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Abstract: - In the evolving field of Speech Emotion Recognition (SER), essential for understanding and addressing mental health issues, 

conventional models often falter in interpreting complex emotional states, particularly those related to mental health conditions like 

PTSD. This study introduces the Cognitive Emotion Fusion Network (CEFNet), a novel hybrid SER model integrating Improved and 

Faster Region-based Convolutional Neural Networks (IFR-CNN), Deep Convolutional Neural Networks (DCNNs), Deep Belief Networks 

(DBNs), and the Bird's Nest Learning Analogy (BNLA). Aimed at surpassing the limitations of traditional models, CEFNet focuses on 

accurately interpreting nuanced emotional expressions, employing advanced machine learning techniques and comprehensive feature 

extraction. Evaluated using the EMODB and RAVDESS datasets, CEFNet demonstrated superior performance, achieving an accuracy of 

98.11% and 91.17% on these datasets, respectively, outperforming existing models in precision and F1 scores. This research marks a 

significant contribution to SER, particularly in mental health applications, offering a robust framework for emotion recognition in speech. 

It opens avenues for future enhancements, including broader applicability across languages and cultural contexts, optimization for 

resource-limited environments, and integration with other modalities for more holistic emotion recognition. 

Keywords: Speech Emotion Recognition, Cognitive Emotion Fusion Network, PTSD Detection, Hybrid Neural Networks, 

Emotional State Analysis. 
 

I. INTRODUCTION 

In the dynamic realm of speech analysis, the integration of emotion recognition, particularly in mental health 

contexts, has emerged as a pivotal area of research. The intricate task of discerning nuanced emotional 

expressions from speech plays a critical role in understanding and addressing mental health issues, making it a 

field of growing importance and interest.The field of Speech Emotion Recognition (SER)[1] has seen significant 

attention due to its far-reaching potential across various domains, including healthcare, customer service, and 

human-computer interaction. The ability to accurately interpret emotional cues from speech can provide 

invaluable insights into a speaker's mental state, thereby enhancing the effectiveness of communication 

technologies. This capability holds particular promise in healthcare, where it can facilitate more empathetic 

patient interactions and potentially aid in the diagnosis and monitoring of mental health conditions.However, SER 

faces substantial challenges, particularly in accurately identifying complex emotional states. Conventional models, 

while adept at recognizing basic emotions such as happiness, sadness, anger, fear, surprise, and disgust, often fall 

short when it comes to the subtleties present in complex emotional states, especially those associated with mental 

health conditions like Post-Traumatic Stress Disorder (PTSD)[2] . These models typically struggle with the 

nuanced expressions found in such conditions, where emotions can be layered, subdued, or mixed. This limitation 

is often exacerbated by the fact that most models are trained on datasets characterized by clear, distinct emotional 

expressions, which do not fully capture the complexities encountered in real-world scenarios. Furthermore, the 

diversity of speech, influenced by language, dialect, age, gender, and cultural background, adds another layer of 

complexity to the recognition of emotions [3]. 
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Motivated by these challenges, our research aims to develop advanced SER systems capable of understanding 

and interpreting complex emotional states. The necessity for such systems is underscored by the increasing 

reliance on digital communication and the growing recognition of mental health's significance in overall well-

being. Accurately identifying and analyzing emotional cues in speech is not just a technological challenge but a 

step towards creating more empathetic and responsive human-machine interactions.To this end, we introduce a 

novel hybrid model – the Cognitive Emotion Fusion Network (CEFNet). This model synergizes the strengths of 

Improved and Faster Region-based Convolutional Neural Networks (IFR-CNN)[4], Deep Convolutional Neural 

Networks (DCNNs), Deep Belief Networks (DBNs)[5], and is enhanced by the Bird's Nest Learning Analogy 

(BNLA)[6]. CEFNet is designed to enhance the accuracy of emotion recognition in speech, particularly adept at 

deciphering complex emotional states and effectively identifying indicators of PTSD. By leveraging advanced 

machine learning techniques and a comprehensive understanding of the nuances of human emotions, CEFNet 

aims to set new benchmarks in the field of SER, addressing both the technical challenges and the ethical 

considerations inherent in emotion recognition technology. 

This research paper makes several significant contributions to the field of speech emotion recognition (SER) and 

its application in mental health, particularly in the context of PTSD detection. The key contributions are as 

follows: 

1. Hybrid SER Model Development: Introduction of the Cognitive Emotion Fusion Network (CEFNet), a 

novel hybrid SER model integrating IFR-CNN, DCNNs, and DBNs with the Bird's Nest Learning 

Analogy (BNLA), representing a breakthrough in SER technology. 

2. Complex Emotional State Recognition: CEFNet's design focuses on effectively identifying and 

interpreting complex emotional states in speech, showcasing exceptional proficiency in detecting subtle 

emotional nuances, crucial for mental health applications like PTSD detection. 

3. Superior Accuracy and Precision: CEFNet demonstrates superior performance over existing models in 

accuracy, precision, and F1 score, as evidenced by extensive testing on benchmark datasets such as 

RAVDESS and EMODB, marking a substantial improvement in SER system accuracy. 

The remainder of this paper is organized as follows: Section 2 presents related work; Section 3 describes the 

proposed method (CEFNet); Section 4 details the experimental results; Section 5 discusses the results and 

implications; and finally, Section 6 concludes the paper with an outlook on future work. 

II. RELATED WORK 

The realm of Speech Emotion Recognition (SER) has experienced notable advancements in recent years, with 

researchers innovating to develop cutting-edge models and techniques aimed at improving accuracy and 

efficiency. This section highlights pivotal contributions from contemporary literature that have left a lasting 

impact on the field, with a particular focus on the works of Kwon and colleagues. 

In 2021, Kwon and colleagues [7] presented a highly influential study introducing the Att-Net model. This 

research incorporated a lightweight self-attention module into the emotion recognition system, enabling Att-Net to 

accentuate salient features in input data. Consequently, this integration led to substantial enhancements in 

recognition accuracy while maintaining computational efficiency. Kwon's work underscored the potential of 

attention mechanisms within SER, paving the way for the development of more advanced emotion recognition 

technologies.Another noteworthy contribution from 2019, presented by Mustaqeem and Kwon [8], explored the 

integration of Convolutional Neural Networks (CNNs) with enhanced audio signal processing techniques for SER. 

By adeptly harnessing CNNs to extract and analyze emotional cues from speech data, this research achieved 

significant improvements in recognition accuracy. This study vividly demonstrated the synergy between signal 

processing and deep learning models in the context of SER.In 2020, Sajjad and Kwon introduced a novel 

clustering-based approach to SER [9]. By incorporating learned features into a deep Bidirectional Long Short-

Term Memory (BiLSTM) model, this research effectively addressed the complexities posed by speech data and 

the variability in emotional expressions. The utilization of clustering in conjunction with deep BiLSTM 

exemplified an innovative approach to bolster the robustness and accuracy of emotion recognition 

models.Furthermore, in 2023, Ahmed et al. introduced an innovative ensemble model in their paper [10]. This 

ensemble model amalgamated 1D Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), 
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and Gated Recurrent Units (GRU). The study underscored the efficacy of data augmentation in augmenting SER 

system performance, illustrating how ensemble models can leverage the strengths of multiple architectures to 

enhance emotion recognition. 

