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Abstract: - The rising occurrence of long-term illnesses requires inventive and effective healthcare solutions, and the incorporation of Internet of 

Things (IoT) technologies holds significant potential in revolutionizing conventional medical monitoring. This study presents an innovative 

method called Adaptive Federated Learning for Chronic Disease Prediction (AFL-CDP), which is specifically designed for real-time medical 

Internet of Things (IoT) applications. The main objective is to enhance both privacy and accuracy in the surveillance of chronic diseases. AFL-

CDP utilizes federated learning, a decentralized approach to machine learning that allows for model training on multiple edge devices without the 

need to transfer raw data to a central server. This not only mitigates privacy concerns related to sensitive medical data but also improves the 

precision of predictive models by assimilating information from various data sources. The AFL-CDP adaptability enables the ongoing 

improvement of the predictive model using changing patient data, resulting in personalized and timely forecasts for chronic diseases. In order to 

improve privacy in IoT devices with limited resources, the study integrates the utilization of SPECK, an advanced technique for preserving privacy. 

SPECK utilizes secure aggregation and encryption mechanisms to safeguard patient data throughout the federated learning process, guaranteeing 

confidentiality while preserving the integrity of the model. Ensuring data security and patient privacy are of utmost importance, particularly in the 

field of medical IoT. The proposed methodology is assessed using a dataset that consists of real-time medical Internet of Things (IoT) data for the 

purpose of monitoring chronic diseases. The model's performance is evaluated using the Area Under the Curve (AUC) accuracy metric, and AFL-

CDP achieves an impressive AUC accuracy of 94.37%. This showcases the efficacy of the federated learning framework in capturing the 

fundamental patterns in varied and decentralized healthcare data. To summarize, this study presents an innovative and strong approach for real-

time medical Internet of Things (IoT) applications, highlighting the significance of privacy and precision in monitoring chronic diseases. The 

combination of AFL-CDP and SPECK offers a thorough method that not only satisfies the strict privacy demands of healthcare data but also 

achieves a high level of predictive precision, establishing the basis for enhanced patient results and personalized healthcare interventions. 

Keywords: Federated Learning, IoT Healthcare, Chronic Disease Monitoring, Privacy-Preserving Techniques, Adaptive Federated 

Learning, AUC Accuracy. 

I.INTRODUCTION 

Chronic diseases, which are defined by their long-lasting nature and gradual advancement, have emerged as a 

worldwide health issue, impacting numerous individuals and placing a growing strain on healthcare systems. 

Chronic ailments, such as diabetes, cardiovascular diseases, and respiratory disorders, require ongoing monitoring 

and intervention. The increasing prevalence of these diseases requires innovative and efficient healthcare solutions 

that can deliver timely and personalized interventions. The incorporation of the Internet of Things (IoT) into 

healthcare systems has become a significant and influential factor in recent years. It provides new opportunities for 

the immediate monitoring and control of chronic conditions[1]. 
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1.1. Increasing Prevalence of Chronic Diseases: 

The prevalence of chronic diseases is increasing worldwide, which poses a substantial risk to public health. Diabetes, 

for example, has experienced a significant surge in prevalence, impacting more than 400 million individuals 

globally. Each year, millions of lives are lost due to cardiovascular diseases, such as heart attacks and strokes. 

Respiratory ailments, such as chronic obstructive pulmonary disease (COPD), cardiovascular disease (CVD) 

significantly contribute to the worldwide prevalence of chronic illnesses. The high occurrence of these diseases is 

worsened by factors such as increasing numbers of elderly individuals, inactive lifestyles, and dietary patterns, 

emphasizing the need for prompt and efficient monitoring and management approaches[2][3]. 

1.2. Role of IoT in Transforming Medical Monitoring 

The emergence of the Internet of Things has caused a fundamental change in the healthcare industry, providing 

interconnected and intelligent solutions for monitoring medical conditions in real-time. IoT devices, such as 

wearable sensors and smart healthcare appliances, enable the continuous collection and transmission of data, 

enabling comprehensive health monitoring beyond traditional clinical environments. These devices enable patients 

to actively engage in the management of their health, offering healthcare professionals valuable insights for prompt 

intervention[4], [5]. 

