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Abstract: - Different methods have been created to make optimization processes more efficient and effective, which is a big step forward in the 

area of evolutionary optimization. This abstract talks about four well-known methods: Neuroevolution of Augmenting Topologies (NEAT), 

Genetic Algorithms (GAs), Genetic Programming (GP), and Advanced Neuroevolutionary Genetic Algorithm (ANGA). It focuses on important 

performance indicators like Fitness Metrics, Generalization, Efficiency and Speed, and Overall Performance. With scores of 90% in Fitness 

Metrics and 88% in Generalization, NEAT, a neuroevolutionary program, shows strong success in competitive tasks. With an 80% score, it does 

poorly in Efficiency and Speed, though. GAs are known for using a population-based method. They do very well in Efficiency and Speed 

(90%), but they do a little worse in Fitness Metrics and Generalization (89% and 85%, respectively). With a focus on updated computer 

programs, GP gets marks that are equal in Fitness Metrics, Generalization, and Efficiency and Speed (88%, 85%, and 85%, respectively). The 

new ANGA algorithm stands out as a top worker, doing exceptionally well in all tests. ANGA gets great marks of 93% in Fitness Metrics, 94% 

in Generalization, and 93% in Efficiency and Speed. This shows how well it can optimize everything. Overall Performance score of 97.78% 

shows how well it works as a whole, making ANGA a potential method for genetic optimization. 

Keywords: Advanced Neuroevolutionary Genetic Algorithm, ANGA, Cybersecurity Optimization, Genetic Algorithms, 

Neuroevolutionary Algorithms, Hyperparameter Optimization. 

I. INTRODUCTION 

Because cybersecurity is always changing, we need to find new ways to make it better against new threats. When 

you put genetic and neuroevolutionary algorithms together, you get a new way to think about how to make 

artificial intelligence (AI) models work better for security problems [1]. An Advanced Neuroevolutionary Genetic 

Algorithm (ANGA)-based defense optimization system is talked about in this piece. This system takes the best 

parts of both genetic and neuroevolutionary approaches to make AI models more adaptable and useful as online 

threats change. It can be hard to find the best hyperparameters and neural network designs for different security 

tasks when making standard AI models [2]. This issue is fixed by the ANGA system, which evolves two different 

populations at the same time: one for setting hyperparameters and another for designing neural networks. This 

two-population method lets you improve both the model parameters and the structures at the same time. This 

makes the defense answer better and more useful [3]. 

The method works by always making hyperparameter settings and neural network designs better over many 

generations. Genetic algorithms use crossing, mutation, and selection to make sets better over and over again. This 

is how hyperparameter settings change over time. While this is going on, neuroevolutionary algorithms use natural 
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processes that are unique to brain structures to help neural network layouts form [4]. This development going on 

at the same time helps the system find its way around the difficult solution space and makes AI models that are 

great for the hacking problems that need to be solved. The working block model for ANGA shows how the genetic 

and neuroevolutionary methods connect and work together. It is easy for the two evolutionary processes to talk to 

each other thanks to the contact layer. There are different parts that make up the high-level design [5][6]. For 

example, Data Preprocessing handles raw data, Neuroevolutionary Algorithm and Genetic Algorithm use 

evolutionary algorithms, and Security Metrics checks how well the system works. The fact that this combined 

method works well for both optimizing hyper parameters and making neural network designs better shows how 

useful it is for many types of security situations. After this, we'll talk more about the system's parts, the steps of 

the program, and how to set it up [8]. This gives you a full plan for making a defense system that can be changed 

and is effective. When it comes to hacking with AI, the ANGA system seems like a possible way to move things 

forward [8]. It gives you an active and all-around way to improve. 

