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Abstract: - Urban sculptures have long been a reflection of the cultural and historical identity of a city, serving as both artistic expressions 

and landmarks.  The application of deep learning in the context of sculptures within urban areas presents an intriguing intersection of art 

and technology. Deep learning algorithms, particularly those related to computer vision, have the capacity to analyze and understand the 

intricate details of sculptures. This paper presented a efficient 3D-AWE (3D-Weighted Architecture Estimation) in the analysis of urban 

sculptures. In an era where the preservation and interpretation of cultural heritage are of paramount importance, this study investigates the 

potential of advanced technology to enhance understanding of artistic and historical artifacts within urban environments. The proposed 3D-

AWE model uses the weighted estimation with computation of the pixels in the scupturs. Additionally, the proposed 3D-AWE model uses 

the min-max estimation model for the computation of the features in the images. With the estimated features the deep learning through 

weighted model for the analysis of the sculptures. The research focuses on the accurate classification of urban sculptures into specific styles 

and periods, such as Baroque, Renaissance, Modernist, Abstract, Ancient, and Contemporary. Utilizing precision, recall, F1 Scores, and 

overall accuracy, the study highlights the model's ability to minimize errors and provide reliable categorization. Furthermore, the application 

of 3D-AWE for feature extraction reveals quantifiable representations of sculpture attributes, offering valuable insights for sculpture 

categorization, similarity analysis, and the automated management of museum collections. The implications of these findings extend to art 

history, cultural heritage preservation, and urban planning, underscoring the significance of advanced technology in efforts to safeguard 

and interpret cultural legacy. 
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I. INTRODUCTION 

In recent years, 3D modeling has undergone a remarkable transformation, becoming an integral part of numerous 

industries and daily lives. This technology allows us to create three-dimensional representations of objects, 

environments, and even entire worlds, with unprecedented levels of detail and realism [1]. With the advent of 

software tools and hardware innovations, 3D modeling has found applications in architecture, video games, film 

production, virtual reality, augmented reality, and even fields as diverse as healthcare and education [2]. Its impact 

is particularly visible in industries like architecture and urban planning, where 3D models enable architects and city 

planners to visualize, design, and test ideas in ways that were previously unimaginable [3]. In the world of 

entertainment, 3D modeling has revolutionized special effects and animation, creating immersive experiences for 

audiences. Additionally, the rapid growth of 3D printing technology has brought 3D models into the physical realm, 

making it possible to fabricate intricate and custom objects with precision [4]. As move forward, 3D modeling 

continues to push the boundaries of what's achievable, offering exciting possibilities for innovation, creativity, and 

problem-solving across a wide spectrum of industries. In other hand, deep learning has emerged as a groundbreaking 

technology that has transformed the landscape of artificial intelligence and machine learning [5]. This powerful 

subfield leverages complex neural networks with multiple layers to enable machines to learn, reason, and make 

predictions from data in a way that closely resembles human cognitive processes. Notably, deep learning has seen 

extraordinary progress in a wide range of applications, including computer vision, natural language processing, 

speech recognition, and reinforcement learning [6]. The development of increasingly sophisticated models, such as 

convolutional neural networks (CNNs) and transformer-based architectures, has yielded unprecedented results in 

tasks like image recognition, language translation, and text generation. However, the field faces ongoing challenges, 

such as the need for substantial computational resources and concerns related to ethical and societal implications 

[7]. As it continues to evolve, deep learning promises to have a profound impact on various industries, shaping the 

way to interact with technology, process information, and solve complex problems in the years to come. 

Architectural design is the art and science of creating structures that not only serve practical purposes but also 

embody aesthetic, functional, and often cultural elements. It is the meticulous process of conceiving, planning, and 

visualizing the form and function of a building or space [8]. Architectural design encapsulates a delicate balance 
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between artistic expression and technical precision, where architects and designers consider aspects such as 

aesthetics, sustainability, safety, and user experience. In towering skyscraper, a serene residential home, or an 

innovative public space, architectural design plays a pivotal role in shaping physical environment, impacting the 

way live, work, and interact with the world around us [9]. It is a discipline that not only addresses the immediate 

needs of a structure but also strives to leave a lasting legacy by harmonizing human needs with the natural and built 

environments. Deep learning is revolutionizing the field of architectural design by offering a powerful set of tools 

and capabilities that expand the boundaries of what is possible in building and urban planning [10]. Architects and 

designers are increasingly harnessing the potential of deep learning to enhance their creative processes and address 

complex challenges. Deep learning models can process vast amounts of data, facilitating rapid analysis of factors 

such as environmental conditions, energy efficiency, and structural integrity [11]. They can generate intricate 

designs, optimize building layouts, and even simulate real-world scenarios, enabling architects to make data-

informed decisions [12]. Moreover, deep learning has facilitated the development of generative design algorithms, 

which can produce innovative, aesthetically pleasing designs while considering functional requirements. These 

advancements are ushering in a new era of architecture, where artificial intelligence augments human creativity and 

results in buildings that are more sustainable, efficient, and visually captivating, ultimately reshaping the perceive 

and interact with architectural spaces. 

The integration of 3D modeling and deep learning has ushered in a transformative era for architectural design [13]. 

With combining the power of artificial intelligence with the visual precision of 3D modeling, architects and 

designers are now equipped with a dynamic toolkit that empowers them to reimagine the built environment. Deep 

learning algorithms can analyze vast datasets and extract valuable insights, enabling architects to make informed 

decisions about factors like energy efficiency, structural integrity, and environmental impact [14]. Simultaneously, 

3D modeling provides a tangible canvas upon which these insights can be realized. The technologies allows for the 

creation of intricate, data-driven architectural designs, facilitating the exploration of innovative forms, spaces, and 

structural solutions [15]. This fusion of deep learning and 3D modeling not only streamlines the design process but 

also ensures that architectural creations are increasingly sustainable, efficient, and responsive to the complex 

demands of the modern world, ultimately reshaping the way envision, plan, and construct the cities and structures 

of the future [16]. The intersection of 3D modeling and deep learning within the realm of architectural design 

represents a profound paradigm shift in how buildings and urban spaces are conceived, planned, and constructed 

[17]. 3D modeling allows architects and designers to create highly detailed, realistic visualizations of their projects, 

enabling them to not only see but also interact with the proposed designs in a virtual environment. This visual aspect 

is invaluable for conveying ideas to clients, stakeholders, and the general public. It facilitates a deeper understanding 

of the design and fosters collaboration throughout the architectural process [18]. 

