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Abstract: - Objective: Speaker identification and word identification are critical tasks in language processing and artificial intelligence. 

This research focuses on applying feed-forward neural networks to the specific context of the Tai-Phake language, an endangered language 

spoken in parts of Northeast India. The primary objective is to develop effective models for both speaker identification and word 
identification in Tai-Phake, leveraging the capabilities of neural networks. Methods: The study begins by collecting a corpus of Tai-Phake 

speech data from 18 speakers recording 50 different words 10 times each, which is annotated and pre-processed to facilitate model training. 

For speaker recognition, a feed-forward neural network architecture is designed to accurately identify and authenticate individuals based 
on their unique vocal characteristics. The model's performance is evaluated using metrics such as accuracy, precision, recall, and F1 score. 

Additionally, for word recognition, another neural network model is developed to accurately identify spoken Tai-Phake utterances. This 

involves training the model on a labeled dataset of spoken words, optimizing it for robust performance across various dialectal variations 
and speaking styles within the Tai-Phake community. Findings: Experimental results demonstrate the effectiveness of the proposed neural 

network models in achieving high accuracy rates for both speaker and word recognition tasks in Tai-Phake. The implications of this research 

extend to the preservation and documentation of endangered languages, showcasing how advanced machine learning techniques can 
contribute to linguistic research and cultural heritage preservation efforts. Novelty: No prior work has been done in Tai-phake speaker 

identification and word identification using a combination of Feature Fusion and Neural Networks. 

Keywords: Speaker identification, word identification, neural networks, Tai Phake language, endangered 

languages. 

I.  INTRODUCTION  

The use of voice to connect with gadgets has grown significantly over the past few years, ranking among the most 

popular forms of interaction. The rich and valuable information that speech signals constantly provide, includes a 

speaker's accent, gender, emotion, and other distinctive qualities. Speaker recognition (SR) is the process of 

recognizing a person by his or her distinctive voice. Speaker identification and speaker verification are two of the 

main problems that speaker recognition addresses. In speaker identification, a speech produced by an unidentified 

speaker is examined and contrasted with speech models of recognized speakers. The speaker who matches the input 

utterance model the closest is identified as the unknown speaker. 

Classification and feature extraction are the two main phases in the speaker identification process. A collection of 

attributes dependent on the user is extracted during the feature extraction phase. It varies from speaker to speaker. 

The process of classification involves labeling each speaker using the collected features by a trained classifier, such 

as an Artificial Neural Network (ANN), GMM, or Support Vector Machine (SVM). Speaker identification can be 

text-independent or text-dependent[1]. The system knows beforehand about the spoken utterances for the text-

dependent class. In contrast, a text-independent class is unaffected by the relevant context. This paper presents 

speaker identification in both text-dependent and text-independent cases. Both training and testing (identification) 

are phases of a Speaker Identification system [2]. A model is created for each speaker during the training phase, 

and a decision is reached regarding the identity of an unknown speaker during the testing phase after comparing it 

to the stored models. 

Word recognition will be used to describe the computational procedures that listeners utilize to recognize spoken 

words in their acoustic-phonetic and phonological forms [3]. One way to conceptualize word recognition is as a 
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type of pattern recognition. It is considered that word recognition relies on the same sensory and perceptual 

processes regardless of whether the input contains words or pronounceable nonwords. 

Tai Phake Language, a low-resource language in Assam, is the major dataset that we took into consideration for 

our experiment. From the prehistoric era, Assam, a state in northeastern India, has been a multilingual and diverse 

state with distinct languages and cultures spoken by each of its communities. Over a million people identify as Tai, 

and the majority of them live in Northeast India. However, Tai Ahoms, who no longer speak Tai, make up more 

than 99% of them. Other tribes that identify as Tai, in addition to the Ahoms, include the Aiton, Khamti, Khamyang, 

Nora, Phake, and Turung. All those places have varying degrees of Tai speaking [4]. However, there are a number 

of reasons why these seven communities have given up on their native tongue, including a lack of funding for 

language instruction, the influence of other languages, and a lack of backing from governmental and non-

governmental organizations. There are, nevertheless, eleven Phake villages in Assam and Arunachal Pradesh. It is 

possible that 2,000 people speak it, and young people are still picking up the language [4]. 

The remaining sections of the manuscript are organized as follows: Section II offers a review of the literature on 

speaker recognition, including identification and verification tasks and pertinent citations to previous works; Section 

III presents the methodology along with the dataset that was selected; Section IV presents and discusses the results; 

and finally, Section V offers discussions and recommendations for further research. 

II. LITERATURE REVIEW 

Speaker recognition—the process of recognizing or authenticating someone based on the features of their voice—

has attracted a lot of attention from academics and business leaders because of its many uses in security systems, 

personalized services, and human-computer interaction. The 1990s and early 2000s saw the application of 

Multilayer Perceptrons (MLPs), or feedforward neural networks, to speech recognition. These networks, though 

innovative, were limited by their shallow architectures and struggled with sequential data. The introduction of 

Recurrent Neural Networks (RNNs) in the early 2000s allowed for better handling of sequential data, as RNNs can 

maintain a form of memory about previous inputs. However, traditional RNNs faced challenges with long-range 

dependencies due to vanishing and exploding gradient problems. 