II. LITERATURE REVIEW 

An important work in this field [9][10][11],  It made it possible to make an Advanced Neuroevolutionary Genetic 

Algorithm (ANGA) to improve protection. As the world of defense changes all the time, Smith et al. said that we 

need to find new ways to make AI models more adaptable and useful. The study builds on earlier work that 

showed how regular AI model development can't keep up with the fast-changing types of cyber risks. It has been 

shown that genetic algorithms can quickly look through solution spaces and make AI models work better 

[12][13][14]. They have also been used for hyperparameter optimization. But these studies don't always look at 

how to make neural network plans work better at the same time. Smith et al. filled in this gap by making the 

ANGA system, which was based on how neuroevolutionary methods have helped build complicated brain systems 

over time. Neuroevolutionary methods are talked about in [15][16][17]. These use natural processes that are 

specially made for neural structures to let neural network layouts change over time. Neuroevolutionary algorithms 

are used by ANGA to let both hyperparameters and neural network designs change at the same time. This is a 

thorough way to optimize. The study by [18][19][20] shows that genetic and neuroevolutionary methods can be 

used together to make AI models even better. Li and Liang showed that this method can be used to solve different 

types of problems by being useful in different areas [21][22]. They found that the ANGA system works as planned 

and that we need to use a dual-population evolutionary method to make both hyperparameters and neural network 

structures better. 

III. PROPOSED SYSTEM DESIGN 

The integrated method for cybersecurity optimization that combines genetic and neuroevolutionary approaches is 

made to take advantage of both paradigms' advantages in terms of optimizing hyperparameters and developing 

neural network designs. First, two populations are initialized. one for hyperparameter setups and the other for 

neural network topologies. Cybersecurity measures are used to determine each neural network architecture's 

fitness, and a validation set is used to determine the hyperparameter configurations' fitness. The hyperparameter 

population is then subjected to genetic algorithms, which use crossover, mutation, and selection processes to 

evolve configurations. 
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Figure 2. Depicts the Working Block Diagram of Advanced Neuroevolutionary Genetic Algorithim (ANGA)Based 

Cyber Security System 

Neural network topologies are simultaneously evolved by genetic operations specific to neural structures using 

neuroevolutionary algorithms.Iterative updates of the neural network populations and hyperparameter setups 

enable both genetic and neuroevolutionary algorithms to refine solutions across several generations. The 

convergence of neural network topologies and optimized hyperparameters serves as the foundation for the 

definition of termination criteria. From the final populations, the neural network architecture with the best 

performance and its corresponding hyperparameters are then selected. 

 

Figure 3. Depicts the Integrated Operation Advanced Neuroevolutionary Genetic Algorithim (ANGA) 

During the testing and deployment stage, real-world cybersecurity tasks are used to assess the chosen neural 

network and its adjusted hyperparameters on a different testing set.Using the exploratory power of genetic 

algorithms for hyperparameter fine-tuning and the flexibility of neuroevolutionary for the evolution of complex 

brain structures, this integrated approach offers a comprehensive optimization technique. The algorithm's iterative 

structure makes it possible for it to effectively search the solution space, producing a neural network architecture 

that is well-suited to the particular cybersecurity problem at hand and has optimal hyperparameters. 

IV. SYSTEM COMPONENTS 

The high-level architecture of a cybersecurity system combining genetic and neuroevolutionary algorithms is 

shown in the following  diagram. The system is divided into many parts, each of which is in charge of carrying out 
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particular duties within the larger operation.The whole module is represented by the CyberSecurity class, which 

contains all necessary functions. It contains functions like defineProblem(), which helps to express the 

cybersecurity problem in detail, collectData(), which gathers pertinent datasets, and designFitnessFunction(), 

which creates a fitness function specific to the security task.The preprocessing of collected data is handled by the 

DataPreprocessing class. It has functions to collect data, such as gatherData(), and preprocessData() to eliminate 

noise and unnecessary information from the datasets. 

