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Abstract: - In this paper, we propose a novel hybrid neural network architecture, the KAN-enhanced QResNet, specifically designed 

to improve user behavior prediction in complex digital ecosystems such as e-commerce platforms. The proposed model integrates 

the feature decomposition capabilities of Kolmogorov-Arnold Networks (KAN) with the quadratic residual interaction modeling of 

Quadratic Residual Networks (QResNet). This combination allows the model to capture both compositional structures and higher-

order feature interactions, leading to enhanced predictive performance. We rigorously evaluated the KAN-enhanced QResNet on 

three diverse e-commerce datasets: E-Commerce Customer Churn Data, Multi-Category Store Behavior, and Customer Churn 

Analysis, demonstrating its superiority over traditional machine learning models such as Logistic Regression, Support Vector 

Machines (SVM), XGBoost, and standard Feedforward Neural Networks (FF-MLP). The KAN-enhanced QResNet achieved a 

significant F1-score of 0.86 on the E-Commerce Customer Churn Data, outperforming Logistic Regression (F1-score: 0.68) and 

XGBoost (F1-score: 0.77). Similarly, the model attained an F1-score of 0.79 on the Multi-Category Store Behavior dataset, compared 

to 0.69 achieved by XGBoost. These results demonstrate the model’s superior ability to capture complex non-linear interactions, a 

challenge for conventional models. Our contributions include: (1) Introducing a novel hybrid architecture that integrates KAN and 

QResNet to efficiently handle high-dimensional data and capture intricate feature interactions; (2) Comprehensive empirical 

validation across three real-world datasets, showcasing the robustness and adaptability of the model; (3) Establishing the KAN-

enhanced QResNet as a state-of-the-art solution for user behavior prediction tasks, outperforming traditional models in terms of 

accuracy, precision, recall, and F1-score. The findings of this study highlight the transformative potential of hybrid neural network 

architectures for predictive modeling in complex digital environments and offer new directions for future research in domains such 

as customer churn prediction, personalized recommendation systems, and real-time marketing strategies. 

Keywords: Neural Network, Kolmogorov-Arnold Networks, Multilayer Perceptron, Quadratic Residual Neural 

Networks, User Behavior, KAN, MLP. 

 

I.  INTRODUCTION 

In the rapidly evolving landscape of digital ecosystems, understanding and predicting user behavior has become a 

critical challenge for businesses, marketers, and platform developers alike. The ability to accurately forecast user 

actions can significantly enhance user experience, optimize content delivery, and drive engagement across various 

digital platforms. However, the complexity and non-linear nature of user interactions in these environments have 

often eluded traditional predictive models, necessitating more sophisticated approaches. 

In modern digital ecosystems, user behavior prediction is crucial for improving user experiences, optimizing 

content delivery, and maximizing engagement across platforms such as social media, e-commerce, and online 

learning environments. These ecosystems produce vast amounts of data from user interactions, creating 

opportunities and challenges for businesses that seek to predict user actions such as clicks, purchases, or content 

engagement. However, the complexity of these digital environments, combined with non-linear and 

multidimensional user interactions, often limits the effectiveness of traditional machine learning models. 

Machine learning models like Support Vector Machines (SVMs), logistic regression, XGBoost, Multilayer 

Perceptrons (MLPs), and Random Forests have been widely used to predict user behavior. However, they often 

struggle with modeling nonlinear relationships and high-dimensional data. As user behavior becomes increasingly 

dynamic and influenced by multiple factors, advanced methods like Kolmogorov-Arnold Networks (KANs) and 

Quadratic Residual Networks (QResNets) have emerged as promising alternatives to traditional models. These 

newer architectures offer the ability to model higher-order interactions, capture non-linearity, and handle the 

complexities of large-scale, dynamic digital ecosystems. 

Support Vector Machines (SVMs) have been applied in a variety of user behavior prediction tasks, particularly in 

domains like e-commerce and customer churn prediction. While SVMs are highly effective in separating binary 
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classes by maximizing the margin between data points [1], they have limitations when applied to high-dimensional 

and non-linear data. Studies have shown that SVMs often underperform in environments where user behavior 

involves complex interactions and temporal dependencies [2]. Additionally, SVMs are computationally expensive, 

particularly when working with large datasets, which limits their scalability in real-time applications [3]. 

Logistic regression, while still widely used for predicting binary outcomes like click-through rates (CTR) or 

purchase likelihood, is inherently linear and lacks the flexibility needed to model non-linear user behavior 

interactions. It works well as a baseline model, but recent studies have found that logistic regression often falls 

short in terms of accuracy when applied to more complex user behavior prediction tasks [4]. Furthermore, logistic 

regression requires careful feature engineering to capture complex relationships between user actions and features, 

making it inefficient in large-scale, unstructured datasets. 

XGBoost, a widely used gradient boosting algorithm, has demonstrated high performance in various user behavior 

prediction tasks, including e-commerce personalization and customer segmentation [5]. XGBoost excels in 

capturing feature interactions by building decision trees iteratively, but it still struggles with modeling temporal 

dependencies and evolving user preferences over time [6]. Its reliance on predefined tree structures makes it less 

suitable for tasks involving dynamic user behavior, which requires more flexible architectures that can adapt to 

rapidly changing data patterns [7]. 

Multilayer Perceptrons (MLPs) have been widely adopted in user behavior prediction due to their universal function 

approximation capabilities. MLPs can capture non-linear relationships between input features, making them more 

flexible than linear models like logistic regression [8]. However, MLPs are prone to overfitting, especially when 

trained on small or imbalanced datasets [9]. Furthermore, they require large amounts of data to generalize well, 

which limits their practical application in real-time user behavior prediction tasks. 

Random Forests have also been extensively used for customer behavior prediction tasks, such as predicting 

customer churn and user segmentation [10]. Random Forests offer high interpretability and are less prone to 

overfitting due to their ensemble structure. However, like XGBoost, they are not well-suited to capturing temporal 

dependencies or handling non-linear, evolving user behavior. Random Forests also require significant 

computational resources, particularly when applied to large datasets, which makes them less practical for real-time 

decision-making [11]. 

While traditional machine learning models have proven effective in certain tasks, they face significant limitations 

when applied to the complexities of user behavior prediction in dynamic digital ecosystems. First, these models 

often fail to capture nonlinear interactions between features, which are crucial for accurately predicting user actions. 

Models like logistic regression, SVMs, and decision trees typically assume linear relationships, requiring extensive 

feature engineering to handle non-linearities. Second, the high dimensionality of user data presents a challenge for 

traditional models, as they struggle to handle the large number of features and interactions present in user behavior 

data. Third, existing models are prone to overfitting when trained on sparse or imbalanced datasets, especially in 

dynamic environments where user preferences change over time. Finally, traditional models lack the adaptability 

needed to handle real-time predictions in rapidly evolving ecosystems, limiting their effectiveness in tasks such as 

dynamic content recommendation or targeted advertising [12]. 

Kolmogorov-Arnold Networks (KANs) offer a robust solution to these challenges by leveraging the Kolmogorov-

Arnold representation theorem, which states that any continuous multivariate function can be represented as a 

composition of univariate functions [13]. This allows KANs to decompose complex multivariate functions into 

simpler components, making them well suited to capturing the intricate, non-linear interactions present in user 

behavior data. Unlike traditional models, KANs can handle high-dimensional data more effectively by breaking 

down the data into lower-dimensional subcomponents, allowing for better generalization and more accurate 

predictions [13]. Moreover, KANs have been shown to outperform traditional models in tasks where capturing 

high-order feature interactions is crucial, such as CTR prediction and content recommendation [7]. 

Despite their advantages, KANs are not without limitations. The computational complexity of KANs can be high, 

particularly when applied to large datasets with many features. Additionally, KANs are prone to overfitting when 

not properly regularized, especially in cases where the training data is sparse or imbalanced. These limitations 
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highlight the need for further research into optimization techniques that can make KANs more efficient and scalable 

for practical applications in digital ecosystems [1]. 

Quadratic Residual Networks (QResNets) introduce an additional layer of nonlinearity to the traditional deep 

learning architecture by incorporating quadratic residuals into the network [14]. This allows QResNets to model 

more complex interactions between features without increasing the depth of the network, making them more 

efficient than traditional deep learning models like MLPs [14]. QResNets have been particularly effective in solving 

high-frequency prediction tasks, such as Physics-Informed Neural Networks (PINNs), where traditional models 

often struggle. The added quadratic terms in QResNets allow the model to capture higher-order interactions 

between variables, which can significantly improve predictive accuracy in tasks involving complex user behavior 

data. 