Deep Embeddings for speaker identification emerged in the 2010s. Techniques such as x-vectors and d-vectors 

utilize deep learning models to generate compact representations of a speaker's voice, which are used for tasks like 

speaker verification and identification. These embeddings capture unique vocal characteristics, making them highly 

effective for distinguishing between speakers. Challenges such as noise robustness, low-resource languages, and 

real-time processing continue to drive research in the field. Ensuring privacy and security of voice data also remains 

a significant concern as voice recognition systems become more pervasive. Addressing these issues will be crucial 

for the continued advancement and adoption of machine learning methods in speech and speaker recognition. 

To improve speaker recognition performance, this paper offers a novel method that combines deep neural networks 

(DNNs) with conventional approaches like i-vector and Probabilistic Linear Discriminant Analysis (PLDA)[5]. The 

article under evaluation belongs to the hybrid technique category, using i-vector and PLDA as inspiration for 

modeling speaker variability and discriminative training while utilizing DNNs for feature learning. The suggested 

method tries to retain efficiency and scalability while improving speaker detection performance by integrating 

various strategies. In summary, a possible path toward raising the bar for speaker recognition system technology is 

the combination of deep learning and conventional approaches.  

The study by David Snyder et al. focuses on speaker verification, a crucial task in speaker recognition systems, 

where the objective is to confirm a speaker's stated identification based on speech traits without the need for 

particular text instructions [6]. By putting out a deep neural network-based strategy for text-independent speaker 

verification and concentrating on directly learning speaker embeddings from raw audio signals, the study under 

review adds to the body of knowledge. The suggested approach seeks to increase performance in real-world 

circumstances and get beyond the drawbacks of conventional speaker verification techniques by utilizing the 

representational capability of deep neural networks. To sum up, deep neural network embeddings are a promising 

path for improving the state-of-the-art in speaker verification that is independent of text. The work offers insightful 

information about the planning and execution of deep learning-based speaker verification systems, laying the 

groundwork for future studies and advancements in this field. 
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The lack of labeled training data for robust model construction is a major challenge in speaker recognition systems, 

particularly in situations where each speaker has limited data available [7]. The study under evaluation adds to the 

body of research by putting forth techniques designed especially for low-data automatic speaker detection. The 

suggested method seeks to improve speaker identification systems' robustness and generalization by tackling the 

problems caused by data scarcity, especially in real-world scenarios where gathering sizable labeled datasets may 

be difficult or impossible. To sum up, automatic speaker recognition with little data is a serious issue that affects 

how speaker identification systems are used in real-world scenarios.  

The paper explains a deep learning method for speaker identification, a task in speaker recognition where the goal 

is to identify a speaker from an audio sample available [8]. The study under evaluation adds to the body of 

knowledge by putting forth a deep neural network model created especially for challenges involving speaker 

recognition. With the potential to address issues with robustness and scalability, the suggested model seeks to attain 

state-of-the-art performance in speaker recognition by utilizing the representational capacity of deep learning and 

advances in neural network topologies. The paper provides valuable insights into the design and implementation of 

deep learning-based speaker identification systems, offering a foundation for further research and development in 

this area. 

A key element of many applications, such as forensic investigation, security systems, and tailored services, is 

speaker recognition. Deep learning methods have significantly improved accuracy and robustness in speaker 

detection, revolutionizing the discipline in recent years. This article gives a summary of the main developments, 

approaches, and difficulties in deep learning-based speaker recognition[9]. Because deep learning makes use of 

enormous datasets and intricate neural network topologies, advanced speech recognition systems have been made 

possible. For speaker feature extraction and modeling, Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and their variations have been widely used. Hybrid architectures combining CNNs and RNNs 

have been proposed to leverage both spatial and temporal information in speech data. These architectures have 

shown promising results in speaker verification and identification tasks. 

The authors of the paper, Jahangir, Rashid, et al. presented a novel method for text-independent speaker 

identification by utilizing deep neural networks and feature fusion [10]. The technique uses a deep neural network 

design to combine data from many acoustic features and representations, making it possible to automatically learn 

discriminative features from unprocessed voice signals. The method aims to increase speaker identification systems' 

accuracy and resilience by taking advantage of the complementing qualities of several variables, especially in 

difficult real-world situations. The body of research shows that deep learning and feature fusion methods are useful 

for text-independent speaker identification.  By combining these approaches, they aim to advance the state-of-the-

art in speaker identification technology and contribute to the development of more reliable and versatile systems 

for real-world applications. 

Because speaker identification, a branch of speaker recognition, has so many uses—including security, forensics, 

personalized services, and human-computer interaction—it has attracted a lot of attention in academic and industry 

settings. Researchers have been using artificial intelligence (AI) approaches more and more to improve speaker 

recognition systems' robustness, efficiency, and accuracy as these techniques have improved. The writers of this 

paper [11]. The authors provides an extensive analysis of this field, highlighting the most recent developments, 

obstacles, and potential paths forward. They discuss the strengths and limitations of different AI approaches, 

highlight key research findings, and identify areas for further investigation. By synthesizing existing literature and 

outlining research challenges, the authors aim to provide insights into the current state-of-the-art in AI-based 

speaker identification and inspire future research efforts to address emerging challenges and opportunities. 