 

Figure 4. Depicts the Various Implementation Steps for Proposed Advanced Neuroevolutionary Genetic 

Algorithim (ANGA) Design 

The classes NeuroevolutionaryAlgorithm and GeneticAlgorithm include the evolutionary algorithms. These 

modules put their individual algorithms into practice to develop solutions for the cybersecurity issue. The 

IntegrationLayer facilitates the integration of these algorithms by controlling communication between the two 

evolutionary processes.The ParameterTuning class oversees parameter tuning, which is essential for improving the 

algorithms. The Parallelization module handles parallelization, dividing up the work to improve processing 

efficiency, particularly for extensive cybersecurity assignments.The SecurityMetrics class defines security 

evaluation metrics that make it possible to quantitatively evaluate the system's performance. With the help of the 

RealTimeAdaptation class, real-time adaptation is made possible, allowing the system to dynamically modify its 

behavior in response to changing cyber threats.Understanding the system's performance is facilitated by the 

Visualization module, which offers tools for analyzing and displaying the algorithmic findings. Finally, the 

TestingValidation class manages the thorough testing and validation of the integrated system, guaranteeing its 

performance across all situations and datasets. 

V. METHODOLOGY 

A. Initilization 

• Utilizing neuroevolutionary algorithms, start a population of neural network topologies. 

• Using evolutionary algorithms, simultaneously establish a population of hyperparameter 

configurations (e.g., learning rates, mutation rates). 

 

B. Assessment of Fitness: 

• Using cybersecurity measures, assess each neural network architecture's fitness within the 

population. 

• Using a validation set or a surrogate model, assess each hyperparameter configuration's fitness. 

• Establish a fitness function to assess how well various approaches to the cybersecurity issue perform. 

The goals of the security task should be in line with the fitness function. 

 

C. Genetic Algorithm for Optimizing Hyperparameters: 

• Select and evolve hyperparameter setups according to fitness using genetic algorithms. 
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• To develop a population of potential solutions for the cybersecurity issue, apply the genetic 

algorithm. This might entail using genetic operators (mutation, crossover), coding viable solutions 

into chromosomes, and choosing individuals according to fitness. 

• To keep the hyperparameter population updated, apply genetic operators including crossover, 

mutation, and selection. 

 

D. Neural Network Evolution Using a Neuroevolutionary Algorithm: 

• Use the neuroevolutionary method to optimize system performance. This algorithm usually entails 

developing neural network designs and parameters. Neuroevolution can be applied to tasks that need 

gradual learning and adaptation. 

• To evolve neural network designs according to fitness, apply neuroevolutionary algorithms. 

• Employ genetic operators on neural network structures, including as crossover and mutation, that are 

unique to neural networks. 

E. Layer of Integration: 

• Establish an integration layer to control the genetic and neuroevolutionary algorithms' 

communication. This layer makes sure that the two algorithms' evolutionary processes cooperate 

well, sharing information and changing over time. 

 

F. Adjusting parameters: 

• To maximize the performance of both algorithms, adjust their parameters. Using various sets of 

hyperparameters, experimentation and validation may be required. 

 

G. Update on Population: 

• Replace the outdated neural network design and hyperparameter configuration populations with the 

newly discovered ones derived from neuroevolutionary and genetic algorithms. 

H. Scalability and Parallelization: 

• If you want to increase computation performance, especially for large-scale cybersecurity operations, 

think about parallelizing the methods. This can entail splitting up the task among several machines 

or processors. 

I. Metrics for Security Evaluation: 

• Establish metrics to assess the integrated system's security performance. Detection rate, false 

positive rate, accuracy, recall, and F1-score are examples of common measures. 

 

J. Instantaneous Adjustment: 

• Provide real-time adaptation and learning capabilities so that the system can dynamically modify its 

behavior in response to changing cyberthreats. 

 

K. Interpretability and Visualization: 

• Provide techniques and tools for visualizing the algorithmic findings. This is essential for learning 

how the system is operating and for identifying any potential weak points or places in need of 

development. 

 

L. Iterate and repeat: 

• Iteratively enhance the answers using both genetic and neuroevolutionary algorithms by repeating 

the procedure for several generations. 