 Deep learning, on the other hand, brings advanced data analysis and prediction capabilities to the field. With the 

ability to process enormous datasets, deep learning algorithms can provide insights into various aspects critical to 

architectural design [19]. For instance, they can analyze climate data and simulate how a building will perform in 

different weather conditions, optimizing energy efficiency. They can also evaluate the structural integrity of a design 

and predict how it will respond to different loads and stresses. This predictive power aids architects in making 

informed choices about materials and construction methods [20]. The deep learning and 3D modeling is particularly 

evident in generative design. Deep learning algorithms can analyze vast libraries of architectural styles and 

structures, allowing architects to draw inspiration from historical or contemporary designs [21]. They can then use 

3D modeling to apply these inspirations to their own projects, resulting in innovative and aesthetically pleasing 

designs. Furthermore, deep learning can adapt designs based on real-time data, such as occupancy patterns, to 

maximize the functionality and user experience of a space [22]. Beyond the design phase, 3D modeling can facilitate 

construction by providing detailed, accurate blueprints for contractors and builders. It can also aid in project 

management, helping to ensure that the final structure matches the initial design. The combined power of 3D 

modeling and deep learning in architecture opens up new frontiers of creativity, efficiency, and sustainability [23]. 

It allows architects to explore bold, data-informed designs that are both aesthetically impressive and highly 

functional, while also streamlining the decision-making process and contributing to a more sustainable and 

intelligent built environment. As these technologies continue to evolve, anticipate increasingly innovative and 

responsive architectural designs that push the boundaries of what's possible in construction and urban planning [24]. 

The contributions of this paper represent its unique and valuable additions to the existing body of knowledge in a 

particular field. One of the primary contributions of this research is the application of advanced technology, 
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specifically 3D-AWE, to the field of urban sculpture analysis. This technology, originally developed for 3D 

reconstruction, has been successfully repurposed for categorizing and analyzing sculptures in an urban context. The 

research demonstrates the model's exceptional ability to accurately classify urban sculptures into specific categories, 

such as Baroque, Renaissance, Modernist, Abstract, Ancient, and Contemporary. This contributes to the 

development of more efficient and reliable methods for categorizing artistic artifacts. The feature extraction process 

using 3D-AWE has yielded quantifiable representations of sculpture attributes. These features, such as Feature A, 

Feature B, and Feature C, offer new insights into the characteristics of sculptures and can be applied to various 

tasks, including similarity analysis and museum collection management. The findings and insights from this 

research have broader implications for the fields of art history, cultural heritage preservation, and urban planning. 

By applying advanced technology to sculpture analysis, the research contributes to a deeper understanding of art 

and cultural heritage within urban spaces. The research highlights the potential for further optimization and fine-

tuning of the 3D-AWE model. This opens up avenues for future research to enhance the model's accuracy and 

precision, and to explore its applications in diverse contexts. The research embraces an interdisciplinary approach, 

bridging the gap between technology and the arts. It showcases the value of collaboration between technology 

experts, art historians, and cultural preservationists in advancing understanding and preservation of urban sculptures. 

II. 3D MODELLING IN URBAN AREA 

3D modelling has become an invaluable tool for urban planners and architects in the development and 

transformation of urban areas. It offers a comprehensive, three-dimensional perspective that enables city planners 

to visualize, analyze, and optimize various aspects of urban spaces. 3D modelling provides urban planners with the 

ability to create detailed, realistic models of city layouts and infrastructure. This aids in the design of more efficient 

road networks, public transportation systems, and pedestrian pathways. It also allows for the placement of essential 

amenities such as parks, green spaces, and public facilities. With incorporating 3D models into zoning and land use 

planning, city authorities can better allocate land for residential, commercial, industrial, and recreational purposes. 

This ensures that urban development is balanced and meets the needs of the population while considering factors 

like traffic flow and environmental impact. 3D models can be used to simulate and analyze the environmental impact 

of urban development projects. Planners can assess factors like air quality, noise pollution, and the effect of new 

structures on the urban ecosystem, allowing for more sustainable and eco-friendly city designs. 3D modelling helps 

city planners lay out infrastructure components like water supply, sewage systems, and electrical grids. These 

models can be used to ensure efficient utility distribution and to plan for future expansion. Urban areas can use 3D 

models to simulate various disaster scenarios, such as floods, earthquakes, or fires. This aids in the development of 

emergency response plans and helps assess the vulnerability of different areas within the city. Within urban areas, 

3D modeling is invaluable for architects and developers to visualize proposed structures and developments. It allows 

for more informed decision-making regarding the aesthetics and functionality of new buildings. Real estate 

professionals use 3D models to showcase properties to potential buyers and investors. These models provide an 

immersive experience, allowing stakeholders to virtually explore properties and their surroundings. 3D modeling 

can be used to document and preserve historic and culturally significant buildings and urban spaces. These models 

aid in restoration efforts and provide a basis for ongoing conservation work. The combination of 3D modeling with 

advanced technologies like geographic information systems (GIS) and data analytics offers urban planners and 

architects a comprehensive toolkit for developing smarter, more efficient, and sustainable urban areas. This not only 

enhances the quality of life for urban residents but also contributes to the overall resilience and adaptability of cities 

in the face of evolving challenges and opportunities. 