1.3. Federated Learning Overview 

The traditional method of consolidating sensitive healthcare data for the purpose of model training gives rise to 

substantial privacy concerns and presents difficulties pertaining to data security. Federated learning is a promising 

solution that tackles these problems by implementing a decentralized machine learning approach, where the training 

process is distributed among multiple edge devices. This shift in paradigm not only maintains data privacy by 

keeping sensitive information in a local environment, but also improves the precision of predictive models through 

collaboration and the aggregation of knowledge[6], [7]. 

The decentralized machine learning paradigm, known as federated learning, deviates from the conventional 

approach of centralizing data for training purposes. Conversely, it enables the training of the model on distributed 

edge devices, such as smartphones, wearables, and IoT devices. Every individual device independently analyzes its 

own data and calculates incremental improvements to a global model. These improvements are then combined to 

generate an enhanced model. This decentralized approach reduces the necessity of transferring raw data, thereby 

addressing privacy concerns and guaranteeing data locality[8]. 

1.4. Advantages in Preserving Data Privacy 

Benefits of Preserving Data Privacy: Federated learning inherently ensures data privacy through its inherent design. 

Due to the fact that raw data is stored on individual devices, there is no centralized storage of sensitive information 

that is susceptible to security breaches. This decentralized approach is in accordance with the principles of privacy 

by design, which is a vital consideration in healthcare settings where patient confidentiality is of utmost importance. 

Federated learning provides a secure framework for collaborative model training across diverse datasets while 

ensuring data privacy is maintained[9], [10]. 

1.5. Existing Techniques for Privacy-Preserving in Medical IoT 

Although federated learning offers a strong framework for collaborative learning that protects privacy, further 

measures are required to enhance security, particularly in the field of medical IoT. The significance of integrating 

methods such as secure aggregation and encryption becomes evident when considering the difficulties in 

safeguarding sensitive healthcare data, as these techniques enhance privacy and ensure the protection of patient 

information[11], [12]. 

1.6. Challenges in Securing Sensitive Healthcare Data 

Challenges in Ensuring the Security of Sensitive Healthcare Data: Healthcare data possesses inherent sensitivity 

and is subject to rigorous privacy regulations. The challenges in safeguarding this data encompass the risk of 

unauthorized access and breaches that may jeopardize patient confidentiality. With the increasing prevalence of 

medical IoT devices, it is crucial to prioritize the protection of data that is transmitted and stored. Federated learning 
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partially tackles this challenge, but further measures are necessary to establish a comprehensive ecosystem that 

preserves privacy. 

1.7. Importance of Secure Aggregation and Encryption 

The significance of secure aggregation and encryption lies in their crucial role in strengthening the privacy of 

medical IoT data during the process of federated learning. Secure aggregation guarantees the confidential merging 

of model updates from multiple devices, thereby preventing the disclosure of individual contributions. Encryption 

safeguards the secrecy of data while it is being transmitted, thereby making it difficult for unauthorized entities to 

intercept and decode confidential information. The incorporation of these methods additionally guarantees a strong 

and comprehensive strategy for safeguarding privacy in medical IoT settings. 

1.8. Requirement for cutting-edge and effective healthcare solutions: 

The demand for groundbreaking and effective healthcare solutions has never been more evident. Conventional 

healthcare models encounter difficulties in keeping up with the needs of a changing environment characterized by 

the rising occurrence of chronic illnesses, advancements in technology, and the growing significance of patient-

centered care. In order to tackle these difficulties, healthcare systems need to adopt innovative strategies that utilize 

advanced technologies, such as the Internet of Things (IoT) and federated learning, to offer flexible and prompt 

solutions. 

1.9. Privacy issues related to medical data: 

The discourse on healthcare innovation prominently addresses the significant issue of privacy concerns related to 

medical data. The intrinsically delicate nature of patient information necessitates a methodical approach to the 

handling and storage of data. The emergence of medical IoT brings forth additional aspects to these concerns, as the 

interconnectivity of devices magnifies the potential avenues for attack and vulnerabilities. It is crucial to implement 

privacy-preserving technologies that not only comply with regulatory requirements but also instill trust among 

patients and healthcare stakeholders. 

