
J. Electrical Systems 19-4 (2023): 350-375

350

1Dr. Jaibir Singh
2Dr.A.MallaReddy
3*Dr.Vasavi Bande
4 A.Lakshmanarao
5Dr. Goda

Srinivasa Rao
6K.Samunnisa

Enhancing Cloud Data

Privacy with a Scalable

Hybrid Approach: HE-DP-

SMC

Abstract: - Cloud computing has become a popular way to store and access data. However, there are concerns about the privacy of data

stored in the cloud. This paper proposes a novel privacy-preserving mechanism that uses a combination of homomorphic encryption,

differential privacy, and secure multi-party computation. The mechanism allows users to store their data in the cloud while still ensuring the

privacy of their data. The mechanism combines three cryptographic techniques: homomorphic encryption(HE), differential privacy(DP), and

secure multi-party computation(SMC). Homomorphic encryption enables computations on encrypted data, ensuring that confidentiality is

maintained throughout the storage process. Differential privacy(DP) techniques add an additional layer of protection by injecting controlled

noise into query responses, preserving the privacy of individual data items. Secure multi-party computation protocols ensure that

computations involving multiple cloud servers are performed securely without compromising the confidentiality of data. The mechanism is

efficient and scalable. It can be used to protect the privacy of data in a wide range of applications, including healthcare, finance, and

government. The quantitative results obtained from the performance evaluation of the proposed privacy-preserving mechanism reveal

valuable insights into its efficiency and effectiveness. The mechanism shows promising results for small to medium-sized datasets. As the

dataset size increases, the execution time, communication overhead, and storage requirements also increase proportionally. However, the

mechanism maintains its scalability and efficiency. In comparison with baseline systems, the proposed mechanism outperforms systems

without privacy-preserving mechanisms and only exhibits slightly slower performance than systems with traditional encryption. The

proposed mechanism is a promising new approach to privacy-preserving cloud computing. It provides a strong level of protection against a

variety of attacks, while still being efficient and scalable. It has the potential to revolutionize the way we store and share sensitive data..

Keywords: Cloud computing, Privacy-preserving, Holomorphic encryption, Differential privacy, Secure multi-party

computation

1. INTRODUCTION

Cloud computing is a service delivery model where resources, such as servers, storage, and applications, are

provided to users on demand over the Internet. Cloud computing has become increasingly popular in recent years

due to its many benefits, such as scalability, flexibility, and cost-effectiveness [1]. However, one of the main

concerns with cloud computing is data privacy. When users store their data in the cloud, they are giving up control

of their data to the cloud provider. This means that the cloud provider could potentially access and misuse the

data. There are a number of techniques that can be used to protect the privacy of data in the cloud.

The area of privacy-preserving mechanisms for cloud computing faces several research gaps and challenges that

need to be addressed for widespread adoption. These include efficiency, scalability, usability, acceptance, and

security concerns [4]. One of the key challenges is efficiently performing complex computations on encrypted

data. Current mechanisms often introduce significant computational overhead, hindering their practicality for real-

world applications. Finding ways to optimize these computations without compromising data confidentiality is

crucial. Another challenge is scalability, particularly when dealing with large datasets.

*3 Corresponding author : Associate professor, Department of IT, MVSR Engineering College, Nadergul, Hyderabad, Telangana. Email ID.

vasavi.bande@gmail.com

 1Assistant Professor, Department of Computer Science and Engineering, Lovely Professional University, Phagwara(Punjab), India.Email ID:

jaibir729@gmail.com
2Professor, Department of Information Technology, CVR College of Engineering, Hyderabad, Telangana.Email Id:

mallareddyadudhodla@gmail.com
4 Associate Professor, Department of IT, Aditya Engineering College,Surampaĺem, India, Email ID: laxman1216@gmail.com
5 Associate Professor, Dept of CSE ,KL University ,Guntur , Andhra Pradesh, India. Email Id: gsraob4u@gmail.com
6 Assistant Professor of CSE Department, Ashoka womens Engineering College, Kurnool, Andhra Pradesh, India, Email Id:

samunnisa14@gmail.com

Copyright © JES 2023 on-line : journal.esrgroups.org

J. Electrical Systems 19-4 (2023): 350-375

351

Privacy-preserving mechanisms should be designed to handle the increasing volume of data stored in cloud

servers efficiently. Ensuring that the mechanisms can scale without sacrificing performance is essential for their

practical implementation. Usability is another important aspect to consider. Privacy-preserving mechanisms

should be user-friendly and accessible to non-technical users. Simplifying the complexities of these mechanisms

and providing intuitive interfaces can encourage wider adoption and usage among individuals and organizations.

Building trust in privacy-preserving mechanisms is also critical. Addressing security concerns and providing

robust security proofs for these mechanisms is necessary to instill confidence in users and mitigate potential

vulnerabilities or threats [5]. Furthermore, acceptance of privacy-preserving mechanisms within the industry and

regulatory frameworks is crucial. Collaborative efforts between researchers, industry stakeholders, and

policymakers are needed to establish standards, guidelines, and frameworks that promote the adoption and

integration of these mechanisms into existing cloud computing practices.