2.1 Sculpture in urban Area Data 

Sculpture plays a significant role in shaping the aesthetic and cultural landscape of urban areas. These three-

dimensional art forms contribute to the vibrancy and identity of cities by providing visual landmarks, instigating 

public dialogue, and reflecting the essence of the community they adorn. The data surrounding sculptures in urban 

areas often includes information on their dimensions, materials used, historical and cultural significance, artist 

details, and, in some cases, the monetary value. Moreover, the impact of sculptures on urban spaces is not just 

limited to aesthetics; it can also influence tourism and the local economy. Sculpture data, when analyzed, can reveal 

patterns in artistic trends, preferences, and the social and historical context of an urban environment. This 

information is essential for urban planners and policymakers when considering the placement of new sculptures or 

the conservation of existing ones, as it aids in making informed decisions that enhance the overall character of a 

city while respecting its heritage and culture. The integration of 3D modeling with sculpture data in urban areas has 
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brought a fascinating dimension to the appreciation and management of public art. By creating detailed 3D models 

of sculptures, capture the intricate nuances of these art forms with precision. These digital representations allow us 

to examine sculptures from all angles, understanding the interplay of light and shadow and appreciating the fine 

details that may be missed with traditional photography. This 3D modeling, when combined with relevant data such 

as the artist's background, historical significance, and materials used, provides a comprehensive repository of 

information that aids urban planners, art conservationists, and the general public in understanding the cultural and 

aesthetic significance of these sculptures. Furthermore, 3D models offer innovative ways to assess the impact of 

sculptures on urban spaces. By virtually placing sculptures within a city model, planners can analyze how they 

influence the overall urban landscape, sightlines, and pedestrian flow. This data-driven approach assists in the 

strategic placement of new sculptures, ensuring they harmonize with their surroundings and contribute to the artistic 

identity of the city, all while preserving the legacy of these works of art for future generations. The sample sculptures 

in the urban area are presented in figure 1. 

 

 

 

Figure 1: Sculptures in Urban Area 

The process of generating 3D models of sculptures involves techniques like photogrammetry and laser scanning. 

Photogrammetry is based on the principles of triangulation, and it’s often represented using equations. The basic 

principle is to capture multiple images of the sculpture from different angles and then use these images to derive the 

3D coordinates of points on the sculpture’s surface estimated with equation (1) and (2) 

𝑋 = 𝑓𝑋′
𝑍′ + 𝑋0                                                                (1) 

𝑌 = 𝑓𝑌′
𝑍′ + 𝑌0                                                                  (2) 

In equation (1) and (2) X and Y are the 3D coordinates of a point on the sculpture, X′ and ′Y′ are the 2D image 

coordinates, ′Z′ is the depth of the point, f is the focal length of the camera, and (X0,Y0) represents the principal 

point. To assess the influence of sculptures on urban spaces, for visual analysis. One such model is the “viewshed 

analysis.” This analysis helps us determine what portions of the urban space are visible from specific locations. The 

viewshed is calculated using equations that consider factors like elevation, distance, and line of sight. The basic 

concept is to calculate the areas where sculptures are visible from various viewpoints, helping urban planners make 

informed decisions about their placement. In the context of sculpture data, the significance of a piece of art can be 

quantified using various indices. One such index is the “cultural significance index,” which combines factors like 
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the artist’s reputation, historical importance, and public sentiment.  Sculpture data can include details about the 

condition of the artwork, and this data can be used in predictive models for conservation and restoration. For 

example, models predicting the degradation of materials over time often use equations related to chemical reactions 

and environmental factors. One common equation is the Arrhenius equation, which describes the rate of chemical 

reactions as a function of temperature is computed as in equation (2) 

𝑘 = 𝐴𝑒 − 𝑅𝑇𝐸                                                                  (2) 

In this equation, k represents the rate constant, A is the pre-exponential factor, E is the activation energy, R is the 

universal gas constant, and T is the temperature in Kelvin. This equation can be applied to predict the deterioration 

of materials in sculptures. 

III. WEIGHTED ARCHITECTURE FOR IMAGE PROCESSING 

The proposed 3D-Weighted Architecture Estimation (3D-WAE) for sculptures in urban areas, in conjunction with 

3D modeling, is an innovative approach that holds the potential to significantly enhance the analysis and 

visualization of public art. This architecture is designed to handle the intricacies of sculptures in urban settings by 

employing weighted features and attention mechanisms. The 3D-WAE deep learning for image processing and 

incorporates attention mechanisms to assign varying importance to different parts of an image, ensuring a more 

accurate 3D reconstruction.   The first step is to gather a dataset of images of the sculpture from various angles, each 

paired with its corresponding 3D coordinates. A crucial aspect is the assignment of weights to each image, reflecting 

their significance in the reconstruction process. These weights are determined using an attention mechanism that 

focuses on the most informative regions of the images. The 3D-WAE architecture utilizes a CNN for feature 

extraction. It operates in tandem with the attention mechanism, which allocates varying weights to the features 

extracted from different parts of the image. The attention mechanism ensures that regions crucial for 3D 

reconstruction receive more emphasis. The attention mechanism is pivotal in the 3D-WAE architecture, and its 

equations can be derived from the scaled dot-product attention mechanism computed using equation (3) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑑𝑘𝑄𝐾𝑇) ⋅ 𝑉                                     (3) 

In equation (3), Q corresponds to the query (features from one part of the image), K is the key (features from other 

parts of the image), and V represents the value. The mechanism computes a weighted sum of the values based on 

the compatibility between the query and key. In the context of sculpture image processing, this enables the model 

to focus on the most relevant areas of the image for 3D reconstruction. Once the image features are weighted via 

the attention mechanism, the 3D-WAE architecture conducts weighted regression to predict the 3D coordinates of 

the sculpture. The weights assigned by the attention mechanism play a pivotal role in determining the contribution 

of different parts of the image to the final 3D reconstruction. The weighted regression equation is expressed and 

computed using equation (4) 

𝑌 = 𝑋 ⋅ 𝑊 + 𝜖                                               (4) 

In equation (4) Y denotes the predicted 3D coordinates, X is the weighted image features, W is a matrix of learned 

weights, and ϵ signifies the error term. The 3D-WAE architecture undergoes a training process on the dataset. The 

parameters of the attention mechanism and the regression weights are iteratively adjusted to minimize the error 

between the predicted 3D coordinates and the ground truth. In training the model take new images of the sculpture 

and employ the attention mechanism to emphasize the most relevant image components. This not only improves the 

accuracy of the 3D reconstruction but also offers a more efficient and informative approach for urban planners, art 

preservationists, and art enthusiasts to understand and appreciate sculptures within urban environments. The 3D-

WAE architecture, with its emphasis on weighted features and attention mechanisms, offers an advanced and data-

driven solution for sculpture analysis in urban areas. It enhances the precision of 3D reconstruction, allowing for 

more informed decisions regarding urban planning, art preservation, and the overall cultural significance of public 

art installations. 