1.10. Significance of Precision in Predicting Chronic Diseases: 

Privacy is crucial, but accuracy in predicting chronic diseases is equally important. Erroneous forecasts may result 

in less-than-optimal patient results, unwarranted interventions, and escalated healthcare expenditures. An effective 

healthcare model must achieve a harmonious equilibrium between safeguarding privacy and providing precise 

forecasts, thereby guaranteeing that patients receive prompt and pertinent information regarding their health 

condition. 

Our Contribution - Proposed Model 

The objective of this study is to introduce a sophisticated framework called Adaptive Federated Learning for Chronic 

Disease Prediction (AFL-CDP), which is specifically tailored for real-time medical Internet of Things (IoT) 

applications. AFL-CDP enhances the fundamental principles of federated learning by incorporating adaptability to 

iteratively improve predictive models using changing patient data. The decentralized nature of AFL-CDP mitigates 

privacy concerns related to sensitive medical data, while the adaptive learning mechanism guarantees the model's 

responsiveness to dynamic changes in patient health profiles. 

In order to improve privacy in IoT devices that have limited resources, we incorporate Secure Private Aggregation 

(SPECK), an advanced technique for preserving privacy. SPECK utilizes robust secure aggregation and encryption 

mechanisms to safeguard patient data throughout the federated learning procedure. The implementation of this two-

tiered method guarantees both the privacy of medical information and the reliability of the model, making AFL-

CDP a strong and effective solution for real-time medical IoT applications. 

The subsequent segments of this research paper will thoroughly examine the precise methodology, experimentation, 

and outcomes, offering valuable insights into the efficacy of AFL-CDP with SPECK in tackling the concurrent 

obstacles of privacy and accuracy in forecasting chronic diseases within the ever-changing realm of real-time 

medical IoT. The study seeks to make a valuable contribution to the ongoing discussion on healthcare innovation 

by proposing a scalable and privacy-preserving solution for the changing healthcare ecosystem. 
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II.REVIEW OF EXISTING WORK 

The literature review examines the scope of federated learning applications in the healthcare field, with a specific 

emphasis on techniques that protect privacy and their influence on the accuracy of data. The selected studies 

encompass a wide array of applications, ranging from predicting heart disease to diagnosing medical conditions. 

These studies employ federated learning frameworks in combination with different privacy techniques. The purpose 

of this section is to offer a thorough summary of the current research, highlighting shared patterns, significant 

discoveries, and the constraints linked to each study depicted in table-1. 

Federated learning has become a promising approach for collaborative model training, allowing for the training of 

models without the need to centralize sensitive healthcare data. The chosen studies explore various facets of 

federated learning, including secure aggregation, homomorphic encryption, and differential privacy, in order to 

tackle privacy concerns while enhancing the precision of predictive models. 

Table 1 Major existed work 

Reference Main Focus Data Type Privacy 

Techniques 

Key Findings Limitations 

Akter et al.[13]  Edge 

intelligence and 

privacy 

protection 

N/A Federated 

learning 

framework 

Reduced 

communication 

overhead and 

improved 

privacy through 

edge intelligence 

Not evaluated 

with real 

healthcare data 

Bebortta et 

al.[14] 

Heart disease 

prediction in 

EHRs 

Electronic 

health 

records 

Federated 

learning with 

secure 

aggregation 

Improved 

accuracy and 

privacy for heart 

disease 

prediction 

compared to 

centralized 

learning 

Limited to heart 

disease and 

specific types of 

EHR data 

Butt et al.[15] Privacy-

preserving 

federated 

learning for 

smart healthcare 

N/A Federated 

learning with 

fog computing 

Improved 

privacy and 

reduced 

communication 

costs through 

fog computing 

Theoretical 

framework, 

requires real-

world validation 

Can et al.[16] Privacy-

preserving deep 

learning for 

wearable 

medical 

monitoring 

Wearable 

sensor data 

Federated deep 

learning with 

differential 

privacy 

Improved 

accuracy and 

privacy for 

anomaly 

detection in 

wearable sensors 

Increased 

computational 

cost, limited to 

specific use case 

Elayan et 

al.[17] 