To bridge these research gaps, further investigation, experimentation, and innovation are required.

Advancements in efficient computation techniques, scalability strategies, user experience design, security

analysis, and trust-building mechanisms are necessary to overcome the existing challenges and drive the broader

acceptance and utilization of privacy-preserving mechanisms in cloud computing environments. The increasing

adoption of cloud computing for data storage has led to concerns about data privacy and security. While cloud

storage offers numerous benefits, the transfer of sensitive information to third-party cloud service providers raises

significant challenges. Existing security measures such as encryption and access controls are not always sufficient

to ensure the privacy of data stored in the cloud. Therefore, there is a growing need for privacy-preserving

mechanisms that can effectively safeguard confidential information while harnessing the advantages of cloud

storage.

The problem addressed in this paper is the development of a privacy-preserving mechanism for secure data

storage in distributed cloud servers. This mechanism must ensure confidentiality and robust security, while also

maintaining efficient computational operations [6]. The research will address the challenges mentioned above by

developing a mechanism that uses a combination of cryptographic techniques, such as holomorphic encryption

and differential privacy. These techniques will be used to protect the privacy of the data while still allowing

efficient computational operations. The research will also focus on making the mechanism easy to use for non-

technical users. This will be done by developing a user-friendly interface that allows users to interact with the

mechanism without having to understand the underlying cryptography. The research will also focus on building

trust in the mechanism's security. This will be done by conducting security analysis and by publishing the results

of the analysis. The research will also work to ensure that the mechanism is accepted by industry and regulatory

frameworks. The research is expected to make a significant contribution to the field of privacy-preserving cloud

computing. The proposed mechanism has the potential to revolutionize the way we store and share sensitive data

in the cloud.

The research aims to provide an effective solution that enables individuals and organizations to securely store

their data in the cloud, ensuring privacy and data security in distributed cloud storage environments.

The main contribution of the research is as follows

• We propose a novel privacy-preserving mechanism that uses a combination of homomorphic encryption,

differential privacy, and secure multi-party computation. This mechanism allows users to store their data in

the cloud while still protecting the privacy of their data.

• We conduct a security analysis of the mechanism, showing that it is secure against a number of potential

attacks. This includes collusion attacks, side-channel attacks, and replay attacks.

• We evaluate the performance of the mechanism, showing that it is efficient and scalable. This means that the

mechanism can be used to store and process large datasets without sacrificing efficiency.

The remainder of the paper is organized as follows. Section 2 presents related work. Section 3 presents

preliminaries and security assumptions. Section 4 presents the problem statement. Section 5 presents the proposed

system. Section 6 presents the results and analysis. Section 7 concludes the paper.

J. Electrical Systems 19-4 (2023): 350-375

352

2. RELATED WORK

The related works focus on various privacy-preserving mechanisms in cloud computing, employing

techniques like proxy re-encryption, secure multiparty computation (MPC), attribute-based encryption (ABE), and

homomorphic encryption. These studies emphasize data privacy, efficiency, and security while evaluating their

proposed schemes using synthetic datasets to demonstrate efficacy and scalability. Some papers address specific

application domains like healthcare and IoT, while others offer broader solutions for secure cloud storage and data

transmission.

Paper [7] proposes a privacy-preserving and untraceable group data sharing scheme for cloud computing.

This scheme uses a combination of proxy re-encryption, oblivious random access memory (ORAM), and a one-

way circular linked table in a binary tree (OCLT). The paper evaluates the scheme using a synthetic dataset and

shows that it is effective in preserving privacy and untraceability while being efficient and scalable.

Paper [8] addresses the challenges of privacy-preserving analytics and proposes secure multiparty

computation (MPC) as a solution. MPC allows multiple parties to jointly compute a function on their private data

without revealing their individual data. The paper reviews various MPC protocols, discusses their pros and cons,

and presents a case study on privacy-preserving analytics using medical data. The paper concludes that MPC

shows promise for data privacy protection and suggests further exploration.

Paper [9] presents a privacy-preserving mechanism for secure data storage in distributed cloud servers. This

mechanism uses a combination of homomorphic encryption, differential privacy, and secure multi-party

computation. The paper evaluates the approach through theoretical analysis and experimental evaluation,

demonstrating its security against various attacks and its efficiency and scalability.

Paper [10] presents a privacy-aware genetic algorithm-based data security framework for distributed cloud

storage. This framework combines genetic algorithm, parallel data distribution, and privacy-aware selective

encryption techniques to safeguard data privacy. The data is divided into chunks, encrypted with different keys,

and distributed to cloud servers. A genetic algorithm is used to select encryption keys for optimal privacy

protection. Evaluation using a synthetic dataset confirms the framework's effectiveness in preserving privacy

while maintaining efficiency and scalability.

Paper [11] proposes a secure and distributed architecture for privacy-preserving healthcare systems. This

architecture consists of a custodian, a hospital, and a third-party service provider. The architecture is proven to be

secure against various attacks and demonstrates efficiency in terms of low communication and computation

overhead. The evaluation is performed using a synthetic dataset of patient records, showcasing the architecture's

applicability.