3.1 Image Pre-Processing 

Pre-processing of images of sculptures in urban areas, in conjunction with the 3D-AWE 3D-Weighted Architecture 

Estimation, is a crucial step in enhancing the accuracy and quality of 3D modeling. This process prepares the images 

by optimizing their features and cleaning up any noise or artifacts, which ultimately results in more precise 3D 
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reconstructions. The 3D-AWE architecture, with its attention mechanisms and autoencoders, can significantly 

benefit from well-preprocessed images. In the initial phase, a diverse dataset of images featuring sculptures in urban 

environments is collected. The dataset should encompass a variety of angles, lighting conditions, and environmental 

contexts. This diversity is essential for training the 3D-AWE architecture effectively. Image enhancement 

techniques, such as histogram equalization, are applied to adjust the contrast and brightness of the images. 

Histogram equalization is expressed through the equation (5) 

𝐺(𝑥, 𝑦) = 𝑀𝑁255∑𝑟 = 0𝐿 − 1ℎ(𝑟)                              (5) 

Where G(x,y) represents the enhanced pixel value, M and N are the dimensions of the image,L is the dynamic range 

of the image, and hI denotes the histogram of the image. To ensure consistency in image dimensions and reduce 

computational complexity, images are often resized to a common resolution. This process may use interpolation 

techniques like bilinear or bicubic interpolation. I mages collected from urban environments can be marred by 

various types of noise, including digital noise, shadows, and reflections. Noise reduction techniques, such as 

Gaussian smoothing, aim to reduce these artifacts. The Gaussian smoothing is performed with the equation (6) 

𝐺(𝑥, 𝑦) = ∑𝑖 = −𝑘𝑘∑𝑗 = −𝑘𝑘𝑤(𝑖, 𝑗) ⋅ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)             (6) 

Where 𝐺(𝑥, 𝑦) is the smoothed pixel value, 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) represents the original image pixel values, and w(I,j) is 

the Gaussian kernel. An attention mechanism, often based on convolutional neural networks (CNNs), is employed 

to identify and segment the sculpture from the background. While the equations for attention mechanisms are 

intricate, they essentially involve calculating the importance weights for different image regions based on learned 

features. The mechanism focuses on the sculpture, allowing the 3D-AWE architecture to prioritize this vital area 

during 3D reconstruction. Image pre-processing may also include feature extraction to capture relevant 

characteristics for 3D reconstruction. These features can be calculated using techniques like edge detection and 

texture analysis. The Canny edge detection operator is defined as in equation (7) 

𝐸(𝑥, 𝑦) = (𝐺𝑥(𝑥, 𝑦))
2

+ (𝐺𝑦(𝑥, 𝑦))2                     (7) 

 

In equation (7) E(x,y) is the edge magnitude, Gx(x,y) and Gy(x,y) are the gradients in the x and y directions. The 

pre-processed images, featuring enhanced contrast, reduced noise, and sculptural object segmentation, are then fed 

into the 3D-AWE architecture. The autoencoder network, in conjunction with attention mechanisms, encodes the 

pre-processed image features. The autoencoder captures the most essential information for 3D reconstruction, 

providing a foundation for the accurate and detailed 3D models of sculptures within urban areas. By systematically 

applying these image pre-processing steps, the 3D-AWE architecture can work with clean, optimized images, 

ensuring a precise and detailed 3D reconstruction process that enhances understanding of sculptures and their 

context within urban environments. 

3.2 Image Segmentation 

The process commences with the assembly of a diverse dataset comprising images of sculptures in urban settings. 

These images should capture sculptures from multiple angles, under varying lighting conditions, and within different 

environmental contexts. A rich dataset is critical for training a robust image segmentation model. Before 

segmentation, images undergo pre-processing to enhance their quality and reduce noise. The pre-processing steps 

encompass contrast adjustment, resizing, noise reduction, and the incorporation of attention mechanisms, as outlined 

previously. One fundamental equation for contrast enhancement involves histogram equalization computed using 

equation (8) 

𝐺(𝑥, 𝑦) = 𝑀𝑁255∑𝑟 = 0𝐿 − 1ℎ(𝑟)               (8) 

In equation (8) G(x,y) denotes the enhanced pixel value, M and N represent image dimensions, L is the dynamic 

range, and hI signifies the image’s histogram. Image segmentation is executed through a dedicated algorithm that 

segregates the sculpture from its surroundings. This algorithm can be a conventional technique like thresholding or 

a sophisticated deep learning-based approach. It assigns labels or masks to individual pixels in the image, 

distinguishing the sculpture from the background. While specific equations differ based on the chosen algorithm, 

an essential concept is defining an objective function or loss function that guides the pixel 181atalogui process. 

Within the 3D-AWE architecture, attention mechanisms complement the segmentation results. They allocate 
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varying weights to different regions of the segmented image, emphasizing the sculpture. Attention mechanisms, 

such as scaled dot-product attention in the context of the Transformer architecture, have been detailed earlier. These 

mechanisms determine the importance of different image regions, focusing on the sculpture during 3D 

reconstruction. The segmentation algorithm, coupled with 182ataloguin mechanisms, collaboratively generates a 

binary mask that isolates the sculpture from the background. This mask acts as a precise representation of the 

sculpture’s boundaries in the image, highlighting the critical sculptural details. The creation of this mask forms the 

foundation for subsequent steps in the 3D reconstruction process within the 3D-AWE architecture. Image 

segmentation is a critical step in isolating the sculpture from the background. Various segmentation algorithms can 

be employed, such as thresholding, region-based methods, or deep learning-based approaches like U-Net or Mask 

R-CNN. Let’s the equations and concepts for one of the simplest segmentation techniques, thresholding. 

Thresholding is a technique that separates an image into foreground (object) and background (non-object) regions 

based on a predefined intensity threshold. Watershed segmentation treats the image as a topographic map and 

partitions it into catchment basins. The basic watershed equation is utilized in 3D-AWE is estimated using the 

equation (9) 

𝐿(𝑥, 𝑦) = 𝑊𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑(𝐼(𝑥, 𝑦))                                   (9) 

𝐿(𝑥, 𝑦) represents the 182atalogui of catchment basins. 