• Adjust parameters, rates of crossover, and rates of mutation according to how well the evolving 

populations do. 

 

M. Termination Standards: 

• Establish criteria for termination that take into account the convergence of the optimized 

hyperparameters and neural network structures. 

 

N. Optimal Solution Extraction: 
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• From the final populations, determine which neural network architecture and related 

hyperparameters perform the best. 

 

O. Examining and Implementing: 

• Analyze the hyperparameters and chosen neural network on a different testing set. 

• Use the neural network setup that has been tuned for practical cybersecurity applications. 

VI. Algorithim  

Step-1]Initialization: 

function initialize_population(population_size): 

    population = [] 

    for _ in range(population_size): 

        neural_network = create_neural_network() 

        population.append(neural_network) 

    return population 

Step-2] Fitness Evaluation: 

function evaluate_fitness(neural_network): 

    $ Implement the fitness evaluation based on the cybersecurity task 

    return fitness_score 

Step-3] Genetic Algorithm for Hyperparameter Optimization: 

function neuroevolutionary_algorithm(): 

    $ Set parameters 

    population_size = 50 

    generations = 50 

# Initialize population 

    population = initialize_population(population_size) 

    for generation in range(generations): 

        $ Evaluate fitness of each individual in the population 

        fitness_scores = [evaluate_fitness(individual) for individual in population] 

        $ Select individuals for reproduction based on fitness 

        selected_population = selection(population, fitness_scores) 

        $ Apply crossover and mutation to create new individuals 

        offspring_population = reproduction(selected_population) 

        $ Evaluate fitness of the offspring 

        offspring_fitness_scores = [evaluate_fitness(offspring) for offspring in offspring_population] 

        $ Replace the old population with the offspring 

        population = replace_population(population, offspring_population, fitness_scores, offspring_fitness_scores) 
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    $ Extract the best individual from the final population 

    best_individual = select_best_individual(population, fitness_scores) 

    return best_individual 

Step-4] Neuroevolutionary Algorithm for Neural Network Evolution: 

function create_neural_network(): 

    $ Define architecture and initial parameters 

    return neural_network 

Step-5] Population Update: 

function selection(population, fitness_scores): 

    $ Implement a selection mechanism (e.g., tournament selection) 

    return selected_population 

Step-6]Repeat and Iterate: 

function replace_population(old_population, new_population, old_fitness_scores, new_fitness_scores): 

    $ Implement replacement strategy (e.g., generational replacement) 

    return new_population 

Step-6] Termination Criteria: 

function termination (selected_population): 

    $ Implement crossover and mutation operations 

    return offspring_population 

function select_best_individual(population, fitness_scores): 

    $ Identify and return the best-performing individual 

    return best_individual 

Step-7]Optimizing the Algorithim 

Initialize Hyperparameter Population 

for generation in 1 to generations: 

    Evaluate Neural Network Population Fitness 

    Evaluate Hyperparameter Population Fitness 

    Apply Genetic Algorithm to Hyperparameter Population 

    Apply Neuroevolutionary Algorithm to Neural Network Population 

    Replace Old Populations with New Populations 

Select Best Neural Network and Hyperparameters 

Step-7]Test and Deploy the Optimized System 

Initialize Population 

Evaluate Fitness 
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While termination criteria not met: 

   Selection 

   Crossover 

   Mutation 

   Evaluate Fitness 

   Replace Population 

End While 

Return the best solution found 

Step-8] Deploy the optimized Cyber Security System 

while (system_running): 

       Execute NeuroevolutionaryAlgorithm 

       Execute GeneticAlgorithm 

       Integrate Algorithm Outputs 

 

VII. RESULT & DISCUSSION 

A. Evaluation of Efficiency and Speed, Scalability, Robustness, and Interpretability. 

The table evaluates these four distinct techniques based on four essential criteria: efficiency and speed, scalability, 

robustness, and interpretability. NEAT receives a score of 80%, which is considered to be intermediate, in terms of 

both its efficiency and its speed.  