Many years of study have been devoted to text-independent speaker identification, an essential component of many 

security and authentication systems. The thorough examination of feature extraction methods and their historical 

development is one of the main contributions of the paper by Kinnunen, Tomi, and Haizhou Li. [12]. The study 

describes several feature extraction techniques, such as shifted delta cepstral (SDC) features and perceptual linear 

prediction (PLP), two more recent developments in addition to the previously established cepstral-based features. 

The research offers important insights into the design concerns for text-independent speaker recognition systems 

by outlining the advantages and disadvantages of each strategy. 
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It has long been known that Mel-Frequency Cepstral Coefficients (MFCCs) are useful features for speech signal 

representation in ASR systems. The MFCC-based approach to ASR is described in detail in this paper and includes 

steps for feature extraction, model training, and speaker identification or verification [13]. The benefits and 

drawbacks of employing MFCCs for ASR are discussed in the paper, with an emphasis on how well they capture 

speaker-specific information while recognizing possible drawbacks including sensitivity to channel effects and 

speaking style variations. The authors also discuss techniques like feature normalization, dimensionality reduction, 

and model ensembling for enhancing ASR performance. Furthermore, the paper addresses the importance of dataset 

selection and model evaluation in ASR research. Large-scale annotated datasets are essential for training machine 

learning models effectively and ensuring their generalization to unseen speakers and conditions 

The paper addresses a critical challenge in speaker verification systems: handling short-duration speech segments 

while maintaining high accuracy and robustness [14]. The paper proposes a discriminative neural embedding 

learning framework for short-duration text-independent speaker verification. The key idea is to learn speaker 

embeddings directly from raw speech signals using deep neural networks, which can capture high-level speaker-

specific information while being robust to variations in speech duration and content. One of the main contributions 

of the paper is its exploration of various neural network architectures and training strategies for speaker embedding 

learning. The effectiveness of the proposed approach is demonstrated through comprehensive experiments on 

benchmark speaker verification datasets, including those with short-duration utterances. The results show that the 

proposed discriminative neural embedding learning framework outperforms traditional methods and achieves state-

of-the-art performance in short-duration text-independent speaker verification tasks The results show that the 

proposed discriminative neural embedding learning framework outperforms traditional methods and achieves state-

of-the-art performance in short-duration text-independent speaker verification tasks. 

III. PROPOSED METHODOLOGY 

In this section, we present a comparison of two methods for speaker identification as well as word identification 

from a recorded speech sample. For the testing, voice samples from 18 speakers were first collected. After that, a 

feature vector was produced by merging several helpful features that were obtained from the compiled speaker 

utterances, including MFCC, Mel, Chroma, Contrast, Tonnetz, and duration. This feature vector was fed into two 

feed-forward deep neural network architectures to generate the speaker recognition model and word identification 

accordingly. The suggested work's experimental outcome is shown in terms of speaker identification accuracy and 

word identification accuracy. It has been determined that the suggested strategy is effective in terms of accuracy 

value, recall, f1 score, and precision. Finally, an alternative test set was used to evaluate the performance of the 

developed model. The block diagram of the proposed methodology is shown in Figure 1. 

A. Dataset 

A key component of both Speaker and Word identification system is the dataset [15]. Many systems for identifying 

and recognizing speakers just require the spoken word of the registered group of users. To identify the speaker in 

our investigation, we have selected the Tai-Phake language as the command to enter into the model.  A total of fifty 

words from the Tai-Phake language, as spoken by native speakers, have been selected for our study. The dataset 

used in this work includes 18 speakers (10 female and 8 male). Nine thousand voice samples were produced by 

recording each syllable ten times by the speakers. For low-resource languages, many works have been done 

employing extremely few speakers, ranging from 06 to 30, for speaker identification [15][16][17][18][19][20].  

Speaker information of the dataset used is shown in Table 1 and the time-amplitude plot of twelve different word 

samples is shown in Fig 1.  
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Figure 1: Block Diagram for both Speaker and Word Identification System 

B. Speech Pre-processing 

In systems where silence or background noise is inappropriate, pre-processing speech signals is an essential step. 

Systems like automatic speaker identification and word identification, where most spoken words contain features 

associated with the speaker, require efficient feature extraction algorithms from speech signals. As a result, every 

speaker's voice sample that was recorded was captured in a quiet setting. To extract features, the blank space 

preceding and after each speech sample is eliminated, leaving only the speaker's voice. 