𝐼(𝑥, 𝑦) is the intensity of the image at pixel (𝑥, 𝑦). 

3.3 Min-Max feature Extraction 

Min-Max feature extraction, applied in conjunction with the 3D-AWE (3D-Weighted Architecture Estimation) 

architecture, plays a significant role in enhancing the quality and relevance of extracted image features. This 

technique focuses on normalizing the pixel values of an image, ensuring that they fall within a specific range while 

preserving the relationships between pixel intensities. In the context of the 3D-AWE architecture for sculpture 

analysis in urban areas, the Min-Max feature extraction process. As part of image pre-processing, Min-Max scaling 

is applied to normalize the pixel intensities of the images. The Min-Max scaling equation is presented in equation 

(10) 

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛𝑋

𝑋𝑚𝑖𝑛𝑋
                                               (10) 

Here, X represents the original pixel intensity, Xmin is the minimum intensity in the image, and Xmax is the 

maximum intensity. This scaling ensures that all pixel values fall within the range [0, 1]. Min-Max feature extraction 

offers advantages such as robustness and preservation of relative pixel relationships, which can be crucial when 

dealing with images of sculptures in diverse urban environments. By scaling the image pixel values and 

subsequently applying attention mechanisms within the 3D-AWE architecture, the most relevant and normalized 

features are extracted, contributing to the overall accuracy and quality of the 3D reconstruction process and analysis 

of sculptures within urban areas. Once the images have undergone Min-Max scaling, the 3D-AWE architecture 

extracts relevant features from these normalized images. These features capture important information about the 

sculptures and their surroundings, serving as the foundation for subsequent analysis and 3D reconstruction. Within 

the 3D-AWE architecture, attention mechanisms come into play. These mechanisms assign varying weights to 

different dimensions of the extracted features, emphasizing those that are most informative for the task at hand. The 

equations for attention mechanisms have been previously discussed and often involve complex operations to 

calculate the significance of different feature dimensions. Attention mechanisms are a crucial component in deep 

learning architectures like Transformers. They calculate the importance of different parts of the input data, often 

expressed as a weighted sum. One common attention mechanism used in the context of deep learning is the scaled 

dot-product attention estimated using the equation (11) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑑𝑘𝑄𝐾𝑇) ⋅ 𝑉                    (11) 

In equation (11) Q represents the query, which could be features from one part of the image; K is the key, 

representing features from other parts of the image; V is the value associated with each feature; softmaxsoftmax is 

the softmax function, which normalizes the attention scores.dk is a scaling factor, where dk is the dimension of the 

key. The attention mechanism computes a weighted sum of the values based on the compatibility between the query 
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and key. This mechanism is used to determine the importance of different image regions, which can be essential in 

focusing on relevant features during the feature extraction process within the 3D-AWE architecture. 

IV. WEIGHTED DEEP LEARNING 

Integrating weighted deep learning into the 3D-AWE (3D-Weighted Architecture Estimation) architecture for 

sculpture analysis in urban areas enhances the accuracy and efficiency of 3D modeling and feature extraction. 

Weighted deep learning involves assigning different levels of importance to various data points or features during 

the learning process, allowing for a more informed and precise analysis. The process begins with the collection of 

a comprehensive dataset of images featuring sculptures within urban environments. These images may exhibit 

variations in lighting, angles, and environmental conditions, reflecting the diverse nature of urban art. Weighted 

deep learning techniques come into play during the training of the 3D-AWE architecture. The objective is to assign 

varying weights to different data points or features, emphasizing their significance in the analysis. This is achieved 

through a weighted loss function, where the weights are learned during training. In the context of feature extraction, 

weighted deep learning assigns different levels of importance to features or dimensions within the data. This is 

achieved through weighted neural network layers and activation functions estimated using the equation (12): 

𝑓𝑖(𝑥) = 𝑤𝑖 ⋅ 𝑔𝑖(𝑥)                                          (12) 

Here, 𝑓𝑖(𝑥) is the weighted feature, 𝑤𝑖 is the learned weight, and 𝑔𝑖(𝑥) represents the original feature or dimension. 

Attention mechanisms, integrated into the 3D-AWE architecture, further enhance the weighted deep learning 

process. Attention mechanisms assign varying weights to different parts of the data, emphasizing regions of higher 

relevance. These mechanisms are critical in sculpting the model’s focus during both 3D reconstruction and feature 

extraction, as previously described. Attention mechanisms, such as scaled dot-product attention, further enhance the 

weighted deep learning process by assigning varying weights to different parts of the data. These mechanisms 

determine the importance of different regions of the data, enabling the model to emphasize the most relevant areas. 

The scaled dot-product attention equation has been described earlier and involves complex calculations to calculate 

attention scores based on the compatibility between query and key vectors. With combining these elements, the 

integration of weighted deep learning into the 3D-AWE architecture allows the model to learn and emphasize the 

most informative data points and features, enhancing the precision and efficiency of sculpture analysis in urban 

areas. This approach ensures that the model focuses on critical aspects of the data, leading to more accurate 3D 

reconstructions and a deeper understanding of sculptures within their urban context. Weighted deep learning, in 

combination with attention mechanisms, offers a powerful and flexible framework for optimizing sculpture analysis 

and 3D modeling. 

Algorithm 1: 3D-AWE model for the designing Sculptures in Urban Areas 

Data Preparation: 

Load and preprocess the dataset of urban sculpture images. 

Split the dataset into training and testing sets. 

Model Initialization: 

Initialize the 3D-AWE architecture with appropriate neural network layers, attention mechanisms, and 

weighted deep learning components. 

Weighted Loss Function: 

Define the weighted loss function that assigns different weights to individual data points. 

Initialize weight parameters, 𝑤𝑖, for each data point. 

Training Loop: 

For each epoch: 

Iterate through the training dataset. 
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Compute the model’s predictions for each data point. 

Calculate the standard loss (e.g., mean squared error) between predictions and actual targets. 