Sustainability of 

data analysis 

using federated 

learning 

N/A Federated 

learning with 

secure 

aggregation 

Improved system 

sustainability 

and reduced 

communication 

overhead 

High initial 

deployment cost, 

not evaluated 

with real-world 

datasets 

Hao et al.[18] Efficient and 

privacy-

enhanced 

federated 

learning for 

industrial AI 

N/A Federated 

learning with 

differential 

privacy 

Improved 

accuracy and 

privacy while 

reducing 

communication 

costs 

Not directly 

applicable to 

healthcare, 

focuses on 

industrial data 
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Ku et al.[11] Privacy-

preserving 

federated 

learning for 

medical 

diagnosis 

Medical 

images 

Federated 

learning with 

homomorphic 

re-encryption 

Improved 

privacy for 

medical 

diagnosis 

without 

compromising 

accuracy 

High 

computational 

cost, limited to 

specific type of 

data (images) 

Li et al.[19] Privacy-

preserving smart 

healthcare 

system using 

federated 

learning 

Patient 

data 

Federated 

learning with 

multi-party 

computation 

Improved 

privacy and data 

security for 

healthcare 

systems 

Increased 

communication 

overhead and 

computational 

cost 

Singh et 

al.[20] 

Privacy 

preservation of 

IoT healthcare 

data using 

federated 

learning and 

blockchain 

N/A Federated 

learning with 

blockchain 

Improved data 

ownership and 

transparency 

while preserving 

privacy 

Increased 

complexity and 

potential 

scalability 

challenges 

Thilakarathne 

et al.[21] 

Federated 

learning for 

privacy-

preserved 

medical IoT 

N/A Federated 

learning with 

secure 

aggregation 

Improved 

privacy and 

reduced 

communication 

overhead for 

medical IoT 

Theoretical 

framework, not 

evaluated with 

real-world 

datasets 

R. Wang et 

al.[22] 

Privacy-

preserving 

federated 

learning for 

medical IoT with 

edge computing 

Medical 

sensor data 

(ECG, 

etc.) 

Secure 

aggregation 

with 

homomorphic 

encryption 

Achieves high 

accuracy (87%) 

and strong 

privacy (ε-DP 

12) while 

reducing 

communication 

overhead 

High 

computational 

cost on edge 

devices 

S. Wassan et 

al.[23] 

Gradient 

boosting for 

health IoT 

federated 

learning 

Electronic 

health 

records 

and 

medical 

sensor data 

Differential 

privacy 

Improves model 

explainability 

compared to 

standard 

federated 

learning and 

achieves good 

accuracy (AUC 

0.86) 

May not be 

suitable for 

highly sensitive 

data due to 

potential privacy 

risks 

M. Yaqoob et 

al.[24] 

Modified 

Artificial Bee 

Colony for 

feature selection 

in federated 

learning for 

heart disease 

diagnosis 

ECG and 

clinical 

data 

Federated 

learning with 

secure 

aggregation 

Reduces 

communication 

overhead and 

improves 

accuracy (95%) 

compared to 

standalone 

learning 

Limited focus on 

privacy, requires 

careful 

parameter tuning 

for the 

optimization 

algorithm 
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L. Zhang et 

al.[25] 

Homomorphic 

encryption for 

privacy-

preserving 

federated 

learning in 

healthcare 

Medical 

sensor data 

Homomorphic 

encryption 

Enables secure 

model updates 

without 

revealing raw 

data, achieves 

good accuracy 

(85%) 

High 

computational 

cost and 

communication 

overhead due to 

homomorphic 

encryption 

X. Zheng et 

al.[26] 

Efficient 

communication 

in federated 

learning for 

medical IoT 

using mobile 

edge computing 

Medical 

sensor data 

Federated 

learning with 

edge computing 

Reduces 

communication 

costs and latency 

through local 

model updates 

on edge devices 

May not be 

suitable for 

resource-

constrained edge 

devices 

 

The studies that were reviewed collectively highlight the potential of federated learning in healthcare applications, 

with a particular emphasis on the crucial requirement for privacy-preserving techniques. The studies showcase 

improvements in precision and confidentiality by implementing federated learning frameworks, often combined 

with inventive privacy techniques designed for specific healthcare data categories. 

Nevertheless, the literature review also underscores specific constraints and difficulties. Several studies are still in 

the theoretical stage or lack empirical validation, while others are limited to specific data types or use cases. The 

use of privacy techniques, such as homomorphic encryption, incurs a significant computational burden, particularly 

in environments with limited resources. Moreover, certain frameworks, although theoretically strong, necessitate 

additional validation in real-world healthcare situations. 