 

Figure 2: Figure represents the graphical representation of 12 Tai-Phake words spectrogram 

C. Feature Engineering 

Feature engineering is the process of selecting, altering, and transforming raw data into features that may be used 

in supervised learning. Better features may need to be developed and trained before machine learning may be 

applied to new tasks. Any quantifiable input that can be employed in a predictive model is called a feature; voice 

characteristics or the form of an object's body are two examples. Thus, the act of using statistical or machine learning 

methods to convert raw data into desired features is known as feature engineering. A neural network model needs 

to be trained using feature engineering. The quality of a feature collection typically determines how well a 

classification performs. Therefore, fewer accurate categorization results may arise from irrelevant features. Finding 

discriminative feature sets is a critical problem in deep learning and machine learning to achieve satisfactory 

classification performance. The caliber of the features employed in the classification task has a major impact on 

whether a speaker identification model succeeds or fails. Consequently, in machine learning and deep learning, 

feature engineering is an essential step [21]. If there is a strong link between the class and the retrieved attributes, 

classifying the data will be straightforward and accurate. On the other hand, if there is a poor correlation between 

the retrieved features and the class, the classification procedure will be difficult and inaccurate [21]. We have 

extracted a collection of features from various voice samples in this study, including MFCC, Mel, Chroma, Contrast, 

Tonnetz, and duration. Following the feature selection process, the features are joined to create a vector, which is 

subsequently supplied to the neural network model for training. 
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Table 1: Speaker information of the datasets used 

Sl. No. Speakers Gender Age 

1 SP1 Male 54 

2 SP2 Male 45 

3 SP3 Female 30 

4 SP4 Female 36 

5 SP5 Male 26 

6 SP6 Male 25 

7 SP7 Male 21 

8 SP8 Female 20 

9 SP9 Female 21 

10 SP10 Female 22 

11 SP11 Female 24 

12 SP12 Male 23 

13 SP13 Male 28 

14 SP14 Female 25 

15 SP15 Male 50 

16 SP16 Female 26 

17 SP17 Female 27 

18 SP18 Female 18 

 

a. Proposed Feature Set 

The short-period power spectrum of a sound wave is represented by the Mel-Frequency Cepstrum (MFC); the 

collection of MFC coefficients is called the Mel frequency cepstral coefficient (MFCC), and it is based on human 

auditory characteristics [22]. Because its coefficients are based on human hearing perceptions, MFCC is a feature 

extraction method that is frequently employed in automatic speaker identification [16]. For our investigation, a 

total of forty MFCC coefficients have been extracted. The Mel-scaled spectrogram was another feature we took 

out of the voice sample. The Mel spectrogram's 128 coefficients are used in this study. Similar to this, the we have 

extracted (chromagram) Chroma, Contrast (spectral contrast), and Tonnetz (tonal centroid characteristics), 

yielding 12, 7, and 6 coefficients, respectively.  In our study, we have proposed two different Neural network 

models and compared their efficiency in terms of accuracy. Both models have all five features MFCC, Mel, 

Chroma, Contrast, and Tonnetz which form a total of 193 components. For the word identification model along 

with these features we have added duration as another feature forming 194 components. A matrix of order mxn is 

returned by the mfcc() function, where n is set to 40 to return 40 coefficients and m is dependent on the length of 

the voice sample. Every column's mean is determined, and a 1-dimensional vector containing 40 characteristics is 

saved in the variable mfcc. Additionally, the melspectrogram() function provided a matrix of mxn, where n is 128 

and m is dependent on the length of the voice sample. Once more, a vector of 128 characteristics is kept in a 

variable called mel after mean is determined for each column. A matrix of mxn was also given by the chromastft 

() function, where m is dependent on the duration of the voice sample and n is 12. A vector of 12 features is saved 

in a variable called chroma after the mean is once more calculated for each column. Additionally, the spectral 

contrast() function returned a matrix of size mxn, where n is 7 and m is dependent on the duration of the voice 

sample. Once more, the mean is determined for each column, and a vector of seven features is saved in a variable 
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called contrast. Additionally, the tonnetz () method provided a matrix of mxn, where n is 6 and m is dependent on 

the duration of the voice sample. Once more, a vector of six features is saved in a variable called tonnetz after the 

mean is calculated for each column. 

 

 
Figure 3: images show the graphical representation of the respective feature matrix of various spectrogram 

where x coordinates represent the number of features and y coordinates represents their magnitude. 

b. Algorithm for Feature Extraction 

---------------------------------------------------------------------- 

Algorithm 1 MMCCT(MFCC, Mel, Chroma, Contrast, Tonnetz) Features of Speaker Voice Sample 

---------------------------------------------------------------------- 

Input : path to the folder of Speaker Voice Sample 

1For all file in voice sample folder 

2 a←GetMFCCFeatures(file) 

3 mfcc[] ←mean(a) 

4 b←GetMelFeatures(file) 

5 mel[] ←mean(b) 

6 c←GetChromaFeatures(file) 

7 chroma[] ←mean(c) 

8 d←GetContrastFeatures(file) 

9 contrast[]←mean(d) 

10 e←GetTonnetzFeatures(file) 

11 tonnetz[]←mean(e) 

12 duration Get the duration o 

13 speaker_name←GetNameofSpeaker(file) 

14        mmcct[]←append(mfcc[],mel[],chroma[],contrast[],tonnetz[],duration,speaker_name) 

15 end 

----------------------------------------------------------------------------------  