The introduction of the RAVDESS database in 2018 by Livingstone and Russo [11] has significantly 

enriched SER research. This resource comprises a dynamic and multimodal dataset encompassing both facial and 

vocal expressions. It has proven instrumental in the development and comprehensive testing of emotion 

recognition systems, facilitating researchers in exploring the full potential of the field.In a medical context, 

Nakano and Nagamune's 2022 research [12] showcased the practical application of Faster Region-Based CNN in 

surgical instrument detection. Although not directly aligned with SER, this study vividly demonstrated the 

versatility and effectiveness of advanced neural networks in diverse real-world applications.Taking a distinctive 

approach in 2021, Corujo et al. [13] ventured into the realm of emotion recognition in horses using convolutional 

neural networks. This unconventional study underscored the potential of deep learning models in broader contexts 

beyond human emotion recognition.Finally, Seshaiah's 2021 research [14] presented a comprehensive comparison 

of various face detection and recognition technologies. While the study predominantly focused on visual cues, it 

complemented SER studies by offering insights into multimodal emotion recognition approaches.Collectively, 

these studies contribute to a deeper understanding of emotion recognition, employing advanced computational 

models and diverse datasets. They not only enrich the field of SER but also showcase the potential of these 

technologies in various applications, spanning from healthcare to animal behavior studies. 

Research Gaps Identified and Addressed 

Despite the notable advancements in SER highlighted above, several research gaps remain unaddressed. One 

significant gap is the limited exploration of hybrid models that combine various neural network architectures and 

novel learning paradigms to further enhance emotion recognition accuracy and robustness.To bridge this gap, we 

introduce the Cognitive Emotion Fusion Network (CEFNet), a novel hybrid SER model that integrates Inception-

based Fully Residual Convolutional Neural Networks (IFR-CNNs), Deep Convolutional Neural Networks 

(DCNNs), and Deep Belief Networks (DBNs) with the Bird's Nest Learning Analogy (BNLA). This 

groundbreaking approach represents a significant breakthrough in SER technology, aiming to address the 

challenges posed by complex emotional expressions and diverse speech data. The subsequent sections of this 

paper will delve into the details of CEFNet and its contributions to the field of SER. 

III. METHODOLOGY 

3.1 Dataset Description: EMODB Dataset:The Berlin Database of Emotional Speech (EMODB)[15] stands as a 

pivotal resource in the domain of speech emotion recognition. This dataset comprises German-language speech 

samples and boasts a collection of 535 utterances, all professionally recorded by ten actors, maintaining an 

equitable gender distribution. EMODB encompasses a rich spectrum of emotions, including Anger, Boredom, 

Annoyance, Fear, Happiness, Neutral, and Sadness. The distribution of these emotional categories within the 

dataset is as follows: Anger (125), Boredom (80), Annoyance (47), Fear (70), Happiness (68), Neutral (75), and 

Sadness (65). This diverse emotional content, coupled with a substantial number of utterances per emotion 

category, ensures a well-balanced dataset suitable for both training and evaluating emotion recognition models. 

The initial recordings were captured at a high sampling rate of 48 kHz, subsequently down-sampled to 16 kHz. 

This meticulous sampling process results in clear and distinct emotional expressions, rendering EMODB an 

invaluable resource for the development of sophisticated emotion recognition systems. 

RAVDESS Dataset:The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)[16] 

represents a comprehensive dataset tailored for the analysis of emotional speech and song in the English language. 

This dataset encompasses a wide spectrum of emotions, encompassing Calm, Happy, Sad, Angry, Fearful, 

Surprise, Disgust, and Neutral emotional states. One of the salient features of RAVDESS is its meticulous 

attention to achieving a balanced emotional distribution. Each emotion category (with the exception of Neutral) is 

thoughtfully represented by 192 recordings, while Neutral is represented by 96 recordings. This equilibrium 

within the dataset creates a diverse and all-encompassing resource, ideally suited for both training and assessing 

the performance of emotion recognition models.The incorporation of RAVDESS into our research is of immense 

value, as it empowers our model to acquire and comprehend emotional states within a linguistically and culturally 

diverse context. 
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The synergy of the EMODB and RAVDESS datasets in our research significantly bolsters the model's 

robustness and adaptability. The amalgamation of emotional content diversity and the exceptional recording 

quality within these datasets provides a comprehensive foundation for the development and validation of the 

proposed hybrid neural network architecture. Each dataset's unique characteristics complement one another, 

ensuring that the model is exceptionally well-equipped to handle real-world applications across different 

languages and a wide array of emotional expressions. 

Table 1: Emotion Dataset Overview 

Dataset Emotion No of sample 

EMODB Dataset Calm 75 

 Happy 68 

 Sad 65 

 Angry 125 

 Fear 70 

 Neutral 75 

Total 478 

RAVDESS Dataset Calm 192 

 Happy 192 

 Sad 192 

 Angry 192 

 Fearful 192 

 Surprise 192 

 Disgust 192 

 Neutral 96 

Total 1440 

 

Time Domain waveform Visualization 

Happy Sad Angry 

 
  

 

Spectrogram Visualization 

Happy Sad Angry 

   

 

Figure1 : Sample Input: Time Domain waveform Visualization 

3.2 Proposed Hybrid Model (CEFNet) Integration: 

Introduction to the Hybrid Model (CEFNet): The Cognitive Emotion Fusion Network (CEFNet) represents an 

innovative fusion of the Improved and Faster Region-based Convolutional Neural Network (IFR-CNN) with Deep 
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Convolutional Neural Networks (DCNNs) and Deep Belief Networks (DBNs), further enriched by the Bird's Nest 

Learning Analogy (BNLA). CEFNet capitalizes on IFR-CNN's specialized region-specific analysis for the 

nuanced detection of emotional cues in speech, complemented by the deep hierarchical feature extraction 

capabilities of DCNNs and DBNs. This synergistic fusion, bolstered by the BNLA approach, aspires to establish a 

robust system for emotion recognition that is adaptable to diverse speech datasets and applications, including the 

sensitive area of PTSD detection. CEFNet's integrated architecture empowers precise regional analysis and 

comprehensive feature extraction, ultimately providing a more nuanced comprehension of emotional expressions 

within speech. 

 

Figure 2: Block Diagram of the Proposed CEFNet Model 

CEFNet Model Workflow and Architecture Description : : This section provides an in-depth exploration of the 

hybrid model's architecture, encompassing details on layer configurations, the seamless integration of IFR-CNN's 

region-based analysis with the hierarchical feature learning capabilities of DCNNs and DBNs, and any pertinent 

modifications or enhancements made to facilitate the hybrid model's effectiveness and performance. 
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3.2.1 Workflow for Speech Signal Analysis in CEFNet: 

In the CEFNet model, speech signals sourced from datasets such as EMODB and RAVDESS undergo a 

comprehensive analysis process driven by IFR-CNN with the RPN layer. The workflow unfolds as follows: 

1. Input Speech Signals: Initially, speech samples from the datasets are introduced into the system. These 

signals undergo preprocessing for normalization and may be transformed into a suitable format for neural 

network processing, such as spectrograms or Mel-frequency cepstral coefficients (MFCCs)[17]. 