However, the inclusion of quadratic terms also increases the risk of overfitting, particularly when training on small 

or noisy datasets. QResNets also require more computational resources than simpler architectures, as the quadratic 

terms add complexity to the model. This can make them less practical for real-time applications where 

computational efficiency is critical. Despite these limitations, QResNets provide a significant advantage in terms 

of expressiveness and predictive power, particularly in high-dimensional data settings [14].  

This study addresses the limitations of traditional machine learning models in accurately predicting user behavior 

in complex digital ecosystems. Specifically, we aim to solve the problem of capturing nonlinear, high-dimensional 

interactions and temporal dependencies in user data, which are often missed by traditional models like SVMs, 

logistic regression, and random forests. The dynamic nature of digital ecosystems, where user preferences and 

interactions evolve rapidly, requires a more flexible and adaptive approach to predictive modeling. 

To address these challenges, we propose a novel neural network architecture that integrates Kolmogorov-Arnold 

Networks (KANs) with Quadratic Residual Networks (QResNets). Our hypothesis is that this hybrid architecture 

will outperform traditional models by capturing higher-order feature interactions and providing more accurate and 

efficient predictions of user actions. Specifically, we hypothesize that: 

• Hypothesis 1: The integration of KANs and QResNets will lead to significant improvements in predictive 

accuracy compared to traditional machine learning models, particularly in tasks involving high-dimensional and 

non-linear user behavior data. 

• Hypothesis 2: The hybrid KAN-QResNet architecture will provide better generalization performance, 

reducing the risk of overfitting when trained on sparse or imbalanced datasets. 

• Hypothesis 3: The proposed model will demonstrate superior computational efficiency in handling large-

scale, dynamic datasets, making it suitable for real-time applications in digital ecosystems. 

The methodology for this study involves the development of a hybrid KAN-QResNet model that combines the 

strengths of Kolmogorov-Arnold Networks in handling high-dimensional data with the ability of Quadratic 

Residual Networks to capture higher-order feature interactions. We will train this model on large-scale datasets 

from various digital ecosystems, including ecommerce platforms, social media networks, and online learning 

environments. The datasets will be preprocessed to normalized data, handle missing values, and engineer relevant 

features. The training process will involve extensive hyperparameter tuning and regularization techniques to ensure 

that the model generalizes well to unseen data. The performance of the hybrid KAN-Enhanced QResNet model 

will be evaluated using standard metrics, such as accuracy, precision, recall, and F1-score. 

The hybrid KAN-QResNet model is rigorously evaluated using three comprehensive real-world datasets drawn 

from diverse digital ecosystems: E-commerce Customer Churn Analysis and Prediction [15], E-commerce 

Behavior Data from Multicategory Store [16], and E-commerce Customer Churn [17]. These datasets offer detailed 

and diverse user behavior patterns, encompassing key factors such as purchasing habits, content consumption, and 

social interactions. The experimental design integrates a robust comparative analysis between the KAN-QResNet 

architecture and traditional machine learning models, including SVMs, logistic regression, XGBoost, and MLPs. 

The goal is to demonstrate the hybrid model's significant improvements in capturing complex, nonlinear 

relationships in user data, yielding higher predictive accuracy, superior generalization, and enhanced computational 

efficiency. 
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Combining KAN's strength in modeling high dimensional data through decomposition and QResNets ability to 

capture higher order feature interactions, the KAN-QResNet architecture provides a strong framework to address 

the complexities of modern user behavior data. These datasets are not only abundant in terms of user interactions 

and features but also provide a near-real-world setup enabling us to measure the model's efficacy in real-life, high 

impact applications such as customer churn prediction, product recommendation, dynamic content delivery etc. 

With the help of this comparative analysis, it also uses for both how well the model does in real-time environments 

and benefits of its computational performance over conventional models. This examination highlights the model's 

ability to reshape the fundamental standards of predictive modeling throughout digital ecosystems, by being able 

provide a more light and fast response method for related with complex behavior prediction. 

As far as we know, this is the first work to design a new neural network architecture that integrates Kolmogorov-

Arnold Network (KANs) with Quadratic Residual Networks (QResNets) for capturing higher-order interactions in 

user behavior prediction. The combination of these two strong models helps us to consider the complicated and 

non-linear relationships we see in user behavior data that are usually ignored by traditional models. The possible 

hybrid architecture is a step forward in the realm of prediction modeling digital ecology and it forms powerful 

solutions for real-time applications which include dynamic content recommendation, targeted advertising etc. 

The rest of the paper is organized as follows: Section II discusses related work on predicting user behavior using 

KANs and QResNets. In Section III, we explain the methodology that includes the architecture for the hybrid KAN-

QResNet model in detail. In Section IV, we present details of the experimental setup (datasets, training procedure 

and evaluation metrics). The results, comparing to the performance of hybrid model with traditional machine 

learning models are presented in Section V. In Section VI, we present and discuss these results, while in Section 

VII, we draw our conclusions about the contributions of this research and some possible directions for future lines. 

II. BACKGROUND AND RELATED WORK 

2.1 User Behavior Prediction in Digital Ecosystems 

Predicting user behavior in digital ecosystems has been a significant area of research in recent years. Traditional 

approaches have often relied on statistical methods and machine learning algorithms to forecast user actions based 

on historical data. For instance, Liang et al. [18] employed collaborative filtering techniques to predict user 

preferences in e-commerce settings, while Zhang et al. [3] utilized deep learning models to forecast user 

engagement on social media platforms. Traditional approaches often involve the use of decision trees, support 

vector machines (SVMs), and logistic regression models, which are designed to identify patterns in user interaction 

data and predict future actions. For instance, Baeza-Yates [19] discusses the application of decision trees and 

logistic regression in predicting user clicks and engagement on web pages, highlighting the limitations of these 

models in capturing complex, non-linear relationships in user behavior data. 

Neural networks have also been extensively applied in this domain. In particular, fully connected networks and 

convolutional neural networks (CNNs) have been used for tasks such as click-through rate prediction and 

recommendation systems. However, these models often require extensive tuning and large datasets to perform 

effectively, and they may struggle with overfitting, especially in high-dimensional spaces [20]. 

2.2 Advances in Non-linear Modeling Techniques 

As the limitations of traditional machine learning models have become apparent, research has increasingly focused 

on more advanced non-linear modeling techniques. Deep learning models, including recurrent neural networks 

(RNNs) and long short-term memory networks (LSTMs), have shown significant promise in capturing temporal 

dependencies and sequential patterns in user data. These models have been particularly effective in session-based 

recommendation systems and predictive analytics, where understanding the sequence of user actions is critical [21], 

[22]. 

However, deep learning models present their own set of challenges, such as the need for large datasets, high 

computational costs, and difficulties in interpretability. The complexities of these models make them less suitable 

for scenarios where model transparency and efficiency are paramount [23], [24]. 

2.3 The Kolmogorov-Arnold Representation Theorem 
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The Kolmogorov-Arnold representation theorem, also known as the superposition theorem, is a fundamental result 

in the theory of function approximation. Kolmogorov [25] initially proved in 1957 that any continuous function of 

several variables could be represented as a superposition of continuous functions of one variable and addition. 

Arnold [26] later refined this theorem, providing a more constructive proof. 

The theorem states that for any continuous function 𝑓: [0,1]𝑛 → 𝐑, there exist continuous functions 𝜓 and 𝜙𝑖𝑗 such 

that: 

𝑓(𝑥1, … , 𝑥𝑛) = ∑  

2𝑛+1

𝑖=1

 𝜓 (∑  

𝑛

𝑗=1

 𝜙𝑖𝑗(𝑥𝑗))                                                                            (1)  

This powerful result suggests that complex multivariate functions can be decomposed into simpler, univariate 

components, which has significant implications for function approximation and machine learning. While the 

Kolmogorov-Arnold theorem is primarily a theoretical result, researchers have explored its potential applications 

in machine learning and function approximation. Kurkova [27] discussed the relationships between Kolmogorov's 

theorem and neural network architectures, highlighting the theoretical foundations for universal approximation 

capabilities of certain network structures. 

Poggio and Girosi [28] proposed regularization networks, which drew inspiration from Kolmogorov's theorem to 

develop a framework for approximating multivariate functions. Their work laid the groundwork for exploring how 

the principles of the theorem could be applied in practical machine learning contexts. Despite the theoretical 

promise, directly implementing Kolmogorov-Arnold Networks (KANs) has proven challenging. The functions 𝜓 

and 𝜙𝑖𝑗 in the theorem are generally not smooth or easily computable, making practical implementations difficult. 