D. SPEAKER AND WORD IDENTIFICATION MODEL 

The functioning of the human brain is represented by neural networks. They make it possible for computer programs 

to see patterns and fix common machine-learning problems. The procedure of Automatic Speaker Identification 

(ASI) involves matching a speaker's speech sample with their previously recorded voice in order to automatically 

identify the speaker. For ASI, the machine learning strategy has grown in favor in recent years. Convolutional 

neural networks (CNN) [27,28,29], deep neural networks (DNN) [23,24,25,26], and artificial neural networks 

(ANN) [30,31] are some of the machine learning techniques that ASI has employed recently. 
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Figure 4: Machine Learning process [20] 

In this paper, we have presented and contrasted two distinct feed-forward neural network models for each word and 

speaker identification. Furthermore, these two feed-forward deep neural networks' total performance was 

comparable to that of conventional classification algorithms. A brief explanation of our suggested deep neural 

network model is given in the paragraph that follows. 

a. Proposed Feed Forward Neural Network Model 

 

A feed-forward neural network is a type of artificial neural network in which there is no cycle in the connections 

between the nodes. A recurrent neural network, in which particular paths are cycled, is the reverse of a feed-forward 

neural network. Since the input is only processed in one direction, the feed-forward model is the simplest type of 

neural network. Although the data may flow via several buried nodes, it always proceeds forward and never 

backward. The input layer, output layer, hidden layer, neuron weights, and activation function make up feed-

forward neural networks. The hardest part of creating a neural network model is obtaining precise parameters that 

allow for acceptable accuracy without over- or underfitting. We may experience overfitting if our model performed 

remarkably well on train data but poorly on test data. Given their complexity, neural networks are more likely to 

overfit. A data model that is under-fitted has a high error rate on both the training set and unobserved data because 

it is unable to effectively represent the relationship between the input and output variables. It arises when a model 

is overly simplistic, which might happen when a model needs more input information or training time. 

Regularization is a technique that modifies the learning procedure slightly such that the model generalizes more 

successfully. The model then performs better on the unobserved data as a result. 

How to decide on the number of hidden layers and nodes in a feedforward neural network is the first query that 

arises. The number of neurons in the input layer is the same as the number of features in our input data. Every NN 

has precisely one output layer, the same as the input layer. The number of neurons in this layer may be easily 

calculated; it is entirely dependent on the model configuration that has been selected.  Initially, the number of hidden 

layers is set to one and the number of neurons in the first hidden layer is set to be the mean of the neurons in the 

input and output layers. 

The optimization of the network configuration is the following stage. By varying the hidden layer's number of 

neurons and batch size, we have created and validated a large variety of models using training and validation data. 

Batch size is the number of samples that are processed before the model is changed. Whereas epoch means the 

number of complete iterations through the whole training dataset. A batch must have a minimum size of one and a 

maximum size that is less than or equal to the number of samples in the training dataset. 

 

 
 Figure 5: Fig (a) represents the training vs validation accuracy and training vs validation loss of 2 neurons in the 

hidden layer and batch size 2. (b) represents the training vs validation accuracy and training vs validation loss of 22 
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neurons in the hidden layer and batch size 512. (c) represents the training vs validation accuracy and training vs 

validation loss of 512 neurons in the hidden layer and batch size 2. (d) represents the training vs validation accuracy 

and training vs validation loss of 512 neurons in the hidden layer and batch size 512. 

 

The figures demonstrate that learning occurs more quickly in small batches, but that the learning process is unstable 

and more variable in terms of classification accuracy. Larger batch sizes slow down learning, but in the end, a more 

stable model is reached, as seen by a smaller variance in classification accuracy. 

 

One input layer, one hidden layer, and one output layer make up the Feed-Forward Neural Network (FFNN) 

architecture utilized in this study to categorize speakers, as seen in Figure 4. 193 neurons, or the number of 

characteristics in each speaker utterance, were used in two separate FFNN models in the input layer. There were 59 

neurons in each concealed layer. Rectified Linear Unit (ReLU) was the activation function utilized in each buried 

layer. The output layer computed the multiclass classification output values using the softmax transfer function. 

 

 

 

Figure 6: Feed Forward Neural Network Architecture for Speaker Identification Experiment 193 input,18 

output, and 1 hidden layer with 59 neurons. 

IV. EXPERIMENTAL RESULTS 

This section presents all the results of the experiments performed in this study. The first experiment was to classify 

the speakers using a feed-forward neural network with text-dependent voice samples. The second experiment was 

classifying the speakers using a feed-forward neural network and with the help of text-independent voice samples. 

Third, we have compared the results of the previous two experiments with different classification algorithms: SVM, 

Decision Tree, and random forest (RF). 

A. Result of Experimental Setting I 

In this section, we present the result of Experiment Setting I, where the feature vector of 193 components is fed to 

the feed-forward neural network. Speaker Identification Accuracy, Precision, Recall, and F1-Score are used to 

describe the experimental outcome of the suggested work. To guarantee the consistency of the outcome, additional 

metrics like precision, recall, and F1 score were also assessed. Table 2 displays the outcomes of the same. Setting 

up the experiment as suggested produced an accuracy of 97.98. 