Paper [12] proposes a privacy-preserving and data transpiration algorithm for secure data access management

in multiple cloud environments. This algorithm is evaluated using a synthetic dataset, demonstrating its

effectiveness in preserving data privacy, efficiency, and security against various attacks. The proposed approach

shows promise for protecting data in cloud environments, and further improvements are suggested to enhance its

capabilities. The algorithm's applicability to different data types, such as medical and financial data, is also

discussed.

Paper [13] presents a privacy-preserving attribute-based encryption (ABE) mechanism for cloud computing.

This mechanism effectively preserves privacy by encrypting data using ABE and allowing decryption through OT

without revealing user attributes to the cloud server. The evaluation using a synthetic dataset demonstrates the

mechanism's efficacy, efficiency, and scalability.

Paper [14] proposes a secured storage and privacy-preserving model for cloud and IoT applications. This

model employs encryption, decryption, and key generation algorithms to enhance security. The evaluation

combines theoretical analysis and experimental assessment, demonstrating the model's effectiveness against

various attacks and its efficiency and scalability.

Paper [15] presents a role-based access control (RBAC) scheme using partial homomorphic encryption (PHE)

for securing cloud data. This scheme allows users to access their data while keeping the encryption keys hidden

from the cloud server. It utilizes the Paillier cryptosystem, a form of PHE, to perform computations on encrypted

data without decryption. Evaluation using a synthetic dataset demonstrates the scheme's effectiveness in

preserving data privacy, efficiency, and scalability.

J. Electrical Systems 19-4 (2023): 350-375

353

Paper [16] introduces a fully homomorphic multikey encryption scheme for secure cloud access and storage.

This scheme allows multiple users to access encrypted data without exposing decryption keys to the cloud server.

It is proven to be secure against various attacks and demonstrates efficiency suitable for cloud computing

applications. The findings from the synthetic dataset evaluation confirm its security and efficiency, making it a

promising approach for cloud computing scenarios.

Paper [17] proposes a secure data transmission scheme for distributed cloud servers. This scheme utilizes

HMCA and optimized CP-ABE-ECC data encryption to protect data privacy during transmission and storage. It

employs a combination of cryptographic techniques, including homomorphic encryption, attribute-based

encryption, and efficient cloud storage. The evaluation using a synthetic dataset demonstrates the scheme's

effectiveness in preserving data privacy while being efficient and scalable.

Paper [18] presents a fully homomorphic–elliptic curve cryptography based encryption algorithm

Paper presents a fully homomorphic–elliptic curve cryptography based encryption algorithm for privacy-

preserving cloud data. This algorithm is efficient, scalable, and allows computations on encrypted data. Evaluated

using a synthetic dataset, it effectively preserves privacy, marking a significant step forward in privacy-preserving

cloud computing despite some limitations.

Table 1: Summary of Related Works on Privacy and Security Techniques

Paper

Main Focus/Methodology Key Techniques Used Evaluation Findings

[7] Privacy-preserving group

data sharing in cloud

computing

Proxy re-encryption,

ORAM, OCLT

Synthetic dataset Effective in preserving

privacy; efficient &

scalable

[8] Privacy-preserving analytics Secure multiparty

computation (MPC)

Medical data case

study

MPC is promising for

data privacy protection

[9] Secure data storage in

distributed cloud servers

Homomorphic encryption,

differential privacy, MPC

Theoretical &

experimental

Secure against various

attacks; efficient &

scalable

[10] Data security for distributed

cloud storage

Genetic algorithm, parallel

data distribution, selective

encryption

Synthetic dataset Effective in preserving

privacy; efficient &

scalable

[11] Privacy-preserving healthcare

systems

Custodian-hospital-third-

party architecture

Synthetic dataset

of patient records

Secure against various

attacks; efficient

[12] Data transpiration algorithm

for secure data access

Data transpiration

algorithm

Synthetic dataset Effective in preserving

privacy; efficient &

secure

[13] Privacy-preserving attribute-

based encryption

ABE with OT decryption Synthetic dataset Effective in preserving

privacy; efficient &

scalable

[14] Security for cloud and IoT

applications

Encryption, decryption,

key generation algorithms

Theoretical &

experimental

Effective against various

attacks; efficient &

scalable

[15] Role-based access control for

cloud data

RBAC with Paillier

cryptosystem (PHE)

Synthetic dataset Effective in preserving

privacy; efficient &

scalable

[16] Secure cloud access and

storage

Fully homomorphic

multikey encryption

Synthetic dataset Secure against various

attacks; efficient

[17] Secure data transmission for

cloud servers

HMCA, optimized CP-

ABE-ECC data encryption

Synthetic dataset Effective in preserving

privacy; efficient &

scalable

[18] Privacy-preserving cloud

data

Fully homomorphic–

elliptic curve cryptography

Synthetic dataset Effectively preserves

privacy; efficient &

scalable despite some

limitations

J. Electrical Systems 19-4 (2023): 350-375

354

While significant progress has been made in the field of privacy and security techniques, there are still several

crucial research gaps that require attention. These gaps encompass the necessity for more efficient and scalable

privacy-preserving solutions, capable of handling large datasets without compromising performance. Additionally,

there is a need for solutions that provide enhanced security against a broader spectrum of attacks, ensuring robust

protection of sensitive information. Furthermore, addressing the demand for solutions applicable to diverse data

types remains imperative. Finally, to facilitate widespread adoption, there is a need for user-friendly and easily

deployable solutions that minimize complexity and implementation challenges.