2. IFR-CNN Analysis: Subsequently, the IFR-CNN layer undertakes the analysis of these preprocessed 

speech signals. It employs convolutional layers to detect and extract features relevant to emotional 

content embedded within the speech. 

3. Region Proposal Network (RPN) Function: Within the IFR-CNN, the Region Proposal Network 

(RPN)[18] meticulously scans the extracted features. The RPN identifies regions within the speech signal 

that exhibit a high likelihood of containing emotional cues. This is achieved by assessing these features 

against learned patterns indicative of various emotional states. 

4. Proposed Region Analysis: The regions pinpointed by the RPN are subjected to further scrutiny to 

unravel detailed emotional content. This stage may involve additional neural network layers tasked with 

classifying the emotional state based on the distinctive characteristics observed within these regions. 

Through this iterative process, CEFNet adeptly discerns and scrutinizes emotional regions within speech, 

harnessing the strengths of IFR-CNN and RPN for precise emotion detection. 

Feature extraction in CEFNet using IFR-CNN: 

a. MFCC Computation: 

• Fourier Transform: Convert time-domain speech signal into frequency domain: 𝑋(𝑓) =

∫
−∞

∞
 𝑥(𝑡)𝑒−2𝜋𝑖𝑓𝑡𝑑𝑡. 

• Mel Scale Filtering: Apply Mel scale filters: 𝑀(𝑓) = ∑𝑘=0
𝑁−1  𝑋(𝑘) ⋅ 𝐻𝑚(𝑘), where 𝐻𝑚(𝑘) are the Mel 

filters. 

• Logarithmic Transformation: Logarithm of filter bank energies: (𝑚) = log⁡(𝑀(𝑚)). 

• DCT: Discrete Cosine Transform for MFCCs: (𝑚) = ∑𝑛=1
𝑁  𝐿(𝑛)cos⁡ [

𝑚𝜋

𝑁
(𝑛 − 0.5)]. 

b. Convolution Operation in Convolutional Layers: 

• For each convolutional layer, the operation is defined as: (𝑖, 𝑗) = (𝐾 ∗ 𝑀)(𝑖, 𝑗), where 𝐾 is the kernel 

matrix, 𝑀 is the MFCC input matrix, and 𝐹(𝑖, 𝑗) is the feature map at position (𝑖, 𝑗). 

• Each kernel 𝐾 is designed to detect specific features in the MFCCs, like changes in cepstral coefficients, 

which correlate with variations in emotional content. 

c. IFR-CNN Analysis: 

• The convolutional layers process the MFCCs to generate feature maps. 

• These feature maps highlight areas in the speech signal indicative of emotions. 

d. RPN Function: 

• The RPN scans these feature maps. 

• It evaluates the features against learned patterns indicative of emotions to propose regions of interest 

(Rols). 
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Algorithm 1: Feature Extraction for Emotion Recognition in Speech Data 

Input: Raw speech signal from datasets (EMODB, RAVDESS). 

Output: Processed feature matrix suitable for neural network processing. 

Step 1: Preprocessing: 

• Normalize the amplitude of the raw speech signal. 𝑥norm (𝑡) =
𝑥(𝑡)

max(|𝑥(𝑡)|)
 

• If necessary, down-sample the signal to a standard frequency (e.g., 16 kHz). 

Step 2: Convert to Spectrogram: 

• Apply a Fourier Transform to convert the signal from time domain to frequency domain. 

𝑋(𝑓, 𝑡) = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 

• Construct a spectrogram representing the signal's frequency content over time. 

𝑆(𝑓, 𝑡) = |𝑋(𝑓, 𝑡)|2 

Step 3: MFCC Computation: 

• Apply Mel Scale Filtering: Convert frequency scales into Mel scales, capturing perceptually 

relevant aspects. 

𝑀(𝑘) = ∑𝑋(𝑓) ⋅ 𝐻𝑚(𝑓)where𝐻𝑚(𝑓) are Mel filters. 

• Calculate Logarithmic Scale: Apply logarithmic transformation to Mel scale filter banks. 

: 𝐿(𝑚) = log⁡(𝑀(𝑚)) 

• Perform Discrete Cosine Transform: Convert the log Mel spectrogram into MFCCs. 

𝐶(𝑛) = ∑𝑚=0
𝑀−1  𝐿(𝑚)cos⁡ [

𝜋𝑛(2𝑚+1)

2𝑀
] for 𝑛 = 0,… ,𝑁 − 1 

• Form an MFCC matrix representing the speech signal. 

Step 4: Feature Normalization: 

• Normalize the MFCC matrix to have zero mean and unit variance, improving model 

performance. 

𝑀𝐹𝐶𝐶norm =
𝑀𝐹𝐶𝐶−𝜇

𝜎
 where 𝜇 and 𝜎 are the mean and standard deviation of MFCCs. 

 

This algorithm transforms raw speech signals into a feature matrix optimized for neural network-based emotion 

recognition, ensuring efficient and accurate processing. 

3.2.2 DCNN Feature Extraction: 

Once the regions are identified by the IFR-CNN's RPN, the DCNN layers within CEFNet take over to extract 

intricate features: 

1. Layer 1 (Initial Feature Extraction): Designated as "Initial Feature Extraction," Layer 1 within the CEFNet 

model plays a pivotal role in processing the regions flagged by the IFR-CNN. This layer focuses on extracting 

fundamental features, including pitch, tone, and intensity variations inherent in the speech data. These 

foundational features serve as primary indicators of emotional cues, establishing the groundwork for more 

elaborate emotional state analysis in subsequent layers. This initial stage is instrumental in forming an initial 

understanding of the emotional context embedded within the speech signal. 

2. Layer 2 (Detailed Feature Extraction): Layer 2, referred to as "Detailed Feature Extraction," advances the 

analysis initiated in Layer 1. It concentrates on extracting intricate and nuanced features from the speech 

signal, essential for discerning specific emotions. This layer pays particular attention to elements such as 

speech tempo, pauses, and subtle inflections—critical components for gaining deeper insights into the 
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speaker's emotional state. These finer aspects aid in constructing a comprehensive understanding of the subtle 

emotional nuances conveyed through speech. 

3. Layer 3 (Advanced Feature Extraction): In CEFNet's Layer 3, denoted as "Advanced Feature Extraction," 

all preceding analyses converge. This layer synthesizes information from the previous layers to construct a 

comprehensive emotional profile. It employs deep learning techniques to decipher complex patterns within 

speech, facilitating an examination of the speaker's overarching mood. This amalgamation of basic and 

nuanced cues ensures a thorough exploration of various emotional states. 

Each layer incrementally enhances the depth of feature analysis, ensuring a comprehensive examination of the 

speech signal to achieve accurate emotion recognition. 

Feature Enhancement with DCNN 

In this phase, the DCNN layers refine the features from IFR-CNN. For example, if the IFR-CNN identifies a 

region with rapid pitch variations (indicating potential emotional intensity), the DCNN layers further analyze 

these variations. They use convolutional operations to detect patterns like the consistency of pitch changes or the 

presence of micro-pauses. Pooling layers then distill these features, focusing on the most pronounced changes. 