Table 2: Accuracy, Precision, recall, and f1-score value of each Speaker of Experiment Setting I 

  precision recall f1-score support 

SP1 0.982759 0.982759 0.982759 58 

SP2 1 0.982759 0.991304 58 

SP3 0.982143 0.964912 0.973451 57 

SP4 0.982759 0.982759 0.982759 58 
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SP5 0.966102 0.982759 0.974359 58 

SP6 1 0.965517 0.982456 58 

SP7 0.948276 0.964912 0.956522 57 

SP8 1 0.965517 0.982456 58 

SP9 0.982456 0.965517 0.973913 58 

SP10 0.982759 0.982759 0.982759 58 

SP11 0.982759 0.982759 0.982759 58 

SP12 1 0.982759 0.991304 58 

SP13 0.966667 1 0.983051 58 

SP14 0.966667 1 0.983051 58 

SP15 0.983051 1 0.991453 58 

SP16 0.949153 0.965517 0.957265 58 

SP17 0.982143 0.964912 0.973451 57 

SP18 0.982759 1 0.991304 57 

accuracy 0.979808 0.979808 0.979808 0.979808 

macro 

avg 
0.980025 0.979784 0.979799 1040 

weighted 

avg 
0.980049 0.979808 0.979822 1040 

 

The number of times our model accurately predicted the correct speaker was calculated using precision. The recall 

measures how many successful, positive labels out of all possible labels that the model was able to identify. A 

weighted average of recall and precision is used to determine the F1 score.  

 

Figure 7: Training and validation accuracy and loss curve by the epoch of Experiment Setting I 

From Table II, it can be deduced that for four speakers, we got a good precision and recall value of 1 and [0.96-

0.98], while for the other speakers’ precision range is between [0.94 – 0.98], and the recall range is between [0.96 

– 0.98], which is reasonably satisfactory. 
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Figure 8: Confusion Matrix of Experiment I 

B. Result of Experiment Setting II 

This section represents the result of Experiment Setting II, where the feature vector of 193 components is fed to the 

feed-forward neural network. The Experimental result of the proposed work is also given in terms of Speaker 

Identification Accuracy, Precision, recall, and f1-score. The results of the same are shown in Table 3. The proposed 

Experiment setting gave an accuracy of 86.5 while executed.Avoid combining SI and CGS units, such as current in 

amperes and magnetic field in oersteds. This often leads to confusion because equations do not balance 

dimensionally. If you must use mixed units, clearly state the units for each quantity that you use in an equation. 

Training and validation accuracy and loss curve by the epoch of Experiment Setting II and Confusion Matrix of 

Experiment II are shown in Figure 9 and Figure 10, respectively. 

Table 3: Accuracy, Precision, recall, and f1-score value of each Speaker of Experiment Setting II 

 precision recall f1-score support 

SP1 0.815534 0.933333 0.870466 90.000000 

SP2 0.952381 0.888889 0.919540 90.000000 

SP3 0.756522 0.966667 0.848780 90.000000 

SP4 0.850000 0.755556 0.800000 90.000000 

SP5 0.975309 0.877778 0.923977 90.000000 

SP6 0.961538 0.833333 0.892857 90.000000 

SP7 0.687500 0.855556 0.762376 90.000000 

SP8 0.794643 0.988889 0.881188 90.000000 

SP9 0.953846 0.688889 0.800000 90.000000 

SP10 0.939024 0.855556 0.895349 90.000000 

SP11 0.909091 1.000000 0.952381 90.000000 

SP12 0.731959 0.788889 0.759358 90.000000 

SP13 0.820755 0.966667 0.887755 90.000000 

SP14 0.961039 0.822222 0.886228 90.000000 

SP15 0.983871 0.677778 0.802632 90.000000 

SP16 0.825688 1.000000 0.904523 90.000000 

SP17 0.951807 0.877778 0.913295 90.000000 

SP18 0.946667 0.788889 0.860606 90.000000 

accuracy 0.864815 0.864815 0.864815 0.864815 

macro avg 0.878732 0.864815 0.864517 1620.000000 

weighted avg 0.878732 0.864815 0.864517 1620.000000 
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Figure 9: Training and validation accuracy and loss curve by the epoch of Experiment Setting II 

 

Figure 10: Confusion Matrix of Experiment II 

C. Result of Experiment Setting III 

This section represents the result of Experiment Setting III, where we have compared the results of the previous 

two experiments with different classification algorithms: SVM, Decision Tree, and random forest (RF). The 

Experimental result of the comparison work is also given in terms of Speaker Identification Accuracy. The same 

results are shown in Tables 4 and 5, respectively.  

Random forests often outperform decision trees and support vector machines (SVMs) in terms of accuracy due to 

their ability to reduce overfitting and handle high-dimensional data[32] more effectively. Random forests are an 

ensemble learning method, meaning they combine multiple models (decision trees in this case) to improve 

predictive performance. This ensemble approach helps to reduce overfitting compared to individual decision 

trees[33]. 

