadova TT, et al. 

Assessment of the effect of biocompatibility of fibroblasts and scaffolds on the cell cycle in vitro. J Adv Pharm Educ 

Res. 2024;14(3):49-53. https://doi.org/10.51847/tbAag0pmL3 

21.  D. Zhao and T. Han, “Low-Complexity Compressed Sensing Downlink Channel Estimation for Multi-Antenna 

Terminals in FDD Massive MIMO Systems,” IEEE Access, vol. 8, pp. 130183–130193, (2020). 

22. Chehad AS. Superficial Basal Cell Carcinoma of the Nipple Masquerading as Paget’s Disease of the Breast. Clin 

Cancer Investig J. 2024;13(1):6-8. https://doi.org/10.51847/PmkSiDYxTl 

23. Gour K, Barsker K, Jain N, Gour S, Payal S, Kafle BP, et al. Biocompatible Withania somnifera Selenium 

Nanoparticles: Synthesis, Characterization, and Biological Applications. Int J Pharm Res Allied Sci. 2023;12(4):130-5. 

https://doi.org/10.51847/4Crz9IzWls 

24.   W. Shen, L. Dai, B. Shim, S. Mumtaz and Z. Wang, “Joint CSIT Acquisition Based on Low-Rank Matrix Completion 

for FDD Massive MIMO Systems,” in IEEE Communications Letters, vol. 19, no. 12, pp. 2178-2181, Dec. (2015). 

25. N. Sadeghi and M. Azghani, “Channel Estimation using Block Sparse Joint Orthogonal Matching Pursuit in Massive 

MIMO Systems,” 26th Int. Comput. Conf. Comput. Soc. Iran, CSICC(2021). 

26. E. Björnson and B. Ottersten, “A framework for training-based estimation in arbitrarily correlated Rician MIMO 

channels with Rician disturbance,” IEEE Trans. Signal Process., vol. 58, no. 3 PART 2, pp. 1807–1820, (2010). 

27. L. Jingzhi, W. Kai, and L. Haibo, “Distributed compressed sensing of doubly selective channel in massive MIMO 

systems,” Proc. - 2021 World Conf. Comput. Commun. Technol. WCCCT 2021, pp. 21–25, (2021). 

28. Z. Gao, L. Dai, Z. Lu, C. Yuen, and Z. Wang, “Super-resolution sparse MIMO-OFDM channel estimation based on 

spatial and temporal correlations,” IEEE Commun. Lett., vol. 18, no. 7, pp. 1266–1269, (2014). 

29. Kamel FO, Treatment DEAOOMA. Drug-Resistant Epilepsy; An Overview on Management and Treatment. Int J 

Pharm Res Allied Sci. 2023;12(4):76-90. https://doi.org/10.51847/d3wwhHbZsW 

30.  F. Rusek et al., “Scaling up MIMO : Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., 

vol. 30, no. 1, pp. 40–60, (2013). 

https://doi.org/10.51847/NHUhCjC5vy
https://doi.org/10.51847/iWg8hdqiSl
https://doi.org/10.51847/52GucRuHZH
https://doi.org/10.51847/9UToWXppYP
https://doi.org/10.51847/nsvLedyP4z
https://doi.org/10.51847/2xFZ3UXu51
https://doi.org/10.51847/tbAag0pmL3
https://doi.org/10.51847/PmkSiDYxTl
https://doi.org/10.51847/4Crz9IzWls
https://doi.org/10.51847/d3wwhHbZsW


J. Electrical Systems 20-10s (2024): 6816-6825  

6825 

31. C. Qi and L. Wu, “Uplink channel estimation for massive MIMO systems exploring joint channel sparsity,” Electron. 

Lett., vol. 50, no. 23, pp. 1770–1772, (2014). 

32. M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From theory to applications,” IEEE Trans. Signal 

Process., vol. 59, no. 9, pp. 4053–4085, (2011). 

33. K. Zhai, Z. Ma, and X. Lei, “Accurate performance analysis of coded large-scale multiuser MIMO systems with MMSE 

receivers,” Sensors (Switzerland), vol. 19, no. 13,(2019). 

 

 