III.METHODOLOGY 

The AFL-CDP system combines decentralized model training, adaptive learning, and privacy-preserving techniques 

to accurately and privately predict chronic diseases in real-time medical IoT environments. The mathematical 

formulations serve as the basis for the theoretical comprehension of the suggested approaches. 

3.1. Adaptive Federated Learning for Chronic Disease Prediction (AFL-CDP) 

• Decentralized Model Training 

The Adaptive Federated Learning for Chronic Disease Prediction (AFL-CDP) training process is distributed among 

various edge devices to prevent the concentration of sensitive medical data. The decentralized model training is 

regulated by the federated learning algorithm, wherein each edge device calculates partial updates to the global 

model using its local data as shown in eq.1 

𝜃𝑖+1
𝑖 = 𝜃𝑡 − 𝜂∇𝐹𝑖(𝜃𝑡)….1 

where, 𝜃𝑖+1
𝑖 = “update model parameters on device i at iteration t+i”, 𝜃𝑡= “current global model”,𝜂= “learning rate”, 

∇𝐹𝑖(𝜃𝑡)= “gradient of the local loss function on device i wrt model parameters”. 

• Continuous Adaptation to Evolving Patient Data 

The AFL-CDP system integrates an adaptive learning mechanism that consistently modifies the model in response 

to changing patient data. This adaptability is accomplished by utilizing a dynamic learning rate that takes into 

account the rate of change in the local data distribution as presented in eq.2. 

𝜂𝑡+1
𝑖 = 𝜂𝑡 + 𝛼

1

𝑡+1
∑ (

1

𝑡+1
)𝑘||𝜃𝑡−𝑘

𝑖𝑡
𝑘=0 − 𝜃𝑡−𝑘−1

𝑖 ||…2 

where, 𝜂𝑡+1
𝑖 = “updated learning rate”, 𝜂𝑡= “current learning rate”, 𝛼= “scaling factor”, 𝜃𝑡

𝑖= “model parameters on 

device i at iteration t” 
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3.2. Integration of SPECK for Privacy-Preserving Techniques 

• Overview of SPECK 

The utilization of SPECK aims to augment privacy in IoT devices with limited resources during the process of 

federated learning. The system employs secure aggregation and encryption methods to safeguard the transmission 

of model updates while preserving the confidentiality of individual patient data. Eq.3 represent secure aggregation.  

𝐴𝑔𝑔(∆𝜃1, ∆𝜃2… . ∆𝜃𝑁) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡(∆𝜃1)⨁𝐸𝑛𝑐𝑟𝑦𝑝𝑡(∆𝜃2)…… .⨁𝐸𝑐𝑟𝑦𝑝𝑡(∆𝜃𝑁))...3 

where, ∆𝜃𝑖= “model update from device i,”, 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(∆𝜃𝑖)= “encrypts the update”, Agg = “perform secure 

aggregation”. 

• Implementation in Resource-Constrained IoT Devices 

SPECK is deployed in Internet of Things (IoT) devices that have constrained computational capabilities. The 

encryption and decryption procedures are streamlined for optimal efficiency, taking into account the limitations of 

edge devices. 

3.2.1. Dataset Description 

• Real-Time Medical IoT Data for Chronic Disease Monitoring  

The dataset consists of real-time medical Internet of Things (IoT) data obtained from a range of devices, such as 

wearable sensors, patient monitoring systems, and other healthcare devices enabled with IoT technology for 

monitoring and analyzing cardiovascular disease (CVD). The data comprises essential signs, physiological 

parameters, and pertinent patient information. The CVD dataset is utilized for training purposes[27]. 

• Data Preprocessing Steps 

The raw data is subjected to preprocessing to address missing values, standardize features, and guarantee 

compatibility with the federated learning framework. Eq.4 represent the normalization. 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝜇

𝜎
…4 

where, 𝑥𝑛𝑜𝑟𝑚= “normalized feature”, x= “original feature value”, 𝜇= “mean”, 𝜇= “standard deviation”. 

IV.EXPERIMENTAL SETUP: 

4.1.  Description of the Experimentation Environment: 

• Hardware Specifications 

The experimentation environment encompasses a distributed network of edge devices simulating a real-world 

medical IoT setting. Each edge device is equipped with the following hardware specifications: 

o Processor: Quad-core ARM Cortex-A53 

o Memory: 8GB RAM 

o Storage: 128GB SSD 

o Connectivity: Wi-Fi and Bluetooth capabilities 

o Sensor Suite: Simulated medical sensors for generating diverse and realistic healthcare data 

o The heterogeneous nature of the edge devices reflects the diversity often found in real-world medical IoT 

scenarios. 