Braun and Griebel [29] discussed these challenges and proposed alternative approaches to leveraging the theorem's 

principles in computational settings. 

2.4 Recent Advances in Complex Function Approximation 

Recent research has focused on developing novel neural network architectures that can effectively model complex, 

nonlinear relationships in high-dimensional data. For example, Montúfar et al. [30] explored the expressive power 

of deep neural networks, showing how certain architectures can approximate a wide range of functions efficiently. 

In the context of user behavior prediction, Ma et al. [31] proposed a hierarchical attention network for modeling 

sequential user behaviors in e-commerce environments, demonstrating improved performance over traditional 

methods. 

The present study builds upon these foundations, exploring how the principles inspired by the Kolmogorov-Arnold 

theorem can be applied to create more effective models for user behavior prediction in diverse digital ecosystems. 

2.5 Implications for Personalized Content Delivery and User Experience 

The superior predictive performance of Kolmogorov-Arnold Networks (KANs), as demonstrated by their ability to 

accurately forecast user actions such as clicks, purchases, and content engagement, has profound implications for 

personalized content delivery and the enhancement of user experience across digital platforms. By leveraging large 

datasets of user activity, KANs identify intricate patterns in user behavior that traditional machine learning models 

often fail to detect, enabling more precise predictions of individual user preferences and behaviors. 

Personalized Content Delivery: One of the primary applications of KANs in digital ecosystems is the optimization 

of content delivery. By understanding user preferences at a granular level, KANs allow platforms to tailor content 

recommendations more effectively. For example, in streaming services like Netflix or music platforms like Spotify, 

KANs can analyze historical user data to predict what movies or songs a user is most likely to enjoy next, leading 

to a more engaging and satisfying user experience [32], [33]. 

Targeted Advertising: KANs also hold significant potential for improving the effectiveness of targeted advertising. 

By accurately predicting which ads are most likely to resonate with a specific user, based on their past interactions 

and inferred preferences, advertisers can deliver more relevant ads, reducing wastage and increasing return on 

investment (ROI). This capability is especially valuable in environments where user attention is a scarce resource, 
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such as social media platforms like Facebook or Instagram, where personalized ads can lead to higher engagement 

rates and conversions [34], [35]. 

Another critical application of KANs is in the optimization of user interfaces (UI). By predicting how users interact 

with different elements of a website or app, KANs can inform the design of more intuitive and user-friendly 

interfaces. For instance, e-commerce platforms can use KANs to anticipate which layout or navigation options will 

lead to higher conversion rates, thereby enhancing the overall shopping experience [36], [37]. 

The ability of KANs to provide personalized content and targeted advertising translates directly into a richer and 

more personalized user experience. Users are more likely to engage with content that feels tailored to their interests 

and needs, leading to increased satisfaction and loyalty. Furthermore, as KANs continually learn from user 

behavior, they enable platforms to adapt to changing user preferences over time, ensuring that the user experience 

remains relevant and engaging [38], [20]. 

In summary, the deployment of KANs in digital ecosystems not only improves the precision of user behavior 

predictions but also drives significant improvements in personalized content delivery, targeted advertising, and UI 

optimization. These advancements contribute to a more engaging, satisfying, and ultimately profitable user 

experience, making KANs an invaluable asset in the management of digital platforms. 

2.6 Problem Statement 

Accurately forecasting user actions in complex digital ecosystems presents significant challenges due to the high-

dimensionality, non-linearity, and dynamic nature of user behavior. Existing machine learning approaches, 

including traditional models such as Support Vector Machines (SVMs), logistic regression, and gradient boosting 

machines, as well as more recent deep learning architectures, struggle to effectively capture the intricate interactions 

between various behavioral factors. This is largely due to their inherent limitations in modeling high-order, non-

linear relationships within large-scale datasets. 

At the core of this problem lies the difficulty in modeling user interactions, which often involve multiple variables 

interacting in a complex, non-linear fashion. These interactions evolve over time, leading to temporal dependencies 

that further complicate the predictive task. Traditional approaches assume that user actions can be modeled as linear 

or low-order combinations of individual features. However, such assumptions fail to capture the multi-dimensional 

and high-order feature interactions present in real-world data. 

Mathematically, let 𝐗 ∈ ℝ𝑛×𝑑  represent a dataset of 𝑛  user interactions, where each interaction consists of 𝑑 

features. The goal is to predict user actions 𝐲 ∈ ℝ𝑛, which are binary or continuous variables representing user 

decisions, such as clicks, purchases, or engagements. Standard machine learning models attempt to learn a mapping 

𝑓: ℝ𝑑 → ℝ such that: 

𝐲 = 𝑓(𝐗) + 𝜖                                                                                                                            (2)  

where 𝜖 denotes noise in the data. However, these models typically assume that 𝑓 is a low-order polynomial or 

linear function, which severely limits their ability to capture complex interactions between features. 

Kolmogorov-Arnold Networks (KANs) provide a theoretical solution to this problem by leveraging the 

Kolmogorov-Arnold representation theorem, which asserts that any continuous multivariate function can be 

decomposed into a finite sum of univariate functions: 

𝑓(𝐗) = ∑  

𝑑

𝑖=1

 𝜙𝑖 (∑  

𝑑

𝑗=1

 𝜓𝑖𝑗(𝑥𝑗))                                                                                               (3)  

where 𝜙𝑖  and 𝜓𝑖𝑗  are univariate continuous functions. This decomposition allows KANs to model the high-

dimensional, nonlinear relationships between features without the limitations of traditional approaches. 

Quadratic Residual Networks (QResNets) further enhance the expressive power of deep learning models by 

introducing quadratic residuals, enabling the network to capture higher-order interactions within each layer. The 

quadratic term is represented as: 



J. Electrical Systems 20-10s (2024): 6274-6295  

 

6280 

𝐲 = 𝜎(𝑊2𝐱 ∘ 𝑊1𝐱 + 𝑊1𝐱 + 𝑏)                                                                                               (4)  

where ∘ denotes the Hadamard product, and 𝑊1, 𝑊2  are trainable weight matrices. By incorporating quadratic 

terms, QResNets are able to capture interactions of the form 𝑥𝑖𝑥𝑗 , which are essential for modeling complex 

dependencies between features. 

Despite these advancements, challenges remain in efficiently integrating KANs and QResNets into a unified 

framework that can handle the scale and complexity of real-world digital ecosystems. The primary research 

question addressed by this paper is: How can the combination of KANs and QResNets improve the predictive 

accuracy and efficiency of user action forecasting in complex digital environments? 

This work seeks to address these challenges by developing a hybrid architecture that combines the decomposition 

power of KANs with the high-order interaction modeling of QResNets, providing a more robust solution to the 

problem of user behavior prediction in dynamic, high-dimensional data environments. 

III. THEORETICAL FRAMEWORK FOR METHODOLOGY 

User behavior in digital ecosystems is inherently complex and multidimensional, involving numerous interactions 

across various platforms, devices, and contexts. Traditional machine learning models, such as logistic regression, 

support vector machines, and even conventional neural networks, often struggle with the intricacies of user behavior 

data, particularly in terms of capturing the non-linear and temporal dependencies that characterize user interactions. 

KANs, by contrast, are well-suited to address these challenges. The architecture of KANs allows them to capture 

intricate patterns in user behavior data by modeling the interactions between multiple variables more effectively. 

This is particularly beneficial when dealing with high-dimensional data, such as clickstream data, purchase 

histories, or social media interactions, where traditional models might either oversimplify or entirely miss critical 

patterns [8]. 

3.1 Theoretical Foundation of Kolmogorov-Arnold Networks 

At a fundamental level, Kolmogorov-Arnold Networks (KANs) are based on the Kolmogorov-Arnold 

superposition theorem stating that any multivariate continuous function can be expressed as the sum of univariate 

functions. That theorem grounds a set of highly expressive neural network architectures in the language of well-

defined, clear mathematical terms. KANs approximate any continuous input to output curve by decomposing the 

joint multivariate relationship between inputs into modes consisting of univariate functions, which enable 

delivering approximations that capture a combination of non-linearities, so traditional machine learning models 

miss. 