The proposed work is a privacy-preserving cloud computing framework that addresses some of the research

gaps in this field. The framework is efficient, scalable, secure, and easy to use and deploy. It uses a combination

of cryptographic techniques to protect data privacy, including homomorphic encryption, secure multiparty

computation, and differential privacy. The framework is evaluated using a synthetic dataset and shows that it is

effective in preserving privacy while being efficient and scalable.

3. PRELIMINARIES AND SECURITY ASSUMPTIONS

3.1 Prerequisites

Homomorphic encryption: By enabling computations without decryption, homomorphic encryption is a specific

type of encryption. Allowing users to safeguard their data while still deriving insights, cloud computing facilitates

secure data storage. [19].

Let 𝐸 be a homomorphic encryption scheme, and let 𝑃 be a function. Then, for any encrypted data 𝐷 and any

input 𝑥, we have that 𝐸(𝐷) ∗ 𝐸(𝑃(𝑥)) = 𝐸(𝑃(𝐷)).In other words, if we encrypt the data D and then apply the

function P to the encrypted data, the result will be the encrypted version of the function applied to the original

data.

Differential privacy: Data protection through noise injection is the goal of differential privacy. Users may store

data in the cloud without cloud service providers learning sensitive information, thanks to this feature. Data

privacy is maintained via differential privacy's addition of noise. This can be mathematically expressed as follows:

Let 𝐷 be a dataset, and let 𝑃 be a function. Then, for any two neighboring datasets 𝐷 and 𝐷′, we have that

Pr[𝑃(𝐷) = 1] – Pr[𝑃(𝐷′) = 1] <= 𝑒𝑝𝑠𝑖𝑙𝑜𝑛. In other words, if we add noise to a dataset𝐷, then the probability

of the function 𝑃 returning 1 will not change by more than epsilon.

Secure multi-party computation: Parties can collaborate on a function without sharing their private information

with each other through secure multi-party computation. For data privacy, this capability safeguards Users'

personal information while sharing it with cloud providers.[21].

Let 𝐺 be a secure multi-party computation protocol for computing a function 𝑓. this means that for any parties 𝑃1

, 𝑃2, … , 𝑃𝑛, if each party 𝑃𝑖 holds a private input𝑥𝑖, then the protocol will compute 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) such that no

party learns anything about the other parties' inputs other than what is revealed by the function 𝑓.

3.2 Security Assumption

• The mechanism assumes that the cloud provider is honest-but-curious. This means that the cloud provider

will not intentionally violate the privacy of the data, but it may attempt to learn as much information as

possible about the data by observing the computations that are performed.

• The mechanism assumes that the parties involved in the computation are honest. This means that the parties

will not engage in cheating or collude with each other to gain an unfair advantage.

Let's denote the cloud provider as CP and the parties involved in the computation as 𝑃1, 𝑃2, … , 𝑃𝑛.

1. Privacy Assumption: The cloud provider is honest-but-curious. We can represent this assumption using the

following equation:

𝐶𝑃 ≠ 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

This equation signifies that the cloud provider is not malicious and will not deliberately violate the privacy

of the data stored in the cloud. However, it acknowledges that the cloud provider may be curious and try to

learn as much as possible about the data by observing the computations.

J. Electrical Systems 19-4 (2023): 350-375

355

2. Honesty Assumption: The parties involved in the computation are honest. We can represent this assumption

using the following equation:

𝑃1, 𝑃2, . . . , 𝑃𝑛 ≠ 𝐶ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑜𝑟 𝐶𝑜𝑙𝑙𝑢𝑠𝑖𝑜𝑛

This equation implies that each party participating in the computation is honest and will not engage in

cheating or colluding with other parties to gain an unfair advantage. It ensures the integrity and fairness of

the computations performed collaboratively.

3. Cloud Infrastructure Assumption: The assumption is that a distributed cloud infrastructure exists,

comprising multiple cloud servers denoted as 𝑆1, 𝑆2, . . . , 𝑆𝑛, that can securely store and process user data.

This infrastructure provides the necessary storage and computational capabilities required for the privacy-

preserving mechanism.

Let S = {S1, S2, … , Sn} represent the set of cloud servers in the distributed cloud infrastructure. Each cloud

server Si, where i = 1, 2, … , n, has the capacity to store and process data securely. The storage capacity of each

cloud server can be denoted as Cs, where s ∈ S. The computational capability of each cloud server can be

represented by the processing power Ps, where s ∈ S. To securely store user data in the cloud infrastructure, the

privacy-preserving mechanism ensures that data is distributed across multiple cloud servers. Let D =

 {d1, d2, … , dm} be the dataset containing m data items that need to be stored. The data distribution can be

represented by a mapping function F: D → S, where F(di) = s indicates that data item di is stored on cloud

server s.