Finally, normalization layers stabilize the feature map, ensuring that the network's response to these emotional 

cues is consistent and reliable. This enhanced processing brings subtler emotional patterns into focus, crucial for 

accurate emotion detection. 

Convolutional Layers: Further extract and refine features from the proposed regions. Mathematically, this 

involves convolution operations 𝐹new (𝑖, 𝑗) = (𝐾𝑑 ∗ 𝐹)(𝑖, 𝑗), where 𝐾𝑑 represents the kernels in the DCNN layers 

and 𝐹 the feature map from the IFR-CNN. 

Pooling Layers: Reduce the spatial size of the feature maps, enhancing the most prominent features while 

reducing computational load. A common pooling operation is Max Pooling, defined as 𝑃(𝑖, 𝑗) = max(𝐿𝑖𝑗), where 

𝐿𝑖𝑗  is a subset of the feature map. 

Normalization Layers: Normalize the feature output to improve the stability and performance of the network. 

Batch normalization, for example, can be mathematically represented as 𝐵(𝑖) = 𝛾 (
𝐹(𝑖)−𝜇

√𝜎2+𝜖
) + 𝛽, where 𝜇 and 𝜎2 

are the mean and variance, respectively, 𝛾 and 𝛽 are learnable parameters, and 𝜖 is a small constant to avoid 

division by zero. 

Algorithm 2: IFR-CNN for Speech Emotion Analysis 

Input: Pre-processed MFCC matrix from speech data. 

Output: Feature maps indicating emotional content. 

Step 1: Convolutional Layer Processing: 

• Apply convolutional layers to the MFCC matrix: Fi,j = ReLU⁡((K ∗ MFCC)i,j + b) 

• Krepresents convolutional kernels, b is the bias term, and Fi,j is the feature map. 

Step 2: Feature Extraction: 

• Use multiple convolutional layers with varying kernel sizes to extract features at different scales. 

• Apply pooling layers after convolutional layers to reduce dimensionality and highlight dominant features. 

Step 3: Emotional Feature Identification: 

• Apply additional layers to refine and classify the emotional content based on extracted features. 

• Implement classification layers (like softmax) to categorize emotional states. 
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3.2.3 DBN Layers and Bird's Nest Learning Analogy (BNLA): 

Within the DBN layers of CEFNet, the interpretation of complex features involves examining the emotional 

context from multiple perspectives. For instance, these layers may interpret a combination of speech tempo, tone 

modulation, and vocal stress patterns to identify emotions like anxiety or stress. The Bird's Nest Learning Analogy 

(BNLA) amplifies this process by structuring the learning pathways, enabling the network to dynamically 

emphasize the most pertinent features for precise emotional interpretation. This approach mirrors how a bird 

selectively chooses materials to fortify its nest. Consequently, CEFNet attains a nuanced comprehension of 

emotions conveyed through speech. 

Optimization Strategies: 

To optimize CEFNet's performance, various strategies are implemented. These encompass advanced 

regularization techniques to prevent overfitting, fine-tuning of hyperparameters like learning rate and batch size to 

enhance convergence, and the incorporation of dropout layers to bolster generalization. Real-time data 

augmentation techniques are also employed to enhance the model's robustness against diverse speech patterns, 

ensuring that CEFNet maintains its effectiveness across varied datasets and real-world scenarios. These 

enhancements are pivotal for achieving high levels of accuracy and reliability in the task of emotion recognition 

from speech. 

Deep Feature Learning with DBN phase 

This enhanced feature extraction through DCNNs is crucial for capturing finer emotional patterns in the 

speech, contributing to the overall effectiveness of CEFNet in emotion recognition.In the CEFNet model, after the 

DCNN stage, Deep Belief Networks (DBNs) are used for deep feature learning. DBNs, consisting of multiple 

layers of stochastic units, excel at identifying complex, high-level patterns in data, crucial for nuanced emotion 

and PTSD detection. Each layer in a DBN learns a representation of the data based on the output of the previous 

layer, refining the emotional cues detected. The Bird's Nest Learning Analogy (BNLA) is integrated here to 

enhance this process. BNLA mimics the gradual, detailed construction of a bird's nest, symbolizing the 

progressive learning in DBNs. This approach strengthens the hierarchical learning of DBNs, ensuring more 

natural and effective feature learning, crucial for accurately capturing subtle emotional cues in speech data. 

Layered Stochastic Units: DBNs consist of multiple layers of stochastic units (neurons), each capable of 

capturing different levels of abstractions. The learning in each layer is typically based on the Restricted 

Boltzmann Machine (RBM) model, where each RBM is trained to reconstruct its input as accurately as possible. 

An RBM can be represented mathematically as: 

𝑝(𝑣 ∣ ℎ) =∏  

𝑉

𝑖=1

 𝑝(𝑣𝑖 ∣ ℎ)

𝑝(ℎ ∣ 𝑣) =∏  

𝐻

𝑗=1

 𝑝(ℎ𝑗 ∣ 𝑣)

 

where𝑣 and ℎ are visible and hidden units, respectively, and 𝑉 and 𝐻 are their respective counts. 

High-Level Representation Learning: Each subsequent layer in the DBN receives input from the layer below, 

learning increasingly abstract representations of the data. The learning process involves adjusting the weights and 

biases to minimize the reconstruction error, typically using contrastive divergence. 

In a DBN, each layer tries to learn a probability distribution over its input. This is typically done using a 

Restricted Boltzmann Machine (RBM), where the joint distribution is given by: 

𝑃(𝑣, ℎ) =
1

𝑍
𝑒−𝐸(𝑣,ℎ) 

Here, 𝐸(𝑣, ℎ) is the energy function, and 𝑍 is the partition function. 

The goal is to adjust the weights and biases to minimize the difference between the input and its reconstruction, 

often using a training algorithm like contrastive divergence. 



J. Electrical Systems 19-4 (2023): 376-398 
 

385 

BNLA Integration: The Bird's Nest Learning Analogy (BNLA) enhances this process by structuring the learning 

in a more organized and adaptive manner, much like a bird selectively uses materials to construct its nest. This 

analogy guides the DBN's learning process to focus on the most relevant features, enhancing the depth and 

efficiency of learning. 

Through these mechanisms, DBNs in CEFNet effectively learn high-level representations of emotional cues from 

the speech data, crucial for accurate PTSD and emotion detection. 

Algorithm 3:Integrated DCNN and DBN Processing for Speech Emotion Analysis 

Input: Feature maps from IFR-CNN. 

Output: High-level emotional feature representations. 

Step 1: DCNN Feature Refinement: 

• Process IFR-CNN feature maps through multiple DCNN layers: 𝐹new (𝑖, 𝑗) = ReLU⁡((𝐾 ∗

𝐹old )(𝑖, 𝑗) + 𝑏) Where 𝐾 is the kernel, 𝐹old  is the input feature map, 𝑏 is the bias, and 𝐹new  is 

the output feature map. 

• Apply convolutional operations for deeper feature extraction.  

• Utilize pooling layers to reduce feature map dimensions and highlight prominent features. 