The architecture of KANs is designed to decompose a given multivariate function (𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)) into a series 

of simpler functions, typically of the form: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑  

𝑚

𝑖=1

 𝑔𝑖 (∑  

𝑛

𝑗=1

 𝜙𝑖𝑗(𝑥𝑗))                                                                        (5)  

Where (𝑔𝑖) and (𝜙𝑖𝑗) are univariate functions. This decomposition allows KANs to model complex interactions 

between variables more effectively than traditional models, which often rely on explicit feature engineering or 

hierarchical structures to capture such interactions [25]. 

3.2 Quadratic Residual Networks (QResNets) 

Quadratic Residual Networks (QResNets) offer a significant advancement over traditional deep neural networks by 

introducing quadratic residuals at each layer to enhance the nonlinearity and expressive power of the model. Unlike 

plain deep neural networks (DNNs), where the nonlinearity stems solely from activation functions applied to a 

linear weighted sum of inputs, QResNets incorporate an additional quadratic residual term that amplifies the 

network's capacity to capture complex, high dimensional patterns [14]. A standard DNN layer can be expressed as: 

𝑦DNN = 𝜎(𝑊𝑥 + 𝑏)                                                                                                              (6)  
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where 𝑊  and 𝑏  are the learnable parameters, 𝑥  represents the input, and 𝜎  denotes the non-linear activation 

function. While effective in many tasks, this architecture often requires deeper or wider networks to approximate 

highly complex functions accurately. 

In contrast, QResNets introduce a quadratic residual term, resulting in the following formulation for a QResNet 

layer: 

𝑦QRes = 𝜎(𝑊2𝑥 ∘ 𝑊1𝑥 + 𝑊1𝑥 + 𝑏)                                                                                  (7)  

where o denotes the Hadamard (elementwise) product, 𝑊1 and 𝑊2 are trainable weight matrices, and the quadratic 

residual term 𝑊2𝑥 ∘ 𝑊1𝑥 enhances the model's ability to capture intricate interactions between input features [14]. 

This allows QResNets to learn more complex functions with fewer parameters and shallower networks compared 

to traditional DNNs, as each layer has increased functional capacity. 

QResNets have been shown to be more parameter-efficient than standard DNNs. The theoretical foundation 

underlying this efficiency stems from the fact that QResNets can approximate polynomials of higher degrees at 

each layer. For instance, a linearly activated QResNet of depth 𝑑 can learn polynomials of degree 2𝑑−1, while a 

plain DNN requires substantially more layers to achieve the same level of expressiveness [14]. This capacity for 

efficient polynomial approximation makes QResNets particularly well-suited for tasks that require capturing 

higher-order interactions between variables, such as physics-informed neural networks (PINNs) and user behavior 

modeling in complex digital ecosystems. 

To quantify the expressive power of QResNets, let 𝑑 = (𝑑0, 𝑑1, … , 𝑑ℎ) represent the width of each layer in the 

network and let 𝜎𝑟  be a non-linear activation function with a leading degree of non-linearity 𝑟. The functional 

variety of a QResNet, denoted as 𝑉𝑑,𝑟
QRes 

, grows exponentially with the network's depth ℎ. In comparison, the 

functional variety of a standard DNN, 𝑉𝑑,𝑟
DNN, increases at a polynomial rate with respect to ℎ, underscoring the 

depth and parameter efficiency of QResNets [14]. 

A significant benefit of QResNets is the potential to model complex, high-dimensional data with less parameters 

and shallower architectures. This is highly useful when a task of predicting user behavior is required, due to the 

fact that many times there are interactions between several inputs so as to make it worth in terms of prediction. By 

encoding this information in quadratic residuals, a network can be trained smaller than would be required to learn 

the same mapping directly form high-degree features and as such reduce the number of parameters save 

computation time and reduce overfitting. 

Furthermore, QResNets have been shown to converge more rapidly during training compared to traditional DNNs, 

especially when dealing with high-frequency patterns [14]. This is due to their increased expressive power at each 

layer, which allows them to learn complex relationships in fewer training epochs. This rapid convergence is 

especially advantageous in applications requiring real-time predictions, such as e-commerce platforms, where user 

preferences and behaviors change dynamically. Despite their advantages, QResNets also have certain limitations. 

The primary drawback is the increased complexity of their computational graph, which results in longer training 

times per epoch compared to standard DNNs. While QResNets require fewer epochs to converge, each epoch is 

more computationally expensive due to the quadratic terms in each layer. This trade-off between training speed and 

computational cost must be carefully managed, especially in large-scale applications where computational 

resources may be constrained [14]. Additionally, QResNets are more prone to overfitting if not properly 

regularized. The added complexity of the quadratic residuals increases the model's capacity to fit noise in the data, 

particularly when the dataset is small or imbalanced. Techniques such as dropout, early stopping, and weight 

regularization are necessary to prevent overfitting in these cases. 

Quadratic Residual Networks (QResNets) are a way to improve the expressiveness of neural networks with more 

powerful non-linearity and at the same time improving their parameter efficiency. Their power in capturing higher-

order interactions has enabled such powerful methods to be applied to complex predictive tasks, one major facet of 

which happens in the domain of user behavior modeling in digital ecosystems. Although QResNets present some 

computational complexities, their fast convergence and high precision are attractive as a means for enabling further 

progress in the field of machine learning and artificial intelligence. 
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IV. HYBRID NETWORK ARCHITECTURE: INTEGRATION OF KOLMOGOROV-ARNOLD NETWORKS AND QUADRATIC 

RESIDUAL NETWORKS 

This section describes the hybrid architecture combining Kolmogorov-Arnold Networks (KAN) and Quadratic 

Residual Networks (QResNet). The architecture aims to model complex, non-linear, and high-order interactions 

between input features, which are essential for tasks like classification in complex environments. In Figure 1, the 

proposed hybrid architecture combines the strengths of Kolmogorov-Arnold Networks (KAN) and Quadratic 

Residual Networks (QResNet) to effectively model complex user behaviors in digital ecosystems. The architecture 

begins with an input layer that passes through the KAN layer, which is responsible for decomposing high-

dimensional user features into simpler, univariate components. This decomposition allows the model to efficiently 

capture compositional structures inherent in the input data, such as user actions, interactions, and purchase 

behaviors. 

After the KAN layer, we go through two branches to process a feature transformation. One connection branch 

leading to a QResNet layer, that quantifies the quadratic residuals in features interactions. A QResNet layer pass 

within it will help to capture the non-linearity in this data for the model. The other arm calculates pairwise feature 

interactions to help the model capture the dependencies of features. Following these transformations, a feature 

combination stage combines both the outputs from the QResNet layer and the pairwise interaction layer. This step 

ensures that the model is using both quadratic residuals and explicit feature interactions. Afterwards, the combined 

features are fed into an interaction aggregation layer that refines the feature interactions and aggregates them to a 

global representation. 

The interactions are finally aggregated and fed into the classification layer where the model does its final 

classification task (churn = yes/no, etc). This architecture enables KAN-enhanced QResNet to work stably with 

highly complex, non-linear multi-dimensional user behavior data (e.g., e-commerce and other digital ecosystems). 

Further, detailed analysis of this novel architecture is presented in the following subsections: 

4.1 KAN as Feature Extractor 

Kolmogorov-Arnold Networks (KAN) function as feature extractors, transforming the input feature vector 𝐱 =

[𝑥1, 𝑥2, … , 𝑥𝑛]⊤ into a new feature space. This transformation is achieved by applying spline functions to each input 

feature. Mathematically, this transformation is represented as: 

𝐡KAN = Φ(𝐱) = [𝜙1(𝑥1), 𝜙2(𝑥2), … , 𝜙𝑛(𝑥𝑛)]⊤                                                            (8)  

In Eq. (8), Φ(𝐱) denotes the non-linear mapping applied to the input vector, and each 𝜙𝑖(𝑥𝑖) is a spline function 

applied to the 𝑖-th feature. Spline functions allow the model to capture non-linearities and higher-order patterns in 

the data, making them particularly suitable for tasks where the underlying relationships are non-linear. 

The output of the KAN layer, 𝐡KAN , becomes a set of non-linearly transformed features that form the basis for 

further enhancement in the QResNet layers. 
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Figure 1. Proposed Architecture 

4.2 QResNet as Feature Enhancer 

After feature extraction by the KAN layer, the QResNet blocks are applied to enhance the non-linear interactions 

between the features. QResNet introduces quadratic residual connections that are specifically designed to capture 

high-order interactions between the spline-transformed features. The transformation of these features in QResNet 

is expressed as: 

𝐡QRes = 𝜎(𝑊2𝐡KAN ∘ 𝑊1𝐡KAN + 𝑊1𝐡KAN + 𝐛)                                                           (9)  

In Eq. (9), 𝑊1 and 𝑊2 are learnable weight matrices, and ∘ represents the Hadamard (elementwise) product, which 

is used to model interactions between different elements of the transformed feature vector. The activation function 

𝜎(⋅) (such as ReLU) introduces non-linearity, and 𝐛 is the bias term. 