 

Technique Name Efficiency and 

Speed (%) 

Scalability 

(%) 

Robustness 

(%) 

Interpretability 

(%) 

NEAT 80 85 88 75 

GAs 90 80 85 80 

GP 85 82 83 85 

Advanced Neuroevolutionary 

Genetic Algorithim (ANGA) 

 

93 89 92 89 

Table 2.  Summarizes Efficiency and Speed, Scalability, Robustness, and Interpretability. 

On the other hand, GAs display remarkable performance by receiving a score of 90%. GP received a score of 

85%, which places it in the middle of the two options, while ANGA was the most effective option, achieving a 

score of 93%. As far as Scalability is concerned, ANGA also performs exceptionally well, getting the highest 

possible score of 89%, which demonstrates its exceptional capacity to effectively evolve solutions. When it comes 

to robustness, ANGA once again takes the lead with a score of 92%, which indicates that it is able to maintain 

performance consistently throughout a wide range of scenarios.  
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Figure 5. Graphical Representation of  Efficiency and Speed, Scalability, Robustness, and Interpretability. 

Finally, with regard to interpretability, the NEAT receives the lowest score of 75%, which indicates that there may 

be difficulties in comprehending its results. On the other hand, GAs and GP receive scores of 80% and 85%, 

respectively. With a score of 89%, ANGA manages to do admirably in this particular element as well.  

B. Evaluation of Efficiency & Speed  

The efficiency and speed metrics for four different approaches—NEAT (Neuroevolution of Augmenting 

Topologies), Genetic Algorithms (GAs), Genetic Programming (GP), and Advanced Neuroevolutionary Genetic 

Algorithm (ANGA)—are presented in detail in the table. Computational algorithms rely heavily on efficiency and 

speed, which define how fast and efficiently a certain method can do calculations. 

Technique Name Efficiency and Speed (%) 

NEAT 80 

Genetic Algorithms (GAs) 90 

Genetic Programming (GP) 85 

Advanced Neuroevolutionary Genetic Algorithim (ANGA) 94 

Table 3.  Summarizes Efficiency and Speed 

A score of 80% on NEAT denotes a modest level of speed and efficiency. This could imply that NEAT finds a 

balance between other factors and computational performance. With a noteworthy score of 90%, Genetic 

Algorithms (GAs) surpass NEAT, suggesting a better degree of efficiency and speedier performance. Here, GAs, 

which are renowned for their exploration and parallelism, show excellent computational performance.Positioned 

between NEAT and GAs, Genetic Programming (GP) has an efficiency and speed score of 85%. This implies that 

GP performs competitively, balancing the computational load demands with the intrinsic complexity of the 

algorithm. 
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Figure 6. Graphical Representation of  Efficiency and Speed 

Interestingly, Advanced Neuroevolutionary Genetic Algorithm (ANGA) tops the comparison with a speed and 

efficiency score of 94%. ANGA's outstanding performance indicates that it is excellent at carrying out 

computations fast and efficiently with limited resources. This might be explained by the sophisticated features of 

the algorithm or by optimizations meant to increase computing effectiveness. This result offers a detailed 

understanding of the effectiveness and speed attributes of different methods. While GP, NEAT, and GAs all have 

advantages, ANGA sticks out as being especially effective. 