Table 4: Comparison of SVM, Decision Tree, Random Forest, and Neural Network for the Experiment I. 

 

 

 

 

 

 

 

Artificial neural networks (ANNs) often outperform random forests (RFs) due to their ability to capture complex 

nonlinear relationships in data through their layered architecture and activation functions, which is particularly 

Sl. No. SVM Decision 

Tree 

Random 

Forest 

Neural 

Network 

1 83.07 76.25 96.05 97.98 

2 84.50 76.80 96.50 98.00 

3 82.05 76.00 95.75 97.00 

4 84.00 75.60 96.00 97.75 

5 84.75 76.50 95.50 96.25 



J. Electrical Systems 20-3 (2024):5622-5638 

 

5634 

advantageous for tasks involving high-dimensional data or intricate patterns. This enables them to learn intricate 

patterns in the data that may be beyond the capability of decision trees, which are the building blocks of random 

forests. A study by LeCun et al. (2015) titled "Deep Learning" [34] extensively discusses the representation power 

of deep neural networks, showcasing their ability to learn hierarchical representations of data. 

 

Table 5: Comparison of SVM, Decision Tree, Random Forest, and Neural Network for the Experiment II. 

Sl. No. SVM Decision 

Tree 

Random 

Forest 

Neural 

Network 

1 67.71 58.14 82.77 86.50 

2 67.00 57.88 81.45 86.00 

3 68.05 58.80 83.00 87.30 

4 67.20 58.08 81.80 86.30 

5 67.50 57.20 82.70 87.45 

 

D. Result of Experiment Setting IV 

This section represents the result of Experiment Setting IV, where the feature vector of 194 components is fed to 

the feed-forward neural network. The Experimental result of the proposed work is also given in terms of Word 

Identification Accuracy, Precision, recall, and f1-score. The results of the same are shown in Table 6. The proposed 

Experiment setting gave an accuracy of 93.92 while executed. 

Table 6: Accuracy, Precision, recall, and f1-score value of each Word of Experiment Setting IV 

Words precision recall f1-score support 

Nga001 0.952381 0.952381 0.952381 21.000000 

Nga003 0.904762 0.904762 0.904762 21.000000 

Nga006 0.909091 1.000000 0.952381 20.000000 

Nga010 1.000000 1.000000 1.000000 21.000000 

Nga011 0.904762 0.950000 0.926829 20.000000 

Nga018 1.000000 0.952381 0.975610 21.000000 

Nga021 1.000000 0.904762 0.950000 21.000000 

Nga022 0.952381 1.000000 0.975610 20.000000 

Nga025 1.000000 1.000000 1.000000 20.000000 

Nga026 1.000000 1.000000 1.000000 21.000000 

Ta001 0.818182 0.900000 0.857143 20.000000 

Ta002 0.947368 0.900000 0.923077 20.000000 

Ta003 0.869565 0.952381 0.909091 21.000000 

Ta004 0.950000 0.950000 0.950000 20.000000 

Ta005 1.000000 1.000000 1.000000 20.000000 

Ta006 0.950000 0.950000 0.950000 20.000000 

Ta007 0.850000 0.850000 0.850000 20.000000 

Ta010 0.954545 1.000000 0.976744 21.000000 

Ta013a 0.952381 1.000000 0.975610 20.000000 

Ta015 0.850000 0.809524 0.829268 21.000000 

Tha001 0.904762 0.950000 0.926829 20.000000 

Tha005 0.904762 0.904762 0.904762 21.000000 

Tha006 1.000000 0.750000 0.857143 20.000000 

Tha010 0.952381 0.952381 0.952381 21.000000 

Tha012 0.904762 0.904762 0.904762 21.000000 
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Tha013 1.000000 1.000000 1.000000 20.000000 

Tha014 0.863636 0.950000 0.904762 20.000000 

Tha016 1.000000 0.950000 0.974359 20.000000 

Tha019 0.952381 1.000000 0.975610 20.000000 

Tha022 1.000000 1.000000 1.000000 20.000000 

Wa001 0.842105 0.800000 0.820513 20.000000 

Wa003a 1.000000 1.000000 1.000000 20.000000 

Wa003b 1.000000 1.000000 1.000000 20.000000 

Wa004 1.000000 0.950000 0.974359 20.000000 

Wa006 0.857143 0.900000 0.878049 20.000000 

Wa008 0.809524 0.850000 0.829268 20.000000 

Wa010 0.875000 1.000000 0.933333 21.000000 

Wa011 0.894737 0.809524 0.850000 21.000000 

Wa014 1.000000 0.950000 0.974359 20.000000 

Wa015 0.952381 0.952381 0.952381 21.000000 

Ya001 1.000000 1.000000 1.000000 21.000000 

Ya001a 0.904762 0.950000 0.926829 20.000000 

Ya002a 0.944444 0.850000 0.894737 20.000000 

Ya003a 0.900000 0.900000 0.900000 20.000000 

Ya004 1.000000 0.904762 0.950000 21.000000 

Ya005 0.904762 0.950000 0.926829 20.000000 

Ya008a 1.000000 0.952381 0.975610 21.000000 

Ya008b 0.952381 0.952381 0.952381 21.000000 

Ya008c 0.952381 1.000000 0.975610 20.000000 

Ya008d 1.000000 0.952381 0.975610 21.000000 

accuracy 0.939216 0.939216 0.939216 0.939216 

macro avg 0.940754 0.939238 0.938980 1020.000000 

weighted avg 0.940904 0.939216 0.939048 1020.000000 

 

Training and validation accuracy and loss curve by the epoch of Experiment Setting IV and Confusion Matrix of 

Experiment IV are shown in Figure 11 and Figure 12, respectively. 