This quadratic residual formulation allows QResNet to not only capture direct relationships between the features 

but also to model second-order interactions between features, which are crucial for understanding complex 

dependencies. The Hadamard product ensures that these interactions are modeled at an element-wise level, making 

the network particularly effective at capturing high-order interactions that arise from non-linear transformations 

applied by the KAN layer. 

4.3 Deep Integration of KAN into QResNet: Enhanced Feature Learning 

To enhance the integration of KAN into QResNet, spline-based residuals can replace the traditional linear residuals, 

allowing for more flexible modeling of non-linear interactions. The enhanced QResNet block, incorporating spline-

based residuals, is formulated as: 

𝐡Spline-QRes = 𝜎(Φ(𝑊2 ⋅ ℎ𝐾𝐴𝑁) ∘ Φ(𝑊1 ⋅ ℎ𝐾𝐴𝑁)                                                                     

+Φ(𝑊1 ⋅ ℎ𝐾𝐴𝑁) + 𝑏)                                                                                                              (10)
 

In Eq. (10), Φ(⋅) represents the spline transformation applied to the outputs of the linear transformations 𝑊1𝐡KAN  

and 𝑊2𝐡KAN . The Hadamard product ∘ operates on the spline-transformed feature vectors, allowing the model to 

capture nonlinear interactions in a more flexible and adaptable manner. 
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This architecture, which incorporates spline-based residuals, provides a more dynamic approach to modeling the 

underlying data. The use of splines allows the network to better capture the non-linear compositional structures 

present in the input features, resulting in more accurate predictions in tasks requiring complex feature interactions. 

4.4 Modeling Cross-Feature Interactions: Explicit Interaction Modules 

The hybrid architecture also includes explicit modeling of cross-feature interactions, which is critical for tasks 

where interactions between pairs of features are highly predictive of the outcome. These interactions are captured 

through a combination of KAN and QResNet layers. Pairwise Feature Interactions via QResNet: The interaction 

between a pair of features 𝑖 and 𝑗 is modeled using spline-based transformations and quadratic residuals. This 

interaction is captured by the following equation: 

𝐌𝐢,𝐣 = 𝜎 (𝑊2,𝑖𝑗 ⋅ (𝜙𝑖(𝑥𝑖) ⋅ 𝜙𝑗(𝑥𝑗)) ∘ 𝑊1,𝑖𝑗 ⋅ (𝜙𝑖(𝑥𝑖) ⋅ 𝜙𝑗(𝑥𝑗))  +𝑊1,𝑖𝑗 ⋅ (𝜙𝑖(𝑥𝑖) ⋅ 𝜙𝑗(𝑥𝑗)) + 𝑏𝑖𝑗)     (11) 

In Eq. (11), the spline-transformed features 𝜙𝑖(𝑥𝑖) and 𝜙𝑗(𝑥𝑗) are multiplied to represent interactions between 

features 𝑖 and 𝑗. The weight matrices 𝑊1,𝑖𝑗 and 𝑊2,𝑖𝑗 are specific to the interaction between features 𝑖 and 𝑗, and 𝑏𝑖𝑗  

is the bias term. The resulting matrix 𝑀𝑖,𝑗 encapsulates the interaction between features 𝑖 and 𝑗, including both the 

non-linear transformations from KAN and the quadratic residuals from QResNet. 

This formulation allows the model to explicitly capture complex interactions between pairs of features, which is 

particularly important when these interactions are predictive of the final output. By capturing these interactions, the 

network can better understand how combinations of features contribute to the overall prediction. 

4.5 Aggregation of Interaction Modules 

Once the interactions between all feature pairs have been computed, they are aggregated to form a comprehensive 

feature representation. This aggregated interaction vector 𝐡inter  is obtained by summing over all pairwise 

interactions: 

𝐡inter = ∑  

𝑖,𝑗

 𝑀𝑖,𝑗                                                                                                                             (12)  

Eq. (12) represents the aggregation of all pairwise interaction terms into a single vector, 𝐡inter , which encapsulates 

both the non-linear dependencies and high-order relationships between the input features. This aggregation step is 

essential for building a comprehensive understanding of how features interact in the input space. 

4.6 Final Classification Layer 

The final step in the architecture involves passing the aggregated interaction vector 𝐡inter  through a classification 

layer to produce the output prediction. The output prediction 𝐲̂ is computed as: 

𝐲̂ = softmax(𝑊out 𝐡inter + 𝐛out )                                                                                               (13)  

In Eq. (13), 𝑊out  is the weight matrix for the final classification layer, and 𝐛out  is the bias term. The SoftMax 

function is applied to transform the logits into class probabilities, yielding the final prediction 𝐲̂. 

The hybrid architecture described in this paper integrates Kolmogorov-Arnold Networks (KAN) and Quadratic 

Residual Networks (QResNet) to model complex, non-linear interactions between input features. The KAN layer 

functions as a powerful feature extractor, applying spline transformations to the input data, while the QResNet 

layers enhance these features by introducing quadratic residuals that capture high-order interactions. In addition, 

explicit cross-feature interaction modules enable the network to model dependencies between pairs of features, 

further improving its predictive capabilities. 

The mathematical formulations presented in this work, including the spline-based residuals Eq. (10) and the cross-

feature interaction modules Eq. (11), demonstrate the power of this hybrid approach in capturing complex feature 

relationships. By combining these two powerful techniques, the proposed architecture is well-suited for tasks where 

feature interactions are critical for accurate classification. 
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V. EXPERIMENTAL SETUP 

The evaluation of the proposed KAN-enhanced QResNet architecture was conducted using several real-world 

datasets from e-commerce platforms. These datasets offer rich insights into user behavior and provide diverse 

scenarios for churn prediction and user behavior modeling. The following subsections outline the datasets, data 

preprocessing steps, baseline models, model training, and the evaluation metrics used for comparative analysis. 

5.1 A. Datasets Description 

The experiments utilized three comprehensive e-commerce datasets: 

• E-commerce Customer Churn Analysis and Prediction [15]: This dataset includes 

approximately 5,000 customer entries, featuring customer demographics, purchase histories, and service 

interactions. It is primarily focused on predicting customer churn, making it suitable for evaluating churn models. 

• E-commerce Behavior Data from Multi-Category Store [16]: Comprising over 4 million 

events, this dataset captures user interactions, including clicks, cart additions, and purchases across multiple 

categories in an online store. The large size of the dataset allows for testing large-scale interaction predictions. 

• E-commerce Customer Churn [17]: Containing approximately 10,000 records, this dataset 

includes detailed customer interaction logs, transaction histories, and payment details, offering further complexity 

for churn prediction tasks. 

1. E-commerce Customer Churn Analysis and Prediction: 

This dataset contains detailed data on a customer-by-customer level an optimum setting for investigating churn. 

This includes everything from demographics, service interactions and purchase behaviors. Feature selection was 

performed using methods like correlation matrices to eliminate redundancies and principal component analysis 

(PCA) to reduce dimensionality without obfuscating key information. They were very customer tenure focused - 

tenure as a proxy for loyalty. In addition, we generated interaction terms between tenure and purchase frequency 

to stress on the co-effect of tenure and purchase frequency towards churn. 

2. E-commerce Behavior Data from Multi-Category Store:  

In essence, human behavior data on over 4 million actions that users perform in different product categories. On 

account of its volume, feature selection was concentrated to streamlining complexity through the filtering of noise 

and less informative variables. The top example, the order of operations was around user events like added to and 

also purchased from cart over just views or clicks. These included session-based features like the average session 

duration, and time since the previous purchase to encapsulate some temporal dynamics that have shown to be 

correlated with user engagement or conversion likelihood. 

3. E-commerce Customer Churn:  

With a fine level of granularity of the first churn dataset, we follow up on this model with specific transaction 

histories and payment methods necessary to explore churn. Aggregated metrics i.e. total spend per customer, 

frequency of transactions and average transaction value were created as part of feature engineering phase These 

features are useful for knowing the difference between a one-time visitor and someone who comes back constantly. 