Apply pooling (e.g., max pooling): 𝑃(𝑖, 𝑗) = max(region⁡in⁡𝐹new ) 

• Normalize features using layers like batch normalization for stability 

𝐹norm = 𝛾 (
𝐹ncww −𝜇𝐵

√𝜎𝐵
2+𝜖

) + 𝛽  Where 𝜇𝐵 and 𝜎𝐵
2 are the batch mean and variance, 𝛾 and 𝛽 are learnable 

parameters, and 𝜖 is a small constant for numerical stability. 

Step 2: DBN High-Level Learning: 

• Feed refined features into DBN layers. 

• Utilize the stochastic, layered structure of DBNs for abstract feature learning. 

• Apply BNLA to enhance hierarchical learning, focusing on key emotional features. 

Step 3: Output Generation: 

• Generate a high-level representation of emotional content from the speech data for accurate 

emotion recognition. 

 

 

This integrated algorithm combines DCNN's depth in feature analysis with DBN's abstract learning capabilities, 

effectively capturing complex emotional patterns in speech. 

3.3 Overview of CEFNet Architecture and Processing for Emotion Recognition: 

The Hybrid Cognitive Emotion Fusion Network (CEFNet) is a sophisticated deep learning model designed 

for the precise recognition of emotions from speech data. CEFNet's architecture is designed to progressively 

extract and refine features, ultimately leading to accurate emotion categorization. The following sections provide a 

comprehensive overview of the CEFNet architecture: 
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Figure 3: The CEFNet Model Architecture for Emotion Recognition from Speech 

Algorithm 4: CEFNet Emotion Recognition from Speech 

 

Inputs:  

  - Speech signal data 

  - Number of emotion categories (num_classes) 

 

Outputs: 

  - Predicted emotion category for the given speech signal 

 

Steps: 

1. Start with the MFCC representation of the speech signal. 

2. Initialize the Sequential Model from Keras. 

 

3. Construct the MFCC Input Layer: 

   - Add an Input Layer with shape (40, 282, 1) to the model, representing the MFCC input. 
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4. Build the IFR-CNN Layer for initial feature extraction: 

   - Add a Conv2D Layer with 32 filters and a kernel size of (3,3) with 'relu' activation. 

   - Follow with a MaxPooling2D Layer to reduce spatial dimensions. 

 

5. Add the RPN Layer for region proposal: 

   - Add another Conv2D Layer with 64 filters and 'relu' activation. 

   - Apply MaxPooling2D to focus on the most informative regions. 

 

6. Implement DCNN Layers for detailed feature analysis: 

   - DCNN Layer 1: Add a Conv2D Layer with 128 filters for initial feature extraction and a subsequent 

MaxPooling2D Layer. 

   - DCNN Layer 2: Add a Conv2D Layer with 256 filters for detailed feature extraction and apply 

MaxPooling2D. 

   - DCNN Layer 3: Incorporate a Conv2D Layer with 512 filters for advanced feature extraction and use 

MaxPooling2D. 

 

7. Establish DBN Layers for high-level abstraction: 

   - Flatten the feature maps to prepare for dense layers. 

   - DBN Layer 1: Add a Dense Layer with 512 units and 'relu' activation. 

   - (Optional) Integrate BNLA processing if necessary. 

 

8. Define the Output Layer for emotion classification: 

   - Add a Dense Layer with 'softmax' activation, where the number of units equals the number of emotion 

categories (num_classes). 

 

9. (Optional) Compile the model with an optimizer, loss function, and metrics suitable for classification. 

 

10. Summarize the model to output the architecture details. 

 

11. Use the constructed model to train on labeled speech data for emotion recognition. 

 

12. After training, use the model to predict emotion categories on new speech data. 

 

End Algorithm 

 

The CEFNet model starts with the MFCC Input Layer, receiving speech signal inputs as a matrix of size (40, 

282). This layer is crucial for capturing the nuances of speech, aligning with human auditory perception. Next is 

the IFR-CNN Layer, where convolutional operations on the MFCCs extract spatial and temporal features essential 

for emotional analysis, reducing the feature map to (38, 280). The RPN Layer, a key part of the IFR-CNN, further 

processes the feature map, identifying regions rich in emotional content and potentially reducing dimensions to 

(36, 278). Following this, the DCNN Layers sequentially analyze the RPN output. Layer 1 extracts initial features, 

reducing the map to (34, 276). Layer 2, for detailed feature extraction, refines it further to (32, 274). Finally, 

Layer 3 synthesizes these features, compacting them to (30, 272). These layers collectively enhance understanding 

of emotional nuances in speech. The DBN Layers, augmented by the BNLA, further abstract high-level 

representations. Layer 1 reduces the feature size to (28, 270), while Layer 2, integrated with BNLA, refines it to 

(26, 268), facilitating complex abstraction of emotional states. 

The final stage, the Output Layer, classifies the processed data into emotion categories using softmax 

activation. This stage determines the emotional state expressed in the speech, representing the culmination of the 

network's sophisticated emotion recognition process. Each section of the CEFNet architecture plays a unique role 

in this comprehensive system for emotion recognition from speech data. 
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3.3.1 Architectural Design and Optimization Strategies of CEFNet: 

• IFR-CNN: The initial feature extraction from the input MFCCs can be represented as 𝑋IFR−CNN = IFR −

CNN(𝑋MFCC). 

• RPN: The region proposal process can be expressed as 𝑋RPN = RPN(𝑋IFR−CNN). 

• DCNN Layers: Multiple DCNN layers progressively process and reduce the feature map size, 

represented as 𝑋DCNN
(𝑖)

= DCNN(𝑖)(𝑋RPN) for 𝑖 in the range of the number of DCNN layers. 

• DBN Layers with BNLA: The DBN layers with Bird's Nest Learning Analogy can be written as 𝑋DBN
(𝑗)

=

DBN(𝑗)(𝑋DCNN
(𝑖)

) for 𝑗 in the range of the number of DBN layers. 

Learning Rates and Optimization: 

• Adaptive Learning Rates: This can be represented as 𝐿𝑅adaptive  using an optimizer like RMSprop. 

Activation Functions: 

• Leaky ReLU: The Leaky ReLU activation function in hidden layers can be expressed as 𝑋ReLU =

LeakyReLU⁡(𝑋). 

• Softmax: The softmax activation function in the output layer for multi-class classification can be written 

as 𝑌softmax = softmax⁡(𝑋). 

Output Layer: 

• Categorization: The categorization of speech data into different emotion classes can be represented as 

𝑌emotion = categorize⁡(𝑋DBN
(𝑗)

). 

The decreasing feature map sizes across layers reflect the progressive reduction in dimensions, indicating a focus 

on extracting and refining the most informative features for accurate emotion classification. 

IV. EXPERIMENTS AND RESULTS 

4.1 Experimental Setup:In this segment, we expound on the preparatory phase for speech data, pivotal for the 

effective operationalization of our model. We began by standardizing the amplitude across audio samples from the 

EMODB and RAVDESS databases—a measure indispensable for normalizing volume levels and mitigating their 

potential bias on model accuracy. Post amplitude normalization, these audio signals were encoded into Mel 

Frequency Cepstral Coefficients (MFCCs), translating the auditory data into a format (40 time steps by 282 

frequency bins) that is highly conducive to deep neural network processing. To bolster the model's resilience and 

its ability to generalize, we employed data augmentation methods, including time-stretching and pitch-shifting. 