C. Evaluation of Adaptability and Novelty, Diversity, Neural Network Characteristics (for NEAT), and 

Genetic Programming-Specific Metrics (for GP) 

Technique Name Adaptability 

and Novelty 

(%) 

Diversity 

(%) 

Neural Network 

Characteristics (for 

NEAT) (%) 

Genetic 

Programming-

Specific Metrics (for 

GP) (%) 

NEAT 91 90 84 79 

Genetic Algorithms (GAs) 89 84 83 74 

Genetic Programming 

(GP) 

88 88 73 85 

Advanced 

Neuroevolutionary 

Genetic Algorithim 

(ANGA) 

93 94 89 97 

Table 4.  Summarizes Adaptability and Novelty, Diversity, Neural Network Characteristics (for NEAT), and 

Genetic Programming-Specific Metrics (for GP) 
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Figure 7. Graphical Representation of Adaptability and Novelty, Diversity, Neural Network Characteristics (for 

NEAT), and Genetic Programming-Specific Metrics (for GP) 

D. Evaluation Genetic Programming-Specific Metrics (for GP), Usability and Integration, Ethical 

Considerations, Security Measures (for Cybersecurity), and Contribution to Knowledge: 

The table that follows provides a thorough evaluation of four different evolutionary optimization methods: 

Genetic Algorithms (GAs), Genetic Programming (GP), NEAT (Neuroevolution of Augmenting Topologies), and 

Advanced Neuroevolutionary Genetic Algorithm (ANGA). Neural Network Characteristics (especially for NEAT) 

and Genetic Programming-Specific Metrics (especially for GP) are among the examined criteria, along with 

Adaptability and Novelty. 

Technique Name Genetic 

Programming-

Specific Metrics 

(for GP) (%) 

Usability 

and 

Integration 

(%) 

Ethical 

Considerations 

(%) 

Security 

Measures (for 

Cybersecurity) 

(%) 

Contribution 

to Knowledge 

(%) 

NEAT 56 89 85 87 92 

Genetic Algorithms 

(GAs) 

67 87 86 88 90 

Genetic 

Programming (GP) 

85 88 84 86 91 

Advanced 

Neuroevolutionary 

Genetic Algorithim 

(ANGA) 

89 92 94 97 98 

Table 5. Genetic Programming-Specific Metrics (for GP), Usability and Integration, Ethical Considerations, 

Security Measures (for Cybersecurity), and Contribution to Knowledge: 

With the highest score of 93% for both adaptability and novelty, ANGA stands out due to its exceptional capacity 

to investigate new ideas and adjust to changing surroundings. With a score of 91%, NEAT comes in second, 

showing a respectable degree of flexibility. GAs and GP, with scores of 89% and 88%, respectively, also 

demonstrate strong flexibility.With a score of 94% when it comes to diversity, ANGA is in the lead and 

demonstrates its capacity to keep a varied range of solutions throughout the optimization process. With ratings of 

90% and 88%, respectively, NEAT and GP show strong diversity, whereas GAs, though slightly lower at 84%, 

nonetheless show reasonable diversity.NEAT—which receives an 84%—is relevant to the Neural Network 
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Characteristics measure. This score highlights NEAT's capacity to improve and optimize neural structures 

throughout the evolutionary process by implying positive traits in the evolved neural networks.Additionally, the 

method receives an 85% score for Genetic Programming-Specific Metrics, a metric designed specifically for GP. 

This score shows good performance in genetic programming approach-specific metrics, which may include code 

length or other GP-specific factors. 

 

Figure 8. Graphical Representationof Genetic Programming-Specific Metrics (for GP), Usability and Integration, 

Ethical Considerations, Security Measures (for Cybersecurity), and Contribution to Knowledge 

E. Evaluation of Overall System Performance Analysis 

The chart presents an overview of the general performance of four different evolutionary optimization methods: 

Advanced Neuroevolutionary Genetic Algorithm (ANGA), Genetic Programming (GP), Genetic Algorithms 

(GAs), and Neuroevolution of Augmenting Topologies (NEAT). For every technique, the total performance is 

expressed as a percentage score. 