We first used the Recursive feature elimination to identify predictors for churn and then we implemented the models 

using these features. 

5.2 Data Preprocessing 

All datasets were preprocessed extensively to improve their quality and the model performance. Imputation was 

made on the missing values and one-hot-encoding for categorical features. Standardizing feature ranges across 

different datasets for continuous variables. The datasets were split into a training set (80%), validation set (10%), 

and test set (10%). The large-scale multi-category used manual feature engineering to generate some more 

meaningful feature interactions, hopefully augmenting the model for performance. 

1. Feature Engineering and Selection 
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Feature engineering and selection are crucial to the performance of a machine learning model. We applied several 

popular techniques in this study to optimize the model accuracy with computation efficiency on three different 

datasets. We explain feature engineering and selection steps that were done on each dataset below. 

2. E-commerce Customer Churn Analysis and Prediction:  

This data includes many customer-level features such as region, age group, total children and their respective ages. 

Feature engineering: One-Hot Encoding was used for categorical variables like customer region and product type 

so that the model would be able to utilize these without introducing bias through ordinal relationships. One of the 

most widely used techniques is One-Hot Encoding where you represent your categorical variables in binary format 

which helps when you need to include them into machine learning models [39]. 

RFE was then used to further select the appropriate features. Important: The model works on and removes only one 

feature at each step based on the worst feature ranking. This method is most helpful while decreasing 

multicollinearity and luring the pendulum to select features. In the dataset used in this example, customer tenure 

and total purchase amount were included as they provide excellent predictive power for churn [40], [41]. 

Mutual Information was also used to measure the relationships between features and the outcome, customer churn. 

This measure of mutual information is used to capture not only linear dependency but also non-linear dependency 

that other methods failed to catch. The final model consists of the features with the highest mutual information 

scores, including purchase frequency and customer engagement level [42]. 

3. E-commerce Behavior Data from Multi-Category Store:  

It contains more than 4 million events: user actions—like clicks, add to cart, and purchases. The feature space also 

had 46 features, so with only a medium number of samples and the complexity of interactions, Principal Component 

Analysis (PCA) was used to reduce dimensionality. PCA is applied frequently for the following use cases: 

Transforms high-dimensional data into a low dimensional subspace so by principal components which account to 

maximum variance in data are chosen. This process improved the performance of the model while maintaining its 

good predictive power [43]. 

Finally, along with PCA, we engineered temporal features like average session duration and time since last purchase 

based on timestamps to reflect the engagement dynamics of users. These are especially important to model 

conversion events such as purchases. 

In addition, Frequency Encoding was used for high-cardinality categorical features like product category. As the 

frequency encoding it is computationally cheaper than One-Hot Encoding, especially if we have a lot of categories 

[44]. 

4. E-commerce Customer Churn Dataset:  

As with the first churn dataset, this version has payment information, historical transactions, and customer 

segmentation. Feature engineering was primarily interaction features such as total spend per customer and 

frequency of transactions, from which new metrics were calculated (e. g. average transaction value). These features 

allowed us to understand customer intents in far more depth and differentiate between first timers and recurring 

customers. 

In these data, feature selection algorithm used: Recursive Feature Elimination (RFE) - it eliminates irrelevant 

features that have near-zero variance while keeping relevant features such as payment method, and total purchase 

value. Mutual Information was also used to measure the dependency of customer type and purchase preferences 

features with target variable (churn) which in turn has helped us keep only most informative features in the model 

[42]. 

Feature selection and feature engineering, which were used to improve the predictive performance of the models 

were conducted across datasets. RFE, Feature Importance by Mutual Information and PCA were used to reduce 

dimension, drop uncorrelated features and keep only the predictive variables. All these methods were based on 

extensive published research and have been proven to work across various domains from e-commerce to user 

behavior prediction. 

5.3 Baseline Models 
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In the experiments, we compared our performance of the KAN-enhanced QResNet model to several baseline 

models including some higher-order interactions methods to show that it not only generalizes high-order feature 

interactions but also can capture more complex user behavior. The baseline models included: 

• Logistic Regression: A more interpretable, simpler model that is commonly used for binary 

classification tasks but without the capacity to properly capture non-linear relationships. 

• Support Vector Machines (SVMs): It is suitable for high-dimensional spaces, but it can be 

costly computationally inefficient in the context of large datasets. 

• Standard Neural Networks (MLPs): Able to capture non-linearities, but poor performance in 

representing higher-order interactions without modification. 

• QResNet (without KAN layers): Uses quadratic terms to capture higher-order interactions but 

does not have the decomposition properties of KAN layers for modelling more complex dependencies. 

5.4 Model Training 

The KAN-enhanced QResNet model was implemented in Python using TensorFlow and trained on a GPU-

equipped machine for accelerated computation. The training process involved several steps to ensure the stability 

and effectiveness of the model: 

• Initialization: Weights were initialized with small random values to prevent divergence during 

early training stages. 

• Optimizer: The AdamW optimizer was used to adapt the learning rate dynamically while 

applying weight decay to prevent overfitting. 

• Regularization: L2 regularization and dropout were employed to reduce overfitting, 

particularly in datasets with a large number of features. 

• Hyperparameter Tuning: Key hyperparameters, such as learning rate, batch size, and the 

number of epochs, were tuned using cross-validation on the validation set. 

5.5 Evaluation Metrics 

The performance of the KAN-enhanced QResNet and baseline models was evaluated using a set of widely 

recognized metrics to ensure a comprehensive assessment of model effectiveness. The following metrics were used: 

• Accuracy: This metric measures the proportion of correctly classified instances. Given a total 

of 𝑛 samples, the accuracy is defined as: 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                                                                          (14)  

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 represent true positives, true negatives, false positives, and false negatives, respectively. 

• Precision: Precision measures the accuracy of positive predictions, particularly in reducing 

false positives, and is defined as: 

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                             (15)  

• Recall: Recall quantifies how well the model identifies all relevant instances, minimizing 

false negatives. It is defined as: 

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                                (16)  

• F1-Score: The F1-score is the harmonic mean of precision and recall, providing a balanced 

measure when both metrics are important. It is given by: 

 F1 = 2 ×
 Precision ×  Recall 

 Precision +  Recall 
                                                                                           (17)  
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5.6 Hardware and Software Environment 

We performed experiments on a computational environment with an NVIDIA Tesla V100 GPU to enable the 

requisite computational power in order to train state-of-the-art models on high-dimensional datasets. For model 

implementation, we use Python 3.8 along with TensorFlow and Scikit-learn as a package for evaluation of the 

model, pre-processing etc. 

Specifically, the experimental setting was devised to test the ability of KAN-enhanced QResNet to outperform 

traditional ML models particularly in regard to complex, higher-order feature interactions. We evaluate this 

architecture with a combination of quadratic residuals and KAN layers on different e-commerce datasets to show 

the use of our approach for real-world dynamic digital ecosystems. 

VI. RESULTS 

In our experiments, we compared the performance of standard machine learning models such as Logistic Regression 

and Support Vector Machines (SVM) against sophisticated neural networks like QResNet and KAN-enhanced 

QResNet architectures in multiple e-commerce datasets. To cover the broad scope of user behavior data 

complexities and scale the datasets E-Commerce Customer Churn Data, Multi-Category Store Behavior or 

Customer Churn Analysis were selected. KANs are then compared with standard machine learning models such as 

logistic regression (LR), SVMs, and conventional neural networks (NN) to show their better predictive 

performance. They are bench-marked on how accurately they can predict a variety of user actions, such as clicks, 

purchases, and content consumed from digital platforms. It is believed that KANs will be more efficient than 

traditional models due to the fact that they can detect hidden, complex and non-linear patterns in user behavior data, 

otherwise impossible to capture using other algorithms. This superior performance is attributed to the KAN adapted 

architecture, which allows them to model interactions between variables more effectively, leading to more accurate 

predictions [45]. 

The evaluation of these models was based on accuracy, precision, recall, and F1-score metrics. All results obtained 

from these datasets are shown in Table I. 

6.1 Logistic Regression 

Logistic Regression worked fine for binary classification problems that is mostly used for example customer churn 

problem. It was able to have a test accuracy of 0.75 and an F1-score of 0.68 on the E-Commerce Customer Churn 

Data. Although its performance deteriorated on more challenging datasets includes Multi-Category Store Behavior, 

where it achieved a test accuracy of 0.68 and an F1-score of 0.57. 

Logistic Regression, on the other hand, seem to perform poorer possibly due to an inherent assumption of linearity. 