These methods not only diversify our dataset with an enriched spectrum of speech modulations but also prime the 

model for a broader variety of input data. This comprehensive preprocessing regimen lays down a solid 

groundwork, facilitating effective model training and enhanced proficiency in emotion detection. 

4.2 Hyper parameter Settings:This section delineates the methodical tuning of our model's hyperparameters. 

Training commenced with a default learning rate of 0.001, which was dynamically modulated using the Adam 

optimizer to achieve superior gradient descent and convergence. A batch size of 32 was selected to strike a 

balance between computational load and training consistency. Within the architecture, hidden layers were 

equipped with Leaky ReLU activation functions to prevent the vanishing gradient dilemma, while the softmax 

activation in the output layer was tasked with the distribution of class probabilities. The training regimen was 

designed for a maximum of 100 epochs, with an early stopping protocol that ceases training upon detecting no 

validation loss improvement for a sequence of 10 epochs—thus averting model overfitting. To further endorse 

model generalization, dropout strategies and L2 regularization were implemented: dropout to foster the learning of 

robust feature representations, and L2 regularization to promote the assimilation of simpler, more general patterns. 

This meticulous calibration of hyperparameters is elemental to cultivating a model adept at discerning emotions 

from spoken language. 
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Table 3: Hyperparameter Settings for CEFNet Training 

Parameter Value/Description 

Input Data Size MFCCs with dimensions (40, 282) 

Number of Layers Total layers including IFR-CNN, RPN, DCNN, and DBN layers 

Number of Hidden 

Layers 

Hidden layers within DCNN and DBN 

Learning Rate Adaptive, starting at 0.001, adjusted with Adam optimizer 

Batch Size 32, for computational efficiency and training stability 

Activation Functions Leaky ReLU (hidden layers), Softmax (output layer) 

Number of Epochs Up to 100, with early stopping if no improvement in validation loss for 10 consecutive 

epochs 

Regularization Dropout layers and L2 regularization to prevent overfitting 

 

4.3 Hardware and Software Configuration:The training and evaluation of the CEFNet model were underpinned 

by a dedicated hardware and software ecosystem designed for high efficiency and peak performance. The heavy 

computational demands of the model were managed by a high-performance workstation outfitted with an NVIDIA 

Tesla V100 GPU. This hardware choice provided the substantial processing capability required for the intensive 

computations inherent in deep learning models. For software, we leveraged the robust and flexible features of 

prominent deep learning libraries, TensorFlow and PyTorch. These frameworks facilitated the intricate 

construction and training of the CEFNet's neural network architecture. The synergy between this advanced 

hardware and sophisticated software was instrumental in the successful execution of our research, ensuring precise 

emotion detection within our speech data sets. 

4.4 Evaluation Metrics :This section explicates the metrics utilized to gauge the performance of the model, 

encompassing accuracy, precision, recall, and the F1-score. 

Accuracy:This metric quantifies the ratio of correctly predicted instances to the overall number of predictions 

made, offering a general measure of model performance. 

Equation: Accuracy =
 Number⁡of⁡Correct⁡Predictions 

 Total⁡Number⁡of⁡Predictions 
 

Precision:Precision determines the fraction of predicted positives that are true positives, reflecting the model's 

exactness. 

Equation: Precision =
 True⁡Positives⁡(TP) 

 True⁡Positives⁡(TP) + False⁡Positives⁡(FP) 
 

Recall (Sensitivity):Recall computes the fraction of actual positives that the model correctly identifies, indicating 

its thoroughness. 

Equation: Recall =
 True⁡Positives⁡(TP) 

 True⁡Positives⁡(TP)⁡+⁡False⁡Negatives⁡(FN) 
 

F1-Score:The F1-score provides a balanced mean between precision and recall, suitable for contexts where an 

equilibrium between false positives and negatives is essential. 

Equation: F1-Score = 2 ×
 Precision × Recall 

 Precision + Recall 
 

These metrics, in tandem, furnish a multidimensional evaluation of the model, addressing its accuracy, error 

propensity, and the equilibrium between recall and precision 

4.5 Baseline models  

To evaluate our DCNN+DBN hybrid model for speech emotion classification, we benchmarked it against a 

range of state-of-the-art models in speech emotion recognition. This includes the lightweight Att-Net [7], utilizing 
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a self-attention mechanism with dilated CNN for SER; the Deep-stride CNN [8], leveraging raw spectrograms for 

feature extraction and Softmax for classification; and the Deep-BLSTM [9], a BiLSTM-based framework 

demonstrating strong results in SER. We also considered the CTENet [20], which employs multi-scale 

convolutional layers for audio-text representation and an attention module for enhanced performance [21]. 

Additionally, the 1D-CNN-LSTM-GRU Ensemble [10] was included, known for its robustness across SER 

datasets. Our analysis also encompassed the IFR-CNN [22], notable for its advanced RoI detection, and a 

DCNN+DBN model [23] adept in spatial-temporal feature extraction, particularly for PTSD-related SER. These 

diverse and sophisticated models provided a comprehensive backdrop for comparing our proposed 

CEFNetmodel's feature extraction and emotion classification efficiency. 

V. RESULTS AND DISCUSSION 

This section delves into the evaluation of the Cognitive Emotion Fusion Network (CEFNet), an innovative 

model that integrates the Improved and Faster Region-based Convolutional Neural Network (IFR-CNN) with the 

capabilities of Deep Convolutional Neural Networks (DCNNs) and Deep Belief Networks (DBNs), further 

enriched with the Bird's Nest Learning Analogy (BNLA). CEFNet effectively utilizes the region-specific analysis 

power of IFR-CNN in tandem with the comprehensive hierarchical feature extraction abilities of DCNNs and 

DBNs, making it particularly adept for Speech Emotion Recognition (SER). The model's efficacy is thoroughly 

evaluated using the EMODB and RAVDESS datasets, employing key performance metrics such as accuracy, 

precision, recall, and F1 scores to measure its competence in emotion classification.  

Our analysis reveals that CEFNet achieved a high accuracy of 91.17% on the EMODB dataset, as shown in 

the confusion matrix (Table 4). The model excelled in identifying emotions like Anger, Boredom, and Happiness, 

while areas like Annoyance and Sadness showed room for improvement. Detailed precision, recall, and F1 scores 

for each emotion category are presented in Table 5 and visually depicted in Figure 4. For the RAVDESS dataset, 

CEFNet demonstrated an exceptional accuracy of about 98.11%. It showed proficiency in recognizing Calm, 

Happy, and Angry emotions, as detailed in Table 6 and further quantified by precision, recall, and F1 scores in 

Table 7. Figure 5 offers a visual interpretation of these metrics, providing an intuitive grasp of the model's 

categorization efficacy.Overall, the results and visual representations in Figures 4 and 5, along with the confusion 

matrix heatmap in Figure 6, underline CEFNet's robustness and precision in emotion classification, highlighting 

its potential for diverse SER applications. 