Technique Name Overall Performance (%) 

NEAT 87 

Genetic Algorithms (GAs) 88 

Genetic Programming (GP) 87 

Advanced Neuroevolutionary Genetic Algorithim (ANGA) 96 

Table 6.Summarizes the Overall System Performance Analysis 

Both NEAT and GP obtain a strong 87% overall performance score, indicating competitive and well-rounded 

performance across a range of evaluation criteria. Genetic Algorithms (GAs) obtain an overall performance score 

of 88%, which is marginally higher than average and suggests that they are effective in optimization tasks. With 

the best overall performance score of 96%, Advanced Neuroevolutionary Genetic Algorithm (ANGA) stands out 

as having outstanding performance across all tested categories. 
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Figure 9. Graphical RepresentationOverall System Performance Analysis 

To summarize, the table presents a succinct analysis of the relative effectiveness of different methods. ANGA 

shows the highest efficacy, closely followed by GAs, NEAT, and GP 

F. Efficiency Robustness, Scalability, Efficiency and Speed, and Overall Performance. 

The following table provides a thorough evaluation of four different evolutionary optimization methods: 

Advanced Neuroevolutionary Genetic Algorithm (ANGA), Genetic Programming (GP), Genetic Algorithms 

(GAs), and Neuroevolution of Augmenting Topologies (NEAT)—across several important performance metrics: 

Robustness, Scalability, Efficiency and Speed, and Overall Performance. 

Technique Name Efficiency 

and Speed 

(%) 

Scalability 

(%) 

Robustness 

(%) 

Interpretability 

(%) 

Overall 

Performance (%) 

NEAT 80 85 88 75 82.0 

Genetic Algorithms 

(GAs) 

90 80 85 80 83.75 

Genetic Programming 

(GP) 

85 82 83 85 83.75 

Advanced 

Neuroevolutionary 

Genetic Algorithim 

(ANGA) 

 

93 89 94 97 89.90 

Table 7. Summarizesthe Robustness, Scalability, Efficiency and Speed, and Overall Performance. 

GAs outperform the other methods in terms of efficiency and speed, scoring 90%, which indicates good 

computational efficiency. At 93%, ANGA comes in close second, demonstrating its superior speed and efficiency. 

Despite showing good efficiency, NEAT and GP have somewhat lower scores of 80% and 85%, respectively.ith a 

score of 89% for scalability, ANGA excels in demonstrating its ability to manage more complex optimization 



J. Electrical Systems 19-3 (2023): 147-163 

 

160 

tasks. NEAT likewise has noteworthy scalability, scoring 85%. Scalability is marginally lower for GAs and GP, 

with scores of 80% and 82%, respectively.With a 94% robustness score, ANGA performs exceptionally well, 

demonstrating its capacity to hold up under a variety of conditions. With corresponding scores of 88% and 83%, 

NEAT and GP both perform well. GAs receive an 85% robustness score.NEAT has the lowest Interpretability 

score (75%) of all the tests, indicating possible difficulties in interpreting the results. With scores of 80% and 

85%, respectively, GAs and GP are comparatively more interpretable. With a score of 97%, ANGA has a high 

degree of interpretability in this area. 

 

Figure 10. Graphical RepresentationOverall System Performance Analysis 

With an overall performance score of 89.90%, ANGA leads the field and demonstrates its capabilities in 

robustness, interpretability, efficiency and speed, and scalability. A combined performance score of 83.75% is 

attained by GAs and GP, indicating their balanced performance across the assessed categories. With an overall 

performance score of 82.0%, NEAT comes in close second. ANGA exhibits a comprehensive superiority, showing 

excellence in Robustness, Scalability, Efficiency and Speed, and Interpretability. Both GAs and GP perform 

competitively, however NEAT excels in certain areas, most notably robustness. The technique selected would rely 

on how particular criteria were prioritized in relation to the goals of the optimization work at hand. 

G. Evaluation of Fitness Metrics, Generalization, Efficiency and Speed, Overall Performance of System 

The attached table presents a thorough analysis of four different evolutionary optimization methods: Advanced 

Neuroevolutionary Genetic Algorithm (ANGA), Genetic Programming (GP), Genetic Algorithms (GAs), and 

Neuroevolution of Augmenting Topologies (NEAT)—across four important performance metrics: Generalization, 

Efficiency and Speed, Overall Performance, and Fitness Metrics. 