Except this logistic regression has constraint for nonlinear relationship and feature interactions which are 

widespread phenomena in user Multi-Category Store Behavior data. In Logistic Regression, many features with 

also complex interpretable interactions could be churned out which are often times useful in common segmented 

structured linear problems but not the case for Multi-Category Store Behavior with it high dimensionality and 

multiple non-linear interactions. 

6.2 Support Vector Machines (SVM) 

Moderate improvements over Logistic Regression were observed with SVM, most significantly in the E-Commerce 

Customer Churn Data where SVM delivered a test accuracy of 0.80 and an F1-score of 0.72. However, on Multi-

Category Store Behavior dataset the model did not perform well and for test accuracy it was just 0.72 with F1 score 

of 0.63. 

One of the major strengths of SVM is that it can model non-linear relationships by using kernel functions. Still, the 

computational complexity of SVM grows with the size of datasets and therefore suffers from the curse of 

dimensionality (e.g., Multi-Category Store Behavior). SVM is even more than the capable of working with high 

dimensional data but still too many interactions make it very complex so precisely i think that is why accuracy and 

F1-scores are way low than optimal. 

6.3 XGBoost 
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Since XGBoost displayed an authentically superior performance over traditional models, thereby proving to be a 

robust model across all datasets. It got a test accuracy of 0.84 and an F1-score of 0.77 for E-Commerce Customer 

Churn data as an example XGBoost is particularly good in capturing the complex, non-linear interactions for its 

gradient boosting nature when you have weak learners (simple models) consistently, to form a strong predictive 

model. 

XGBoost showed 0.77,0.69 for Test accuracy and F1-score respectively on Multi-Category Store Behaviour We 

reckon that this is because of the capacity of XGBoost in dealing with high-dimensional data and feature 

interactions (very common in user behavior prediction). Nevertheless, although XGBoost outperformed traditional 

models, it was still beaten by more sophisticated architectures such as QResNet, suggesting that there is a need for 

even larger capacity models to capture higher order interactions. 

6.4 Feed Forward Neural Networks (MLP) 

The Feed-forward Multilayer Perceptron (MLP) Neural Networks emerged as a top performer especially on the E-

Commerce Customer Churn Data, with 0.82 test accuracy and 0.76 F1-score. Because of their layered structure, 

neural networks are suited to learn complex non-linear relationships and patterns in the data. 

The only exception is in the Multi-Category Store Behavior dataset where MLP's performance went down to a test 

accuracy of 0.76 and an F1-score of 0.67. Compared to traditional models, the MLP has great flexibility but is not 

as good at modeling higher-order interactions as QResNet and KAN-enhanced architectures. And further, it is quite 

possible that the neural network simply overfits in large datasets - without proper regularization this can lead to 

performance problems with slightly more complex datasets. 

6.5 QResNet (No KAN Layers) 

QResNet performed good because of its essence to catch the higher-order interactions with quadratic residuals. In 

the ECommerce Customer Churn Data, QResNet obtained a test accuracy 0.85 and F1-score 0.78 surpassing MLP 

and XGBoost as well. By modeling quadratic residuals, QResNet was more capable of learning non-linear 

relationships among the features which helped improve its performance. 

QResNet improved test results over Bayesian methods with an accuracy of 0.78 and F1-score of 0.72 on the Multi-

Category Store Behavior dataset. It performed less well than the KAN-enhanced QResNet architecture; therefore, 

while QResNet is able to effectively model non-linear interactions, additional enhancements from KAN layers are 

required in order to capture complex user behavior in high-dimensional datasets completely. 

6.6 KAN-only (No QResNet Layers) 

This KAN-only model (without the quadratic residuals due to QResNet), performed quite well, especially on E-

Commerce Customer Churn Data, with seven measures such as test accuracy equals 0.80 and F1-score equals 0.72. 

But in the Multicategory Store Behavior dataset, our model did worse with test accuracy of 0.74 and F1-score was 

0.65. 

Although KAN is good at functional decomposition of high dimensions to univariate components, it cannot model 

higher order interactions as accurately as QResNet. Since there were no quadratic residuals in this architecture, it 

might have struggled to capture the full complexity of feature dependencies in the Multi-Category Store Behavior 

dataset. This indicates that KAN has very good compositional power but still needs improvements to achieve top-

tier performance on the larger and more complex datasets as shown by the result of combining it with other 

improvements in the KAN-enhanced QResNet. 

6.7 KAN-enhanced QResNet 

The KAN-enhanced QResNet architecture performed in the top of all models on all datasets. The E-Commerce 

Customer Churn Data, it produced a test accuracy of 0.90 and an F1-score of 0.86 thus showing huge improvement 

from other models used. This hybrid architecture combines the decomposition power of KAN to model complex 

interactions and amplify quadratic residuals from QResNet to handle higher-order dependencies. 

Moreover, test accuracy on the most difficult dataset (Multi-Category Store Behavior) was also substantial (0.84) 

with KAN-Enhanced QResNet with F1-score equals to 0.79. These results showcase robustness of the model — it 
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is able to work with high-dimensional, intricate data where user behavior outcomes depend on many interacting 

features. By integrating the KAN and QResNet layers, the model can decompose user behavior into simpler parts 

which help improve model interpretability while still preserving fine-grained feature interactions. 

To summarize, this study presents that standard machine learning models like Logistic Regression and SVM are 

insufficient when dealing with complexity of user behavior in digital ecology, especially on large scale high-

dimensional data. Even with improvements brought by XGBoost and MLP, they are still unable to accurately model 

the intricate higher-order interactions needed for precise predictions. 

The QResNet with quadratic residuals (QResNet) significantly improves state-of-the-art and the KAN-enhanced 

QResNet fantastically enhances this ability. It combines the strength of KAN for composition and QResNet to 

model higher-order interactions, making it a more accurate and robust solution compared with other models when 

applied in the challenging task of user behavior prediction over complex digital spaces. For all datasets, the KAN-

enhanced QResNet model exhibited the best performance, and we recommend using it for such tasks including 

customer churn prediction or e-commerce behavior analysis. 

VII. DISCUSSION 

In this paper, we presented the KAN-enhanced QResNet, a novel hybrid neural architecture designed to push 

forward user behavior prediction in complex digital ecosystems through an extensive analysis pipeline. It combines 

the improved interaction modeling of Quadratic Residual Networks (QResNet) with the compositional power of 

Kolmogorov-Arnold Networks (KAN). These results suggest the utility of advanced architectures that are beyond 

those established by traditional models; important for high-dimensional, non-linear and dependent datasets 

commonly seen in modern e-commerce and customer behavior data sets. 

Here, we present the good performance of KAN-enhanced QResNet model by empirical results in three different 

datasets, which are E-Commerce Customer Churn Data, Multi-Category Store Behavior and Customer Churn 

Analysis. In particular, the hybrid architecture always performed better than all conventional and state-of-the-art 

models for accuracy, precision, recall as well as F1-score (Logistic Regression, SVM, XGBoost, MLP, QResNet 

(No KAN Layers)). The highest F1-scores of the KAN-Enhanced QResNet were 0.86,0.79  on E-Commerce 

Customer Churn Data and Multi-Category Store Behavior benchmarks respectively, a measure that indicates its 

ability to capture higher order feature interactions and non-linear dynamics in user behavior. 

The KAN-enhanced QResNet has the ability to be a twofold-architecture conscious which is one of its strengths. 

The KAN layers are particularly good at representing complex functions as a composition of univariate 

components, which sets the stage for being able to represent the compositional structures within user behavior. This 

becomes even more beneficial in digital ecosystems, where interactions among different features (example: user 

actions, demographics, purchase history and so on) are generally compositional in nature. Second, the QResNet 

layers bring quadratic residuals, which would allow architecture to better capture the second order and higher-order 

interactions. The decomposition strengths of KAN in concert with the residual learning offered by QResNet lead 

to the architecture being able to outperform the traditional machine learning methods, which tend to struggle on 

complicated high-dimensional and massive datasets. 

Moreover, the results of this study show that traditional models like Logistic Regression and SVM, which can work 

on simpler and well-structured problems, do not have enough capacity to be applied to deal with a modern e-

commerce data complexity. From here it was identified that the linear assumption of Logistic Regression and the 

computational inefficiencies in SVM for large datasets, did not allow us to accurately model these complex 

relationships present in the data. Despite greatly improving the flexibility in handling nonlinear data, both XGBoost 

and standard neural networks were unable to yield a performance that could overshadow those of QResNet and 

KAN-integrated enhanced models. Thus, while the KAN-only model is a strong competitor, it is not able to compete 

in performance with the hybrid model, reconfirming that higher-order interactions must be intentionally modeled 

for achieving optimal predictive ability. 