Table 4: Emotion Classification Confusion Matrix - EMODB Dataset 
 

Anger 

(Pred) 

Boredom 

(Pred) 

Annoyance 

(Pred) 

Fear 

(Pred) 

Happiness 

(Pred) 

Neutral 

(Pred) 

Sadness 

(Pred) 

Anger (True) 125 2 2 2 0 1 1 

Boredom (True) 3 80 2 1 1 1 0 

Annoyance 

(True) 

4 2 45 3 1 1 0 

Fear (True) 2 1 1 72 2 1 1 

Happiness 

(True) 

0 2 1 2 80 2 1 

Neutral (True) 1 1 1 1 1 110 0 

Sadness (True) 2 0 0 2 1 2 77 

 

Table 5: EMODB Dataset - Detailed Performance Metrics by Emotion Category 

Emotion Precision Recall F1 Score 

Anger 0.9124 0.9398 0.9260 

Boredom 0.9091 0.9091 0.9091 

Annoyance 0.8824 0.7895 0.8333 

Fear 0.8571 0.9000 0.8780 

Happiness 0.9302 0.8989 0.9143 
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Neutral 0.9244 0.9483 0.9362 

Sadness 0.9625 0.8652 0.9114 

 

Figure 3: Performance Metrics by Emotion Category in the EMODB Dataset

 

Figure 4: Evaluation Metrics by Emotion Category for the EMODB Dataset 

Table 6: Emotion Classification Confusion Matrix for RAVDESS Dataset: 
 

Calm 

(Pred) 

Happy 

(Pred) 

Sad 

(Pred) 

Angry 

(Pred) 

Fearful 

(Pred) 

Surprise 

(Pred) 

Disgust 

(Pred) 

Neutral 

(Pred) 

Calm 

(True) 

178 1 0 0 0 0 1 1 

Happy 

(True) 

0 183 1 0 0 1 0 1 

Sad (True) 0 0 181 0 0 0 0 0 

Angry 

(True) 

1 0 0 175 0 1 0 1 

Fearful 

(True) 

0 0 1 0 174 0 0 0 

Surprise 

(True) 

0 0 0 0 0 185 0 0 

Disgust 

(True) 

0 0 1 0 0 0 179 0 

Neutral 

(True) 

0 1 0 0 0 1 0 93 

 

Table 7: Performance Metrics by Emotion Category for the RAVDESS Dataset 

Emotion Precision Recall F1 Score 

Calm 0.9889 0.9834 0.9862 

Happy 0.9832 0.9837 0.9838 

Sad 0.9890 0.9945 0.9918 

Angry 0.9943 0.9831 0.9887 

Fearful 1.0000 0.9943 0.9971 

Surprise 0.9737 1.0000 0.9867 

Disgust 0.9945 0.9890 0.9917 

Neutral 0.9588 0.9790 0.9688 
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Figure 5: Comparative Analysis of Key Performance Metrics Across Emotion Categories in the EMODB Dataset 

 

 

Figure 6: Heatmap Visualization of Confusion Matrices for EMODB and RAVDESS Datasets 

 

The evaluation of the Cognitive Emotion Fusion Network (CEFNet), which integrates the Improved and 

Faster Region-based Convolutional Neural Network (IFR-CNN), Deep Convolutional Neural Networks (DCNNs), 

Deep Belief Networks (DBNs), and the Bird's Nest Learning Analogy (BNLA), demonstrates its high efficiency in 

speech emotion recognition. On the RAVDESS dataset, CEFNet achieved an impressive accuracy of 98.11%, a 

precision of 98.53%, a recall rate of 98.85%, and an F1 score of 98.68%, indicating its proficiency in accurately 

identifying and classifying emotions. In contrast, its performance on the EMODB dataset, while slightly lower, 

was still notable, with an accuracy of 91.17%, precision of 91.13%, recall of 90.72%, and an F1 score of 90.13%. 

These results highlight CEFNet's ability to effectively balance precision and recall, albeit with some room for 

improvement in certain areas. Visual representations in Figures 7 and 8 provide a clear depiction of the model's 

performance across both datasets, illustrating its consistency in accurately detecting a wide range of emotions in 

speech. Overall, the CEFNet model's integration of advanced neural network technologies contributes 

significantly to its robustness and reliability in diverse speech emotion recognition scenarios. 
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Table 8: Assessment of the Proposed Model's Classification Performance Using Two Benchmark Datasets 

Proposed Model Input 

features 

Dataset Accuracy Precision Recall F1 

score 

CEFNet(IFR-CNN , 

DCNNs,DBNs+ BNLA) 

Spectral 

Features 

RAVDESS 

Dataset 

98.11 % 98.53% 98.85% 98.68% 

EMODB 

dataset 

91.17% 91.13% 90.72% 90.13% 

 

Fig 7.Assessment of the Proposed Model's Performance Using the RAVDESS Dataset. 

 

Figure 8. Assessment of the Proposed Model's Performance Using the EMODB dataset Dataset 

Our Cognitive Emotion Fusion Network (CEFNet), a hybrid model designed for speech emotion recognition, 

distinguishes itself with its streamlined architecture, optimized for reduced training times and thus well-suited for 

real-time applications. Detailed in Table 9, CEFNet's operational efficiency is highlighted by its training duration 

and its relatively small model size, measured at just 6.21 megabytes (MB). This compact footprint is particularly 

notable when compared with existing benchmarks in the SER field, such as the ensemble 1D-CNN-LSTM-GRU 

and CTENet, offering a clear perspective on its efficiency and resourcefulness. 

The empirical evaluation of CEFNet underscores its lightweight configuration, a critical aspect for 

deployment in real-world scenarios. The model's agility and efficiency stem from its unique architectural design, 

which leverages the synergistic effects of advanced filtering techniques and feature map reduction strategies. 

Specifically, CEFNet employs deeper filter layers and reduces the dimensions of feature maps, a strategy that 

results in a cost-effective approach to hierarchical feature extraction without compromising the model's 

performance. 

Moreover, the overall structure of CEFNet, while maintaining a minimalistic footprint, does not sacrifice the 

complexity and depth required for accurate emotion recognition. This is evidenced by the model's total of 287,452 

trainable parameters, a figure that reflects its comprehensive learning capabilities. These parameters are fine-tuned 

to capture the nuances of emotional expression in speech, making CEFNet a robust tool for emotion 
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detection.TheCEFNet model, with its compact size, reduced training time, and a substantial number of trainable 

parameters, stands out as an efficient and effective solution for real-time speech emotion recognition. Its design 

and operational characteristics make it a promising candidate for diverse applications, ranging from interactive 

voice response systems to mental health assessment tools, where quick and accurate emotion detection is 

paramount. 

5.1 Comparison with Existing models 

Analyzing Table 9, we can derive several key insights and findings from the comparison of the proposed 

Cognitive Emotion Fusion Network (CEFNet) against various benchmark datasets and models in speech emotion 

recognition: 

1. Performance on RAVDESS Dataset: 

• CEFNet outperforms other models with an accuracy of 98.11%, precision of 98.53%, and F1 score of 

98.68%. 

• The closest competitor is the DCNN+DBN model with an accuracy of 97.27%, but its precision (89.71%) and 

F1 score (98.41%) are lower. 