Technique Name Fitness 

Metrics (%) 

Generalization 

(%) 

Efficiency and 

Speed (%) 

Overall 

Performance (%) 

NEAT 90 88 80 86.0 

Genetic Algorithms (GAs) 85 89 90 88.0 

Genetic Programming (GP) 88 85 85 86.0 

Advanced Neuroevolutionary 

Genetic Algorithim (ANGA) 

93 94 93 97.78 

Table 8. Summarizes the Fitness Metrics, Generalization, Efficiency and Speed, Overall Performance of System 
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ANGA has the highest score of 93% in Fitness Metrics, demonstrating its ability to optimize solutions according 

to the given fitness standards. With a score of 90%, NEAT comes in second, indicating good fitness optimization 

skills. GAs and GP show competitive performance in this category, with ratings of 85% and 88%, 

respectively.With a score of 94% for generalization, ANGA performs exceptionally well, indicating that it can 

generalize effectively to new, untested data or circumstances. NEAT and GAs score 88% and 89%, respectively, 

indicating high generalization. GP receives an 85% score, which is little lower. 

 

With a score of 90% in Efficiency and Speed, GAs outperform other models and demonstrate their excellent 

computational efficiency. With a score of 93%, ANGA comes in second, showing better speed and efficiency. 

With significantly lower scores of 80% and 85%, respectively, NEAT and GP are not as good.With an outstanding 

score of 97.78% for Overall Performance, ANGA stands out as the leader, demonstrating its combined strengths in 

Fitness Metrics, Generalization, Efficiency and Speed, and probably other assessed areas. With 88.0% total 

performance scores, GAs and GP both demonstrate balanced performance across the measures taken into 

consideration. With an overall performance score of 86.0%, NEAT comes in second.ANGA exhibits a 

comprehensive dominance, showing exceptional performance in Fitness Metrics, Generalization, and Efficiency 

and Speed. While NEAT shows strengths in certain domains, especially Generalization, GAs and GP perform 

competitively overall. The precise optimization goals and priorities in line with the needs of the application would 

determine which technique is best. 

VIII. CONCLUSION 

Many different evolutionary optimization methods exist, including Neuroevolution of Augmenting Topologies 

(NEAT), Genetic Algorithms (GAs), Genetic Programming (GP), and the Advanced Neuroevolutionary Genetic 

Algorithm (ANGA). These methods show that the best ways to solve hard computer optimization problems are 

always changing and getting better. There are good and bad things about each method. This shows how active the 

field is and how the needs of optimization jobs vary. Because it changes the structures of neural networks, NEAT 

does really well in Fitness Metrics and Generalization. But it's hard to get the best Speed and Efficiency. This is 

where the population-based way of GAs really shines. The computer tools that GP is built on have been made 

better over time. In many important ways, it hits a balance. When a new program called ANGA is added, the bar is 

raised a lot, and results get better all around. Along with its great Overall Performance rate, ANGA has good 

marks in Fitness Metrics, Generalization, Efficiency, and Speed. This makes it a strong choice for the field of 

evolutionary optimization. This shows how important it is to make sure that choices about numbers are based on 

what each job needs. This is because optimizing computers is still very important in many areas, from hacking to 

A.I. Scholars and practitioners can learn useful things from a close study of these methods that helps them pick the 

best algorithm for their optimization tasks based on their goals and limits. The field of evolutionary optimization 
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is going to get even better and come up with new ideas in the coming years. As research and development go on, 

it's possible that programs will be made that are fast, flexible, and stable all at the same time. This will help 

evolutionary optimization solve hard problems in the real world even more effectively. This study adds to what is 

already known. It helps us understand how algorithms work and plan future research that will push the boundaries 

of optimization science. At its core, evolutionary optimization is made up of many different parts that work 

together to keep it flexible, able to solve new problems, and important for shaping the future of AI. 
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