The privacy-protecting mechanism redistributes data to ensure persistence even when some servers are

inaccessible due to technical issues. Furthermore, the privacy-protecting system should enable reliable access to

and retrieval of information in the dispersed cloud framework. Rigorous security measures, including

authentication protocols, controlled access, and robust communication procedures, safeguard data integrity and

confidentiality during data recovery and processing tasks. With the help of distributed cloud infrastructure and

data distribution mapping, privacy-preserving mechanism enable secure storage and processing of user data while

maintaining available capacity and computational resources across multiple cloud servers.

4. Data Privacy Concerns: To address the data privacy concerns of users and ensure the secure storage of

sensitive data in the cloud while preserving privacy and confidentiality, the privacy-preserving mechanism applies

cryptographic techniques and protocols [22].

Let m represent the user's sensitive data to be stored in the cloud. The privacy-preserving mechanism employs

an encryption function E() to encrypt the data, ensuring its confidentiality. Encrypted data = E(m). To access

and utilize the data, the privacy-preserving mechanism allows for secure decryption of the encrypted data using

the decryption function D(). Decrypted data = D(C) . The mechanism involves the management of cryptographic

keys to ensure the integrity and confidentiality of the data. The encryption key is denoted as KE, while the

decryption key is denoted as KD. The privacy-preserving mechanism ensures the secure storage of the encrypted

data in the cloud servers denoted as S1, S2, . . . , Sn. Cloud storage: S1(C), S2(C), … , Sn(C)

The above mathematical model shows how the privacy-preserving mechanism addresses the data privacy

concerns by applying encryption to the sensitive user data before storing it in the cloud. The encryption process

ensures that the data remains confidential and protected from unauthorized access. The cryptographic keys play a

crucial role in maintaining the integrity and confidentiality of the data during encryption and decryption processes.

By securely storing the encrypted data in the distributed cloud servers, the privacy-preserving mechanism

safeguards the privacy and confidentiality of the user's sensitive information. These preliminary assumptions lay

the foundation for the development of the privacy-preserving mechanism. They consider the availability of a

distributed cloud infrastructure, the existence of cryptographic primitives, and the need to protect sensitive data

privacy. By leveraging these assumptions, the research aims to devise a robust and efficient privacy-preserving

mechanism for secure data storage in distributed cloud servers.

4. PROBLEM STATEMENT

Let D represent the sensitive data that needs to be securely stored in distributed cloud servers. The goal is to

design a privacy-preserving mechanism that ensures the confidentiality and robust security of D.

Mathematically, the problem statement can be represented as follows:

J. Electrical Systems 19-4 (2023): 350-375

356

Confidentiality: The mechanism aims to prevent unauthorized access and information leakage, ensuring that the

cloud service provider has minimal knowledge about 𝐷. This can be expressed as:

Pr[𝐶𝑙𝑜𝑢𝑑𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑙𝑒𝑎𝑟𝑛𝑠 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔 𝑎𝑏𝑜𝑢𝑡 𝐷] ≤ 𝑒𝑝𝑠𝑖𝑙𝑜𝑛,

Where, epsilon is a small constant representing the amount of noise added to the data. A smaller value of epsilon

ensures greater confidentiality.

Computational Efficiency: The mechanism should be designed to perform efficient computations on encrypted

data to minimize computational overhead. This can be expressed as:

𝑇𝑖𝑚𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) ≤ 𝑂(𝑛),

𝑆𝑝𝑎𝑐𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) ≤ 𝑂(𝑛),

Where, 𝑛 represents the size of the data. The time complexity and space complexity of the mechanism should be

polynomial and linear in the data size, respectively.

Scalability: The mechanism needs to handle large datasets and perform secure computations across multiple

distributed cloud servers without compromising performance. This can be expressed as a scalability requirement:

𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) = 𝑇𝑟𝑢𝑒,

Indicating that the mechanism can scale effectively with the increasing volume of data and number of cloud

servers.

Usability: The mechanism should be user-friendly and easily accessible to non-technical users. This can be

represented as a usability requirement:

𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) ≥ 0.9,

Indicating a usability score of at least 0.9 on a scale of 0 to 1, where higher values represent better usability.

The proposed privacy-preserving mechanism combines homomorphic encryption, differential privacy, and

secure multi-party computation techniques. While the specific mathematical equations for these techniques can

vary based on the chosen schemes and protocols, their integration aims to satisfy the confidentiality,

computational efficiency, scalability, and usability objectives outlined above. By formulating the problem

statement mathematically, the research aims to develop a privacy-preserving mechanism that provides

comprehensive protection for sensitive data stored in distributed cloud servers, addressing the challenges of

privacy, security, computational efficiency, scalability, and usability in cloud storage environments [23].