• Other models like Att-Net, DS-CNN, Deep-BLSTM, and CTENet exhibit significantly lower performance 

metrics, ranging from 77.02% to 82.31% in accuracy. 

2. Performance on EMODB Dataset: 

• CEFNet shows strong performance with an accuracy of 91.17%, precision of 91.13%, and F1 score of 

90.13%. 

• The 1D-CNN-LSTM-GRU ensemble model demonstrates similar performance levels with 90.22% accuracy 

and a 91% precision. 

• IFR-CNN with IIUC stands out in the EMODB dataset with an impressive F1 score of 92.47%, slightly 

higher than that of CEFNet, indicating its effectiveness in balanced precision and recall. 

3. Model Feature Analysis: 

• Most models, including CEFNet, employ both spatial and temporal features, indicating a trend towards using 

comprehensive feature sets for enhanced emotion recognition accuracy. 

• Models focusing solely on spatial features like Att-Net and DS-CNN lag in performance, suggesting that the 

integration of temporal features plays a crucial role in accuracy. 

4. General Findings: 

• CEFNet's integration of IFR-CNN, DCNNs, DBNs, and BNLA contributes to its superior performance across 

both datasets, especially in terms of accuracy and precision. 

• The results suggest that the combination of spatial and temporal features, alongside advanced neural network 

architectures, significantly improves the model's ability to recognize and classify emotions in speech. 

• The study highlights the importance of robust model design, leveraging advanced features and architectures 

for improved performance in speech emotion recognition tasks. 

In conclusion, CEFNet demonstrates high efficacy in speech emotion recognition, outperforming other models in 

most metrics, particularly in the RAVDESS dataset. Its design and feature utilization serve as a benchmark for 

future models in the field. 
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Table 9. Assessment of the Proposed Model against Benchmark datasets 

 RAVDESS Dataset EMODB dataset 

Ref# Benchmarks Input 

features 

Accuracy 

(%) 

Precision 

(%) 

F1 

score 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1 

score 

(%) 

[7 ] Att-Net Spatial 

Features 

80 81 80 NA NA NA 

[8 ] DS-CNN Spatial 

Features 

79.50 81 84 NA NA NA 

[9] Deep-BLSTM Spatial + 

Temporal 

77.02 76 77 NA NA Na 

[20] CTENet Spatial + 

Temporal 

82.31 81.75 84.37 NA NA NA 

[10] ensemble 1D-CNN-

LSTM-GRU 

Spatial + 

Temporal 

92 93 94 90.22 91 90 

[22] IFR-CNN with IIUC Spatial + 

Temporal 

NA NA NA 89.5 91.22 92.47 

[23] DCNN+DBN Spatial 

+temporal 

97.27 89.71 98.41 NA NA NA 

Our CEFNet(IFR-CNN , 

DCNNs,DBNs+ 

BNLA) 

Spatial 

+temporal 

98.11  98.53 98.68 91.17 91.13 90.13 

 

 

Fig 9 : Comparative Evaluation of Different Benchmarks Using the RAVDESS Dataset

 

Fig 10 : Comparative Evaluation of Different Benchmarks Using the EMODB dataset  
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5.2 Limitations of the Study 

1. Dataset Diversity and Size: The current study primarily utilizes the RAVDESS and EMODB datasets. While 

comprehensive, these datasets may not fully represent the wide spectrum of human emotions and cultural 

diversity in speech patterns. This limitation could impact the model's generalizability across various 

languages and ethnic groups. 

2. Real-World Application Testing: CEFNet has demonstrated high efficacy in a controlled experimental 

setting. However, its performance in real-world scenarios, where background noise and speech variations are 

more prevalent, remains less explored. 

3. Computational Resources: Although the model is optimized for efficiency, its deployment in environments 

with limited computational resources (like mobile devices or low-end hardware) hasn't been thoroughly 

tested. The balance between model complexity and resource constraints needs further investigation. 

4. Dynamic Emotional States: The model's ability to recognize complex, overlapping, or rapidly changing 

emotional states in speech is not extensively examined. Emotional states in real-world conversations can be 

more nuanced than those presented in the datasets used. 

5. Interpretability of Model Decisions: Like many deep learning models, CEFNet faces challenges in 

interpretability. Understanding the rationale behind specific emotion recognition decisions is crucial for 

certain applications, such as mental health assessments. 

5.3 Future Directions 

1. Expanding Dataset Coverage: Future research could include more diverse datasets, encompassing 

different languages, accents, and cultural backgrounds. This expansion would enhance the model's 

applicability and accuracy across a broader range of users. 

2. Robustness in Varied Environments: Testing and optimizing CEFNet in more dynamic and 

challenging acoustic environments would be valuable. This includes scenarios with background noise, 

different recording qualities, and real-time interaction settings. 

3. Resource-Optimized Versions: Developing a version of CEFNet tailored for environments with limited 

computational power, such as mobile or embedded devices, could significantly expand its applicability. 

4. Handling Complex Emotional Expressions: Further research could focus on enhancing the model's 

ability to understand and categorize more complex emotional expressions, such as mixed or transitional 

emotional states. 

5. Model Explainability: Improving the interpretability of the model's decision-making process is crucial. 

This could involve integrating techniques that provide more transparent insights into how and why the 

model arrives at specific emotion classifications. 

6. Integration with Other Modalities: Combining speech data with other modalities like facial 

expressions or physiological signals could provide a more holistic approach to emotion recognition and 

increase accuracy. 

By addressing these limitations and exploring these future directions, the utility and applicability of CEFNet in 

various real-world scenarios could be significantly enhanced. 

VI. CONCLUSIONS AND SUGGESTIONS 

Our research introduces the Cognitive Emotion Fusion Network (CEFNet), a novel hybrid model in the field 

of Speech Emotion Recognition (SER), especially pertinent in mental health contexts such as PTSD diagnosis. 

CEFNet integrates Improved and Faster Region-based Convolutional Neural Networks (IFR-CNN), Deep 

Convolutional Neural Networks (DCNNs), Deep Belief Networks (DBNs), and the Bird's Nest Learning Analogy 

(BNLA). This integration marks a significant leap in emotion recognition, combining the strengths of each 

technology. In quantitative terms, CEFNet demonstrated exemplary performance on the EMODB and RAVDESS 

datasets, achieving an accuracy of 91.17% and 98.11%, precision of 91.13% and 98.53%, and F1 scores of 

90.13% and 98.68%, respectively. These results underscore CEFNet's superiority in accuracy and precision over 

existing models, indicating its robust capability in detecting a wide range of emotions. 
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Looking forward, the success of CEFNet opens diverse prospects for future exploration. Key areas include 

expanding the model’s dataset diversity to cover a wider range of languages and cultural contexts, enhancing its 

applicability across various user groups. Additionally, optimizing the model for resource-constrained 

environments, such as mobile devices, and improving its interpretability, especially for sensitive applications like 

mental health assessments, are crucial. Future studies could also focus on integrating SER with other modalities 

like facial expressions or physiological signals for a more holistic emotion recognition approach. These 

advancements will not only enhance the model's utility but also broaden its applicability in real-world scenarios, 

paving the way for more empathetic and nuanced human-computer interactions. 
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