Update the loss by applying the weighted loss function. 

Adjust model parameters (e.g., using backpropagation and gradient descent) to minimize the weighted loss. 

Weighted Feature Extraction: 

Implement weighted feature extraction within the 3D-AWE architecture. 

Ensure that feature dimensions are weighted based on their importance in the analysis. 

Attention Mechanisms: 

Incorporate attention mechanisms within the 3D-AWE architecture to further refine the weighted analysis. 

Calculate attention scores and apply them to enhance feature importance. 

Model Evaluation: 

Test the trained model on the testing dataset. 

Evaluate performance using relevant metrics (e.g., accuracy, mean squared error). 

Visualization and Analysis: 

Visualize the 3D reconstructions and feature representations to gain insights into the sculptures in urban 

areas. 

 

 

4.1 Classification of Sculptures 

Classifying sculptures in urban areas with the 3D-AWE architecture involves the categorization of sculptures based 

on various features and contextual information. This classification can be realized through supervised machine 

learning methods. A diverse dataset of urban sculpture images, each 184atalogu with a specific category, is collected. 

This dataset can vary in size and complexity, reflecting the diversity of sculptures within urban areas. The images 

undergo preprocessing to ensure uniformity and readiness for input into the 3D-AWE architecture. This may include 

resizing images to a consistent resolution and normalizing pixel values to a common range, such as [0, 1]. 

Augmentation techniques can also be employed to increase the dataset’s size and robustness. The 3D-AWE 

architecture is tailored for feature extraction from the sculptures. This architecture is designed to capture relevant 

three-dimensional information, paying attention to crucial aspects of the sculptures and their surrounding context. 

While the architecture specifics can vary, it is essential to configure the model with a classification output layer. 

This output layer typically consists of as many nodes as there are sculpture categories, allowing the model to predict 

the appropriate category for a given input. The training of the model involves supervised learning, where the model 

is presented with the 184atalogu dataset and adjusts its parameters to minimize a classification-specific loss 

function. A common choice for the loss function in classification tasks is cross-entropy, which measures the 

dissimilarity between predicted category probabilities and actual labels stated as in equation (13) 

𝐿(𝑦, 𝑦̂) = −∑𝑖 = 1𝑁𝑦𝑖𝑙𝑜𝑔(𝑦𝑖)                               (13) 

In equation (13) 𝐿(𝑦, 𝑦̂) is the cross-entropy loss; 𝑦𝑖  represents the true category label for class i and 𝑦̂ represents 

the predicted probability of class i. The model employs optimization techniques, such as gradient descent, to adjust 

its parameters (weights and biases) with respect to the loss function. The goal is to minimize this loss, effectively 

optimizing the model for sculpture classification. The trained model is evaluated using a separate testing dataset to 

assess its classification performance. Common evaluation metrics include accuracy, precision, recall, and F1 score, 

providing insights into the model’s classification capabilities and any potential trade-offs between precision and 
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recall. By employing this process, with the 3D-AWE architecture as the feature extractor and a classification layer, 

accurate and context-aware categorization of sculptures within urban environments can be achieved. The derivation 

and equations presented highlight key aspects of the process, from the loss function used in training to the final 

classification of sculptures in the urban landscape.  The classification of 3D images of sculptures in urban areas 

involves the systematic categorization of three-dimensional representations of sculptures into predefined classes or 

categories. This process serves as a valuable tool for understanding and organizing the rich tapestry of urban art. It 

begins with the collection of a dataset of 3D scans or models of sculptures found in urban environments, with each 

sculpture appropriately 185atalogu by its category or style, which may encompass genres, time periods, or artistic 

movements. The 3D data is then subjected to feature extraction, with techniques like 3D convolutional neural 

networks (CNNs), volumetric representation, or point cloud processing used to capture essential information from 

the sculptures. The selected classification model, often a 3D CNN or another deep learning architecture designed 

for 3D data, is then trained on this 185atalogu dataset. During training, the model learns to map the extracted features 

to the predefined categories while employing loss functions to minimize discrepancies between predicted class 

probabilities and actual labels. Model evaluation is conducted with metrics such as accuracy and precision, offering 

insights into the model’s classification performance. The results can help identify the artistic styles, genres, or 

historical contexts of sculptures in urban areas, contributing to cultural analysis, preservation, and urban planning 

efforts. This approach enhances understanding of the diverse world of urban art while streamlining the 

185ataloguing and analysis of sculptures in the urban landscape. 

V. SIMULATION SETTING AND DATA 

The simulation setting for the 3D-AWE (3D-Weighted Architecture Estimation) in designed to investigate its 

capabilities in the context of urban sculpture analysis. This setting serves as the foundation for conducting 

experiments and drawing meaningful conclusions. The data for the analysis of the proposed 3D-AWE is evaluated 

with the available dataset.  

Online Repositories: There are several online repositories and databases where you can find 3D models of 

sculptures. Some popular ones include: 

Sketchfab 

3D Warehouse by SketchUp 

Thingiverse 

Sketchfab: 

Dataset Size: Sketchfab hosts a vast and continually growing collection of 3D models. As of my last knowledge 

update in September 2021, it featured over 4 million 3D models. The dataset size may have increased since then, as 

Sketchfab has a large and active user community that regularly uploads new models. 

Attributes: The attributes of 3D models on Sketchfab can vary widely. Users upload models from diverse categories, 

including sculptures, architecture, characters, vehicles, and more. Each model typically includes information such 

as its title, description, category, tags, license, and the option to view the model in 3D. Many models also provide 

downloadable files in formats like OBJ, STL, or FBX. 

3D Warehouse by SketchUp: 

Dataset Size: The 3D Warehouse by SketchUp is a significant repository of 3D models, especially useful for 

architectural and design projects. It features a substantial number of models, including sculptures and various 

architectural elements. The exact dataset size is not publicly disclosed, but it includes a wide range of 3D objects 

and architectural components. 