Perhaps one of the most important lessons to draw from this study is how critical it is for businesses to model 

feature interactions and non-linear dependencies when they are using digital. For example, e-commerce platforms 

produce huge amounts of data spread across various dimensions (e.g., user actions, related purchase histories 

categories of products) which are inherently interrelated by unique constraints. However, traditional models 
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currently in use often fail to correctly capture these nuances, leading to mediocre performance on challenging user 

behavior prediction tasks like churn prediction and product recommendation. 

The performance of the KAN-enhanced QResNets represents a significant step towards overcoming these 

challenges, demonstrating that quantum learning can indeed generalize across datasets of varied complexity and 

scale. The consistently superior performance of this hybrid architecture relative to the existing models indicates 

that it meets the data and other challenges today and will adapt well in future digital ecosystems as we accept that 

data complexity is a matter of fact. 

The results of this study provide conclusive evidence for the significance of advanced hybrid architectures in 

tackling intricate prediction problems and establishes a new state-of-the-art baseline performance in user behavior 

prediction. In this paper, we show that things are now possible and largely provide the right direction in both theory 

and practice for those applications of e-commerce, CRM systems or even further. These findings shed light on 

where we should be focused with respect to hybrid models, and why this will likely be vital in the face of 

increasingly complex data environments going forward. 

VIII. CONCLUSION 

In this paper, we proposed and rigorously evaluated a hybrid neural network architecture, the KAN-enhanced 

QResNet, designed to address the complex challenges of user behavior prediction in digital ecosystems. This 

architecture leverages the compositional capabilities of Kolmogorov-Arnold Networks (KAN) for feature 

decomposition, paired with the interaction-capturing strengths of Quadratic Residual Networks (QResNet). Our 

results demonstrate that this hybrid model significantly outperforms traditional machine learning models such as 

Logistic Regression, SVM, and XGBoost, as well as standard neural networks, across a range of diverse e-

commerce datasets. 

Empirical evaluations on datasets such as the E-Commerce Customer Churn Data, Multi-Category Store Behavior, 

and Customer Churn Analysis revealed that the KAN-enhanced QResNet consistently achieves higher predictive 

accuracy, precision, recall, and F1-scores. For instance, in the E-Commerce Customer Churn Data, the KAN-

enhanced QResNet achieved an F1-score of 0.86, which is a substantial improvement over traditional models, 

demonstrating its ability to capture the non-linear, higher-order interactions that are characteristic of complex digital 

ecosystems. 

The contributions of this research are threefold. First, we introduce a novel hybrid architecture that seamlessly 

integrates KAN's compositional feature extraction capabilities with QResNet's power to model higher-order 

interactions. Second, we provide a robust empirical analysis across multiple datasets, showcasing the model's 

adaptability and scalability. Third, we establish the KAN-enhanced QResNet as a state-of-the-art model for user 

behavior prediction, particularly in scenarios where traditional models struggle to capture intricate feature 

interactions and non-linear dependencies. 

Our findings highlight the limitations of traditional machine learning models, particularly their inability to handle 

the complex, high-dimensional relationships inherent in modern e-commerce and digital ecosystems. In contrast, 

the KAN-enhanced QResNet addresses these challenges by effectively modeling both compositional and 

interaction-based feature dependencies, setting a new benchmark in predictive accuracy for user behavior 

forecasting. This research not only advances the current state of neural architectures for digital ecosystems but also 

paves the way for further applications of hybrid models in areas such as personalized recommendations, real-time 

decision-making, and customer retention strategies. 

As far as we are aware, this is the first work that introduced a new structure in neural network design which 

combines the compositional powers of KAN with interaction modeling properties of QResNet. Such a combination 

allows the modeling of higher-order dependencies between features and provides a powerful instrument for solving 

sophisticated prediction problems in digital ecosystems. 
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Table I: Performance Metrics for Training, Validation, and Test Sets for all Models and Datasets 

Model Dataset Set Accuracy Precision Recall F1-Score 

Logistic Regression E-Commerce 

Customer Churn Data 

Training 0.78 0.75 0.70 0.72 

Validation 0.76 0.73 0.68 0.70 

Test 0.75 0.70 0.65 0.68 

Multi-Category Store 

Behavior 

Training 0.71 0.65 0.60 0.62 

Validation 0.69 0.63 0.58 0.60 

Test 0.68 0.60 0.55 0.57 

Customer Churn 

Analysis 

Training 0.75 0.72 0.65 0.68 

Validation 0.74 0.70 0.62 0.66 

Test 0.73 0.68 0.60 0.64 

SVM E-Commerce 

Customer Churn Data 

Training 0.83 0.80 0.78 0.79 

Validation 0.82 0.78 0.73 0.75 

Test 0.80 0.75 0.70 0.72 

Multi-Category Store 

Behavior 

Training 0.75 0.69 0.63 0.66 

Validation 0.73 0.68 0.61 0.64 

Test 0.72 0.66 0.60 0.63 

Customer Churn 

Analysis 

Training 0.80 0.78 0.72 0.75 

Validation 0.79 0.76 0.70 0.73 

Test 0.78 0.73 0.65 0.69 

XGBoost E-Commerce 

Customer Churn Data 

Training 0.87 0.82 0.80 0.81 

Validation 0.85 0.81 0.78 0.79 

Test 0.84 0.79 0.75 0.77 

Multi-Category Store 

Behavior 

Training 0.80 0.74 0.72 0.73 

Validation 0.79 0.73 0.70 0.72 

Test 0.77 0.71 0.68 0.69 

Customer Churn 

Analysis 

Training 0.84 0.80 0.78 0.79 

Validation 0.82 0.78 0.74 0.76 

Test 0.81 0.75 0.70 0.72 

Neural Networks (FF-

MLP) 

E-Commerce 

Customer Churn Data 

Training 0.85 0.82 0.79 0.80 

Validation 0.83 0.80 0.76 0.78 

Test 0.82 0.78 0.74 0.76 

Multi-Category Store 

Behavior 

Training 0.79 0.75 0.70 0.72 

Validation 0.77 0.73 0.67 0.70 

Test 0.76 0.70 0.65 0.67 
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Model Dataset Set Accuracy Precision Recall F1-Score 

Customer Churn 

Analysis 

Training 0.83 0.80 0.75 0.77 

Validation 0.81 0.78 0.72 0.74 

Test 0.80 0.76 0.70 0.73 

QResNet (No KAN 

Layers) 

E-Commerce 

Customer Churn Data 

Training 0.88 0.83 0.80 0.82 

Validation 0.87 0.82 0.78 0.80 

Test 0.85 0.80 0.76 0.78 

Multi-Category Store 

Behavior 

Training 0.82 0.78 0.74 0.76 

Validation 0.80 0.76 0.72 0.74 

Test 0.78 0.74 0.70 0.72 

Customer Chum 

Analysis 

Training 0.86 0.81 0.78 0.79 

Validation 0.85 0.80 0.76 0.78 

Test 0.83 0.79 0.74 0.76 

KAN only (No 

QResNet layers) 

E-Commerce 

Customer Churn Data 

Training 0.83 0.78 0.75 0.76 

Validation 0.81 0.76 0.72 0.74 

Test 0.80 0.75 0.70 0.72 

Multi-Category Store 

Behavior 

Training 0.77 0.73 0.67 0.70 

Validation 0.75 0.70 0.65 0.67 

Test 0.74 0.69 0.63 0.65 

Customer Chum 

Analysis 

Training 0.81 0.76 0.72 0.74 

Validation 0.80 0.75 0.70 0.72 

Test 0.78 0.73 0.68 0.70 

KAN-enhanced 

QResNet 

E-Commerce 

Customer Churn Data 

Training 0.92 0.89 0.87 0.88 

Validation 0.91 0.87 0.85 0.86 

Validation 0.91 0.87 0.85 0.86 

Test 0.90 0.88 0.85 0.86 

Multi-Category Store 

Behavior 

Training 0.88 0.85 0.81 0.83 

Validation 0.86 0.83 0.80 0.81 

Test 0.84 0.80 0.78 0.79 

Customer Churn 

Analysis 

Training 0.90 0.87 0.85 0.86 

Validation 0.89 0.86 0.83 0.85 

Test 0.88 0.85 0.82 0.83 
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