5. PROPOSED SCHEME

5.1 System Model

According to Figure 1, our research paper's system model outlines the components and framework linked to

the suggested privacy-protecting measure for safe data storage in distant cloud servers. Explained is how the

mechanism lets users safely store their data in the cloud while maintaining appropriate levels of privacy, thanks to

the system model.

Figure 1: Proposed System model

J. Electrical Systems 19-4 (2023): 350-375

357

This innovative approach develops an integrated model for protecting sensitive data through cutting-edge

techniques including homomorphic encryption, differential privacy, and secure multi-party computation. A

confidentiality guardian lies within this system model to safeguard user information lodged in the clouds.

The system involves the following entities:

1. User: Represents the entity that possesses sensitive data to be stored in the cloud. The User interacts with the

system by encrypting their data, performing computations on the encrypted data, and securely uploading and

retrieving the data from the Cloud Servers.

2. Cloud Servers: Comprise multiple distributed cloud servers responsible for storing and processing the

encrypted user data. These servers collaborate to perform computations while maintaining the privacy and

confidentiality of the data.

3. Privacy-Preserving Mechanism: the core components include Privacy- Preserving Mechanisms which

combine different cryptography methods like holographic encryption and differential privacy for

safeguarding multi- party computing operations. Through this control system, sensitive digital content saved

on cloud server’s ranks highly regarding secrecy.

The system model operates as follows:

1. Data Encryption:

• The user encrypts their sensitive data using a suitable homomorphic encryption scheme. The encryption

ensures that computations can be performed on the encrypted data without revealing the original data. i.e

𝐶 = 𝐸(𝑚), where 𝐶 represents the ciphertext obtained by encrypting the plaintext message m.

2. Differential Privacy:

• The Privacy-Preserving Mechanism integrates differential privacy techniques to add controlled noise to

query responses. This preserves the privacy of individual data items, preventing the Cloud Servers from

learning sensitive information. i.e Q′(D) = Q(D) + η, where Q′(D) is the query result with noise,

Q(D) is the original query result, and η represents the added noise.

3. Secure Multi-Party Computation:

• Secure multi-party computation protocols are employed to enable secure computations across multiple

distributed Cloud Servers. These protocols ensure that computations are performed collaboratively

without revealing individual data to any single Cloud Server.

• The mechanism ensures that computations are performed collaboratively without revealing individual

data to any single cloud server. i.e Z = SMC(P1, P2, … , Pn), where Z represents the result of the

computation performed collectively by the cloud servers P1, P2, . . . , Pn.

4. Data Storage and Retrieval:

• The User securely uploads the encrypted data to the Cloud Servers for storage. The data can be retrieved

by the User, and computations can be performed on the encrypted data without exposing the original

sensitive information.

• The user can retrieve the data and perform computations on the encrypted data without exposing the

original data.

Combining homomorphic encryption, differential privacy, and secure multi-party computation methods, the

proposed system models offer a holistic privacy protection mechanism. Cloud security depends on this feature's

ability to safeguard data privacy and confidentiality. The synergy between the user, cloud servers, and the privacy-

preserving mechanism fosters secure data handling, access, and processing while prioritizing privacy.

5.2 Design Goals

The proposed system aims to achieve specific design goals that ensure the effectiveness, security, and

usability of the privacy-preserving mechanism for secure data storage in distributed cloud servers. These design

goals can be explained in detail with internal functions and represented in a mathematical model:

J. Electrical Systems 19-4 (2023): 350-375

358

Confidentiality:

Design Goal: Ensure that sensitive data remains confidential even when stored and processed in the cloud [24].

Internal Function: Data Encryption using homomorphic encryption. C = E (U, D), where C represents the

encrypted data, E () is the encryption function, U is the encryption key, and D is the sensitive data.

Computational Efficiency:

The mechanism should be designed to perform efficient computations on encrypted data, minimizing

computational overhead. This goal can be expressed in terms of time complexity and space complexity:

𝑇𝑖𝑚𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) <= 𝑂(𝑛) 𝑆𝑝𝑎𝑐𝑒𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) <= 𝑂(𝑛)

Here, 𝑛 represents the size of the data. The time complexity and space complexity of the mechanism should be

polynomial and linear, respectively, in relation to the data size.

Scalability Goal: The mechanism should be able to handle large datasets and perform secure computations across

multiple distributed cloud servers without compromising performance. This goal can be expressed as:

𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) = 𝑇𝑟𝑢𝑒

It indicates that the mechanism is scalable and can effectively process and protect the privacy of data as the

volume of data and number of cloud servers’ increase.

Usability Goal: The mechanism should be user-friendly and easily accessible to non-technical users. This goal can

be represented by a usability score:

𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚) ≥ 0.9

The usability score ranges from 0 to 1, with higher values indicating better usability. The mechanism should have

an usability score of at least 0.9, ensuring its ease of use for non-technical users.

5.3 System initialization

The system initialization process involves the following steps:

Step 1. Users Generate Homomorphic Encryption Keys

Leveraging the ElGamal encryption algorithm, the GenerateKeys() function produces encryption and decryption

keys (𝐾𝐸 and 𝐾𝐷) tailored to each user. The ElGamal encryption algorithm is a public-key encryption algorithm,

which means that there are two keys: Key pairings: the public and private keys. Although the public key hosts

encryption capabilities, only the private key holds the key to decryption.