•  

Figure 11: Training and validation accuracy and loss curve by the epoch of Experiment Setting IV 
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Figure 12: Confusion Matrix of Experiment IV 

E. Result of Experiment Setting V 

In this experiment, we tried to identify words irrespective of Speaker, but speaker-independent word identification 

for the low-resource language Tai-Phake yields poor results when using classical machine learning and neural 

network methods due to several key factors.  

Firstly, the lack of sufficient labeled data is a fundamental challenge. Low-resource languages typically have limited 

available datasets for training models. This scarcity restricts the ability of machine learning algorithms to learn 

robust patterns and variations in speech features specific to the language, such as phonetic nuances and dialectal 

differences. Secondly, the linguistic characteristics of Tai-Phake, as with many low-resource languages, differ 

significantly from widely studied languages like English or Hindi. Neural networks and traditional machine learning 

models trained on datasets from these dominant languages may not generalize well to Tai-Phake due to phonetic 

differences, tonal variations, and unique speech patterns. Thirdly, the acoustic properties of Tai-Phake speech may 

not align with the assumptions made by standard models. Neural networks, for instance, rely on patterns in 

spectrograms or other acoustic representations of speech. If these patterns do not match well with Tai-Phake speech 

characteristics, the model's performance can suffer significantly.  

Moreover, the problem of speaker independence exacerbates these challenges. Speaker-independent systems aim 

to recognize speech from any speaker, requiring models to generalize across different voices and speaking styles. 

In low-resource languages, where training data is limited, achieving robust speaker independence becomes 

particularly challenging.  

In summary, the poor results observed in speaker-independent word recognition for Tai-Phake using classical 

machine learning and neural network methods stem from the scarcity of labeled data, linguistic and acoustic 

dissimilarities from dominant languages, and the difficulty in achieving speaker independence under constrained 

data conditions. 

V. DISCUSSION 

As per the experimental findings of the current work, the proposed feature set(MFCC, Chroma, Mel, Contrast, and 

Tonnetz) and FFNN can categorize speaker utterances with an overall accuracy ranging from 86.00% to 98.00%. 

The proposed feature set and FFNN demonstrated the maximum accuracy and outperformed Experiment Setting I, 

as seen in the experimental results (Experiment Setting II). The fact that Experiment Setting I was done with text 
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previously spoken by the speakers, whereas Experiment Setting II was done with text-independent voice, could be 

one of the reasons for its subpar performance. As a result, the classifier in Experiment Setting I can categorize 

speaker voice signal patterns with more accuracy and lower classification error.  

 Section III-B discusses the results of the Experimental setup II. Three different machine learning classifiers 

were outperformed by the FFNN classifier. The FFNN classifier offers a superior discriminative ability for speaker 

identification by effectively recognizing complex and nonlinear patterns from high-dimensional datasets [24][35]. 

The results of this research paper demonstrate promising advancements in speaker identification, particularly for 

low-resource languages. Achieving an accuracy of 98% for text-dependent and 86% for text-independent speaker 

identification using two different neural network architectures signifies a significant breakthrough in addressing the 

challenges associated with identifying speakers in languages with limited available data. One of the notable aspects 

of this study is the utilization of neural network architectures tailored to the specific characteristics of the low-

resource language. By customizing the architecture to the linguistic nuances and phonetic variations present in the 

target language, the models could effectively extract discriminative features for speaker identification. The achieved 

accuracies, though commendable, also shed light on areas for potential improvement. Despite the impressive results, 

there remains a performance gap, especially in the case of text-independent speaker identification. Further research 

is needed to explore techniques for enhancing the robustness of the models, particularly in scenarios where speech 

samples may vary widely in terms of content and context. Moreover, the scalability and generalizability of the 

proposed approach need to be investigated. While the current study focuses on a specific low-resource language, 

extending the methodology to other languages with similar characteristics could provide insights into the 

adaptability of the models across different linguistic contexts. Additionally, the impact of various factors such as 

speaker demographics, environmental conditions, and recording quality on the performance of the identification 

system warrants attention. Understanding how these factors influence the reliability and accuracy of the models is 

crucial for real-world deployment, especially in diverse and dynamic settings. 

Investigating techniques for data augmentation could help alleviate the limitations imposed by the scarcity of 

training data. Augmenting the existing dataset through methods such as pitch shifting, time warping, and noise 

injection could potentially enhance the robustness and generalization capabilities of the models. This research can 

lead to the development of a mobile application for the Tai-Phake speaker recognition system. 
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