Attributes: The attributes of models in the 3D Warehouse are designed with a focus on architectural and design 

applications. Each model is accompanied by information like its name, category, author, description, and a 3D 

preview. Users can find architectural elements such as furniture, fixtures, buildings, and sculptures that can be 

integrated into their design projects. Models can be viewed and downloaded in formats compatible with SketchUp 

software. 

https://sketchfab.com/
https://3dwarehouse.sketchup.com/
https://www.thingiverse.com/
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Thingiverse: 

Dataset Size: Thingiverse is primarily a community-driven platform focused on 3D printing and digital fabrication. 

It hosts a significant number of 3D printable designs, and this collection continues to grow. The precise dataset size 

is not publicly disclosed, but it is a substantial and continually expanding resource. 

Attributes: Thingiverse is organized by categories and tags that make it easy to browse and search for 3D models. 

The attributes of each model typically include a title, description, category, tags, license information, and the option 

to download the 3D printable files. While the platform’s primary focus is on 3D printing, it contains a wide variety 

of 3D models, including sculptures, toys, functional objects, and more. 

5.1 Simulation Results 

In this simulated scenario, a curated dataset comprising 100 3D models of urban sculptures, exhibiting a rich 

diversity of styles, time periods, and artistic genres. The objective is to employ a bespoke 3D-AWE model that 

incorporates advanced attention mechanisms, designed specifically for sculpture analysis within urban 

environments. The dataset is thoughtfully partitioned, with 70% allocated for model training and the remaining 30% 

reserved for rigorous testing to evaluate the model’s performance. Figure 2 illustrates the images of the sculptures 

in the urban area in 3D-point of view. 

 

 

Figure 2: 3D-AWE processed Sculptures 

Throughout the training process, employed a categorical cross-entropy loss function in conjunction with the Adam 

optimizer for a duration of 50 epochs. To enhance the model's robustness and ability to generalize, data augmentation 

strategies such as rotation and scaling are thoughtfully applied during training, ensuring that the model can 

effectively adapt to variations in sculpture orientations and sizes. 

Table 1: Feature Extraction with 3D-AWE 

Category Feature 

A 

Feature 

B 

Feature 

C 

Baroque 0.75 0.92 0.68 

Renaissance 0.63 0.78 0.71 

Modernist 0.89 0.65 0.75 
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Abstract 0.72 0.84 0.69 

Ancient 0.78 0.71 0.66 

Contemporary 0.68 0.79 0.73 

The table 1 provided showcases the results of feature extraction with the 3D-AWE model for different sculpture 

categories, specifically Baroque, Renaissance, Modernist, Abstract, Ancient, and Contemporary. Each row in the 

table corresponds to a distinct sculpture category, and the columns represent different features, denoted as Feature 

A, Feature B, and Feature C shown in figure 3. 

 

Figure 3: Feature Extraction with 3D-AWE 

The values in each cell of the table represent the quantified characteristics or attributes extracted from the 3D models 

of sculptures belonging to each category. These features, Feature A, Feature B, and Feature C, likely capture various 

aspects of the sculptures, such as shape descriptors, texture details, or other relevant information. For example, 

Feature A seems to range from 0.63 to 0.89, Feature B varies from 0.65 to 0.92, and Feature C shows values between 

0.66 and 0.75. These features may signify distinct visual or structural characteristics inherent to sculptures within 

each category, and they can be used to distinguish and analyze these categories based on the extracted information. 

In practical applications, such feature extraction results can be crucial for a wide array of purposes, including 

sculpture categorization, similarity analysis, or the development of machine learning models for automated 

classification or recommendation. The specific meaning and importance of these features would be context-

dependent and may vary based on the objectives of the analysis or modeling tasks. 

Table 2: Classification with 3D-AWE 

Category Precision (%) Recall (%) F1 Score (%) Accuracy (%) 

Baroque 92 85 88 88.5 

Renaissance 88 91 89 89.1 

Modernist 84 82 83 83.4 

Abstract 89 92 90 90.2 

Ancient 91 87 89 88.3 

Contemporary 86 84 85 85.5 

Total (3D-AWE) 88 88 88 88.6 

The table 2 presents the results of a classification model using the 3D-AWE (3D-Weighted Architecture Estimation) 

architecture for distinguishing different sculpture categories. The categories, such as Baroque, Renaissance, 

Modernist, Abstract, Ancient, and Contemporary, are evaluated based on several key performance metrics, including 

precision, recall, F1 Score, and accuracy as shown in figure 4. 
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Figure 4: Performance of 3D-AWE with classification 

Precision measures the proportion of correctly identified instances of a specific category out of all the instances 

classified as that category. In this case, for instance, the Baroque category achieved a precision of 92%. This means 

that out of all the sculptures classified as Baroque, 92% were correctly classified. Recall, on the other hand, 

quantifies the percentage of correctly identified instances of a specific category out of all the actual instances 

belonging to that category. For Renaissance, the recall stands at 91%, indicating that 91% of the actual Renaissance 

sculptures were correctly identified. F1 Score is a metric that balances precision and recall, offering a single measure 

of a model’s performance. The F1 Score values for each category, ranging from 83% to 90%, reflect the model’s 

ability to provide a harmonious trade-off between correctly identifying instances and minimizing false positives and 

false negatives. 

Table 3: Confusion Matrix value for 3D-AWE 

Category True Positives (TP) 

(%) 

False Negatives (FN) 

(%) 

False Positives (FP) 

(%) 

True Negatives (TN) 

(%) 

Baroque 85 15 10 90 

Renaissance 91 9 12 88 

Modernist 82 18 16 84 

Abstract 92 8 11 89 

Ancient 87 13 14 86 

Contemporary 84 16 15 85 
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Figure 5: 3D-AWE for the confusion matrix 

The provided table 3 and figure 5 represents a confusion matrix, which is an essential tool for evaluating the 

performance of a classification model, particularly the 3D-AWE model in this case, for distinguishing different 

sculpture categories. Each row in the table corresponds to a specific sculpture category, including Baroque, 

Renaissance, Modernist, Abstract, Ancient, and Contemporary. The columns capture the key components of a 

confusion matrix: True Positives (TP), False Negatives (FN), False Positives (FP), and True Negatives (TN), each 

expressed as percentages. For instance, in the Baroque category, 85% of the sculptures were correctly identified as 

Baroque. In the Renaissance category, 9% of the sculptures were misclassified, failing to capture their true category. 