The mathematical operations involved in the GenerateKeys() function are as follows:

1. The function generates a random prime number 𝑝.

2. The function generates a generator g of the multiplicative group of integers modulo 𝑝.

3. The function calculates the public key as 𝐾𝐸 = 𝑔𝑥𝑚𝑜𝑑 𝑝, where 𝑥 is a random integer.

4. The function calculates the private key as 𝐾𝐷 = (𝑔−1)𝑚𝑜𝑑 𝑝.

The generated keys ensure that the users can perform computations on their encrypted data without revealing the

original data. This is because the encrypted data can only be decrypted by the user who has the private key.

Step 2. Users Upload Encrypted Data to the Cloud

After generating the encryption keys, the users upload their encrypted data to the cloud servers for secure

storage and processing. The UploadDataToCloud() function is responsible for securely transferring the encrypted

data from the users to the cloud servers. It encompasses encryption and communication protocols to ensure the

confidentiality and integrity of the data during the upload process.

𝑑𝑒𝑓 𝑈𝑝𝑙𝑜𝑎𝑑𝐷𝑎𝑡𝑎𝑇𝑜𝐶𝑙𝑜𝑢𝑑(𝑑𝑎𝑡𝑎, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛_𝑘𝑒𝑦):

𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎 = 𝐸𝑙𝐺𝑎𝑚𝑎𝑙. 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝑎𝑡𝑎, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛_𝑘𝑒𝑦)

𝑠𝑒𝑐𝑢𝑟𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑇𝐿𝑆. 𝑐𝑟𝑒𝑎𝑡𝑒_𝑠𝑒𝑐𝑢𝑟𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙()

J. Electrical Systems 19-4 (2023): 350-375

359

𝑠𝑒𝑐𝑢𝑟𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 𝑠𝑒𝑛𝑑(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎)

𝑠𝑒𝑐𝑢𝑟𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 𝑐𝑙𝑜𝑠𝑒()

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 = ℎ𝑎𝑠ℎ𝑙𝑖𝑏. 𝑠ℎ𝑎256(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎). ℎ𝑒𝑥𝑑𝑖𝑔𝑒𝑠𝑡()

𝑐𝑙𝑜𝑢𝑑_𝑠𝑒𝑟𝑣𝑒𝑟. 𝑠𝑡𝑜𝑟𝑒_𝑑𝑎𝑡𝑎(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎, 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚)

This function takes two arguments: the data to be uploaded and the encryption key. The function first

encrypts the data using the ElGamal encryption algorithm. The encrypted data is then transferred to the cloud

server using a secure channel, such as TLS or SSL. The integrity of the data is verified using a checksum or hash

function. The encrypted data is then stored in the cloud server.

Encryption:

𝑑𝑒𝑓 𝐸𝑙𝐺𝑎𝑚𝑎𝑙. 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑑𝑎𝑡𝑎, 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛_𝑘𝑒𝑦):

𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛_𝑘𝑒𝑦. 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦

𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡 = 𝑝𝑜𝑤(𝑑𝑎𝑡𝑎, 𝑝𝑢𝑏𝑙𝑖𝑐_𝑘𝑒𝑦, 𝑚𝑜𝑑𝑢𝑙𝑢𝑠)

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡

This function takes two arguments: the data to be encrypted and the encryption key. The function first gets

the public key from the encryption key. The data is then encrypted using the public key. The encrypted data is

returned.

Secure data transfer:

𝑑𝑒𝑓 𝑇𝐿𝑆. 𝑐𝑟𝑒𝑎𝑡𝑒_𝑠𝑒𝑐𝑢𝑟𝑒_𝑐ℎ𝑎𝑛𝑛𝑒𝑙():

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑠𝑜𝑐𝑘𝑒𝑡. 𝑠𝑜𝑐𝑘𝑒𝑡(𝑠𝑜𝑐𝑘𝑒𝑡. 𝐴𝐹_𝐼𝑁𝐸𝑇, 𝑠𝑜𝑐𝑘𝑒𝑡. 𝑆𝑂𝐶𝐾_𝑆𝑇𝑅𝐸𝐴𝑀)

𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 𝑐𝑜𝑛𝑛𝑒𝑐𝑡(("𝑐𝑙𝑜𝑢𝑑_𝑠𝑒𝑟𝑣𝑒𝑟", 443))

𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 𝑠𝑡𝑎𝑟𝑡_𝑡𝑙𝑠()

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

This function creates a secure channel between the user's device and the cloud server. The function first

creates a socket and connects it to the cloud server. The function then starts the TLS protocol on the socket. The

secure channel is returned.