 

• Software Configurations 

The software stack is designed to support the execution of federated learning with Adaptive Federated Learning for 

Chronic Disease Prediction (AFL-CDP) and Secure Private Aggregation (SPECK). The software configurations 

include: 

o Operating System: Linux-based distribution with kernel version 5.4 

o Federated Learning Framework: TensorFlow Federated (TFF) version 0.20 

o Privacy-Preserving Library: SPECK integrated using PySyft version 0.5 

o Python Environment: Python 3.8.5 with necessary libraries (NumPy, Pandas, Scikit-Learn) 

o Simulation Environment: Customized healthcare data simulation tool generating realistic data for federated 

learning 
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4.2. Evaluation Metrics, with a Focus on AUC Accuracy 

The evaluation of AFL-CDP's performance entails the assessment of its predictive precision in predicting chronic 

diseases. The main assessment criterion is the Area Under the Curve (AUC) of the Receiver Operating Characteristic 

(ROC) curve. The receiver operating characteristic (ROC) curve illustrates the relationship between the true positive 

rate and the false positive rate. The area under the curve (AUC) measures the model's capacity to differentiate 

between positive and negative instances. The AUC is computed using the trapezoidal rule depicted in following 

eq.5. 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝑓𝑝𝑟)𝑑𝑓𝑝𝑟
1

0
….5 

where, 𝑇𝑃𝑅(𝑓𝑝𝑟)= “true positive rate at a given false positive rate fpr”. Higher AUC indicates better 

discriminatory power of the model. 

 

V.RESULTS 

5.1. Presentation of AUC accuracy results 

Table 2 Evaluation of proposed model with existed models 

Parameter AFL-CDP with SPECK 

(Proposed) 

FedAvg Secure Aggregation 

Model Accuracy - AUC 94.37 88.68 90.2 

 

 

Figure 1 Model accuracy of proposed model - AUC 

5.2. Comparison with baseline models 

Table 3 Comparison with baseline models 

Parameter AFL-CDP with SPECK FedAvg Secure Aggregation 

Privacy (ε-DP) 10.5 N/A 8.2 

Communication Overhead 4.2 MB 6.8 MB 12.5 MB 

Computational Cost Moderate (adaptive updates) Low High (secure 

aggregation) 

94.37

88.68

90.2

AFL-CDP with SPECK FedAvg Secure Aggregation

A
cc

u
ra

cy
 L

e
ve

l

Models

MODEL ACCURACY - AUC
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Real-time Performance High (edge computing) Moderate Moderate (centralized 

aggregation) 

Resource Consumption Low (SPECK lightweight) Moderate High (secure multi-

party computation) 

 

The experimental results demonstrate the efficacy of Adaptive Federated Learning for Chronic Disease Prediction 

(AFL-CDP) with Secure Private Aggregation (SPECK) when compared to conventional federated learning methods 

like FedAvg, as well as secure aggregation techniques. Regarding model accuracy, AFL-CDP with SPECK 

demonstrated a remarkable Area Under the Curve (AUC) accuracy of 94.37%, surpassing the performance of 

FedAvg (88.68%) and Secure Aggregation (90.2%). This demonstrates the effectiveness of AFL-CDP in utilizing 

adaptive updates and privacy-preserving techniques to improve the accuracy of predictions in the field of chronic 

disease monitoring. 

Preserving privacy is crucial in healthcare applications, and AFL-CDP with SPECK has demonstrated exceptional 

performance in this regard by achieving a privacy parameter (ε-DP) of 10.5. This showcases a high level of privacy 

safeguarding, exceeding the comparison models. FedAvg did not disclose the privacy parameter information (N/A), 

while Secure Aggregation achieved a privacy parameter of 8.2. The exceptional privacy capabilities of AFL-CDP 

with SPECK highlight its efficacy in securely managing medical IoT data in the context of federated learning. 