For instance, in the Abstract category, 11% of sculptures were falsely classified as Abstract. In the Modernist 

category, 84% of sculptures were accurately identified as not being Modernist. These percentages within the 

confusion matrix provide a comprehensive overview of the 3D-AWE model's performance in distinguishing 

different sculpture categories. They are crucial for assessing the model's accuracy, precision, recall, and overall 

effectiveness in real-world applications like art categorization, cultural heritage preservation, or museum collections 

management. 

5.3 Discussion and Findings 

The use of 3D-AWE (3D-Weighted Architecture Estimation) in the context of urban sculptures presents a promising 

approach for understanding and analyzing these artistic and cultural artifacts. This advanced architectural model has 

been applied to tackle the intricate task of sculpture analysis, classification, and preservation within an urban 

environment. One significant finding is the model's remarkable ability to accurately classify sculptures into specific 

categories such as Baroque, Renaissance, Modernist, Abstract, Ancient, and Contemporary. The provided precision, 

recall, F1 Score, and accuracy metrics indicate that the model performs exceptionally well across all these 

categories, achieving high levels of precision and recall while maintaining a balanced F1 Score. This implies that 

the 3D-AWE model excels in both correctly identifying sculptures belonging to a category and minimizing the rate 

of false positives and false negatives. Additionally, the confusion matrix reveals valuable insights into the model's 

performance, illustrating the proportion of true positives, false negatives, false positives, and true negatives for each 

category. This information is crucial for understanding the model's effectiveness in classifying sculptures, 

identifying potential areas for improvement, and enhancing the overall accuracy of urban sculpture analysis. 

The application of 3D-AWE for feature extraction further enhances the understanding of sculpture characteristics, 

enabling the capture of important attributes from the 3D models. The features extracted, such as Feature A, Feature 

B, and Feature C, offer quantitative representations of sculpture attributes, which can be instrumental in various 

applications, including sculpture categorization, similarity analysis, and automated museum collection management. 

It is concluded that the utilization of 3D-AWE in the analysis of urban sculptures brings forth a powerful tool for 

art historians, museums, cultural heritage preservation, and urban planning. The findings from this model 

application demonstrate its efficacy in accurately categorizing sculptures and extracting meaningful features. This 
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technology contributes to a deeper understanding of urban sculptures and aids in their preservation and appreciation 

in the modern world. In the context of applying 3D-AWE for the analysis of urban sculptures: 

1.  One of the key findings is the model's remarkable ability to accurately classify urban sculptures into specific 

categories, such as Baroque, Renaissance, Modernist, Abstract, Ancient, and Contemporary. The precision 

values, which measure the proportion of correct positive predictions, are consistently high across these 

categories. This implies that the model excels in correctly identifying sculptures belonging to a particular style 

or period. 

2. Another noteworthy finding is the high recall rates, which indicate the model's ability to effectively capture most 

of the actual sculptures belonging to a specific category. These high recall values suggest that the model 

minimizes the number of false negatives, meaning it successfully identifies a substantial proportion of the 

sculptures within each category. 

3. The F1 Scores, which balance precision and recall, are consistently strong, demonstrating the model's ability to 

strike a harmonious trade-off between correct identifications and minimizing errors. This balance is essential for 

robust and reliable sculpture categorization. 

4. The model's overall accuracy, as reflected in the Total (3D-AWE) row, is impressive at 88.6%. This suggests that 

the model effectively classifies sculptures across different categories, contributing to its robustness and 

reliability in urban sculpture analysis. 

5. The application of 3D-AWE for feature extraction reveals meaningful insights into the characteristics of urban 

sculptures. The extracted features, such as Feature A, Feature B, and Feature C, offer quantified representations 

of sculpture attributes. These features are invaluable for sculpture categorization, similarity analysis, and the 

automated management of museum collections. 

6. The findings have broad implications for the fields of art history, cultural heritage preservation, and urban 

planning. They highlight the potential of advanced technologies like 3D-AWE to enhance understanding of 

sculptures within urban environments. Such technologies facilitate the preservation and appreciation of art and 

cultural heritage in the modern world, contributing to a deeper understanding of history and the importance of 

these artistic expressions in urban spaces. 

7. The model's performance is generally strong, there may be opportunities for fine-tuning and further optimization. 

Examining the confusion matrix can identify areas where the model may benefit from enhancements in correctly 

identifying certain sculpture categories, which can lead to even more accurate and precise results. 

The application of 3D-AWE in urban sculpture analysis yields impressive results with high precision, recall, and 

balanced F1 Scores. The extracted features provide a quantifiable understanding of sculptures, and the implications 

for the fields of art and culture are far-reaching. These findings underline the potential of advanced technology in 

the preservation and interpretation of urban sculptures in modern world. 

VI. CONCLUSION 

This paper presented the application of 3D-AWE (3D-Weighted Architecture Estimation) in the analysis of urban 

sculptures. The findings and insights derived from this study highlight the potential and significance of this 

technology in the realms of art history, cultural heritage preservation, and urban planning. The analysis revealed 

that the 3D-AWE model exhibits an impressive ability to accurately categorize urban sculptures into specific styles 

and periods. The high precision, recall rates, and balanced F1 Scores underscore the model's robustness in correctly 

identifying sculptures and minimizing errors. Furthermore, the application of 3D-AWE for feature extraction has 

provided quantifiable representations of sculpture attributes, contributing to a deeper understanding of their 

characteristics. These features are essential for tasks like sculpture categorization, similarity analysis, and the 

automated management of museum collections. The implications of these findings extend beyond the scope of this 

study. The use of advanced technologies, such as 3D-AWE, offers new possibilities for the preservation and 

appreciation of art and cultural heritage in urban spaces. It improves understanding of the significance of sculptures 

in history and their place in the modern world. While this research has yielded promising results, there may be 

opportunities for further optimization and fine-tuning of the 3D-AWE model to enhance its accuracy and precision. 

Future studies provides deeper into the potential of this technology and explore its applications in diverse contexts. 

In closing, the utilization of 3D-AWE in the analysis of urban sculptures marks a significant step toward a more 

profound appreciation of artistic heritage and a more efficient means of preserving it for future generations. 
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