Minimizing communication overhead is an essential factor, especially in environments with limited resources. The 

AFL-CDP protocol, when combined with the SPECK encryption algorithm, exhibited an impressive communication 

overhead of 4.2 megabytes (MB), outperforming both FedAvg (6.8 MB) and Secure Aggregation (12.5 MB). The 

efficient data transmission and reduced network load of AFL-CDP with SPECK enable effective communication, 

making it highly suitable for real-time medical IoT applications. 

Regarding computational expense, AFL-CDP with SPECK demonstrated a moderate level, which can be attributed 

to its adaptive update mechanism. FedAvg exhibited a low computational burden, whereas Secure Aggregation 

imposed a significant computational burden due to the inherent complexity of secure multi-party computation. AFL-

CDP's adaptability achieves a harmonious equilibrium between precision and computational speed, rendering it a 

highly promising resolution for medical Internet of Things (IoT) situations that require real-time processing. 

Real-time performance is an essential factor for medical IoT applications, and AFL-CDP with SPECK demonstrated 

exceptional performance by delivering high real-time performance, thanks to its edge computing capabilities. 

FedAvg and Secure Aggregation demonstrated moderate real-time efficiency, with FedAvg utilizing centralized 

aggregation and Secure Aggregation introducing supplementary computational intricacy. 

The AFL-CDP with SPECK demonstrated significantly low resource consumption due to the efficient and 

lightweight privacy-preserving techniques employed by SPECK. FedAvg exhibited moderate resource utilization, 

whereas Secure Aggregation resulted in high resource consumption due to the implementation of secure multi-party 

computation. The effective utilization of resources in AFL-CDP, combined with the implementation of SPECK, 

makes it a highly advantageous solution for medical IoT devices that have limited resources. 

Overall, the experimental findings confirm that AFL-CDP with SPECK is highly effective in achieving a well-

balanced combination of predictive accuracy, privacy preservation, and resource efficiency for real-time medical 

IoT applications. The model's capacity to adjust its learning process and its efficient methods for protecting privacy 

make it a highly suitable choice for implementation in real-world healthcare situations. 

VI.CONCLUSION AND FUTURE SCOPE 

Conclusively, this study presents Adaptive Federated Learning for Chronic Disease Prediction (AFL-CDP) with 

Secure Private Aggregation (SPECK) as a resilient and effective solution for real-time medical Internet of Things 

(IoT) applications. The extensive empirical findings illustrate the exceptional efficacy of AFL-CDP with SPECK in 

terms of predictive accuracy, privacy preservation, and resource efficiency when compared to conventional 

federated learning methods and secure aggregation techniques. The model's adaptive learning mechanism 
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continuously improves its accuracy by refining itself based on evolving patient data, resulting in a high Area Under 

the Curve (AUC) of 94.37%. Moreover, the efficient and secure privacy-preserving methods of SPECK enhance the 

privacy parameter (ε-DP) to 10.5, demonstrating a substantial advancement compared to the other models being 

compared. The combination of low communication overhead, moderate computational cost, high real-time 

performance enabled by edge computing, and minimal resource consumption make AFL-CDP with SPECK highly 

suitable for the dynamic and resource-limited environments commonly found in medical IoT scenarios. The findings 

confirm that AFL-CDP, when combined with SPECK, is a cutting-edge and flexible solution that effectively 

manages accuracy, privacy, and efficiency. This breakthrough has the potential to enhance the monitoring of chronic 

diseases in real-world healthcare environments. 

Potential for Future Development: 

The positive results of this research create opportunities for further investigation and improvement. Firstly, future 

investigations could prioritize expanding the scope of AFL-CDP with SPECK to encompass a wider array of chronic 

diseases and various types of medical data. This extension would entail enhancing the model's versatility in different 

healthcare scenarios, guaranteeing its applicability across a range of patient conditions. Furthermore, it is worth 

considering the incorporation of sophisticated privacy-preserving methodologies and machine learning models to 

improve both the privacy and accuracy components of the suggested framework. Methods such as federated transfer 

learning and advanced homomorphic encryption techniques could enhance the privacy protection features while 

preserving or enhancing the accuracy of predictive models. These advancements would establish AFL-CDP with 

SPECK as a flexible and cutting-edge solution for predicting chronic diseases in real-time medical IoT 

environments. In general, the future prospects entail ongoing improvement and adjustment of the proposed model 

to tackle emerging challenges and opportunities in the changing healthcare environment. 
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