Integrity verification:

𝑑𝑒𝑓 ℎ𝑎𝑠ℎ𝑙𝑖𝑏. 𝑠ℎ𝑎256(𝑑𝑎𝑡𝑎):

ℎ𝑎𝑠ℎ_𝑜𝑏𝑗𝑒𝑐𝑡 = ℎ𝑎𝑠ℎ𝑙𝑖𝑏. 𝑠ℎ𝑎256()

ℎ𝑎𝑠ℎ_𝑜𝑏𝑗𝑒𝑐𝑡. 𝑢𝑝𝑑𝑎𝑡𝑒(𝑑𝑎𝑡𝑎)

𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚 = ℎ𝑎𝑠ℎ_𝑜𝑏𝑗𝑒𝑐𝑡. ℎ𝑒𝑥𝑑𝑖𝑔𝑒𝑠𝑡()

𝑟𝑒𝑡𝑢𝑟𝑛 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚

This function calculates the checksum of the data. The checksum is a unique value that is generated from the

data. The checksum can be used to verify the integrity of the data.

Storage:

𝑑𝑒𝑓 𝑐𝑙𝑜𝑢𝑑_𝑠𝑒𝑟𝑣𝑒𝑟. 𝑠𝑡𝑜𝑟𝑒_𝑑𝑎𝑡𝑎(𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎, 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚):

𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒. 𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑜𝑤({

 "𝑑𝑎𝑡𝑎": 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑_𝑑𝑎𝑡𝑎,

 "𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚": 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚

 })

J. Electrical Systems 19-4 (2023): 350-375

360

This function stores the encrypted data and the checksum in the cloud server database. The database is a secure

storage mechanism that can be used to store sensitive data.

Step 3. The cloud generates a shared key for secure multi-party computation

This function generates a shared key using the ElGamal key exchange algorithm. The function first generates

a random prime number p and a generator g of the multiplicative group of integersmodulo p. The cloud's public

key y is then generated as gxmod p, where x is a random integer. The shared key SK is then generated

as gxymod p. The confidentiality of the shared key is protected using access control lists (ACLs) [25] and Elliptic

Curve Diffie-Hellman (ECDH) [26]. ACLs are used to control who has access to the shared key. ECDH is a

cryptographic protocol that can be used to generate a shared secret key over an insecure channel.

𝑑𝑒𝑓 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆ℎ𝑎𝑟𝑒𝑑𝐾𝑒𝑦():

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑝.

𝑝 = 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(2 ∗∗ 1024, 2 ∗∗ 2048)

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑔 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑔𝑟𝑜𝑢𝑝 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝.

𝑔 = 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑟𝑎𝑛𝑑𝑖𝑛𝑡(2, 𝑝 − 1)

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑐𝑙𝑜𝑢𝑑′𝑠 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 𝑦 = 𝑔𝑥𝑚𝑜𝑑 𝑝, where 𝑥 is a random integer.

𝑦 = 𝑝𝑜𝑤(𝑔, 𝑥, 𝑝)

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠ℎ𝑎𝑟𝑒𝑑 𝑘𝑒𝑦 𝑆𝐾 = 𝑔𝑥𝑦𝑚𝑜𝑑 𝑝.

𝑆𝐾 = 𝑝𝑜𝑤(𝑔, 𝑥𝑦, 𝑝)

𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑠ℎ𝑎𝑟𝑒𝑑 𝑘𝑒𝑦 𝑆𝐾.

𝑟𝑒𝑡𝑢𝑟𝑛 𝑆𝐾

The collaborative partnership between users and the cloud strongly depends on the shared key. The security

of data transmission between users and the cloud depends on sharing the key. Confidentiality is maintained by this

measure, as no party can gain access to others' specific input data. Encryption protects the shared key by storing it

in a secure mechanism resistant to unauthorized access. In essence, the encrypted storage mechanism is a

database, file system, or cloud storage service, with an added layer of security. Shared secrets unlock the

possibility of cooperative computations with thorough security. Allowing parties to cooperate on computations

without disclosing private data, this cryptographic technique is called secure multi-party computation. Cloud

encryption begins with using a shared key to protect data. So that the cloud cannot view individual data items, this

is achieved. Using a secure key generation algorithm and other security measures, the integrity and privacy of the

shared key are protected. On computations, users and the cloud collaborate with mutual data protection.

Step 4 .The users and the cloud agree on a noise distribution for differential privacy

Users and the cloud engage in a negotiation process using the AgreeOnNoiseDistribution() function to

establish a consensus on the noise distribution. The function facilitates the exchange of information and protocols

to determine a suitable noise distribution. The agreed-upon noise distribution will be used to inject controlled

noise into query responses, preserving privacy while maintaining data utility. This ensures that the privacy of

individual data items is protected during computations and query responses.

𝑑𝑒𝑓 𝑁𝑒𝑔𝑜𝑡𝑖𝑎𝑡𝑖𝑜𝑛(𝑈, 𝐶):

 # 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑢𝑠𝑒𝑟𝑠 𝑎𝑛𝑑 𝑐𝑙𝑜𝑢𝑑.

 𝐼𝑛𝑓𝑜_𝑈 = {}

 𝐼𝑛𝑓𝑜_𝐶 = {}

 # 𝐸𝑥𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢𝑠𝑒𝑟𝑠 𝑎𝑛𝑑 𝑐𝑙𝑜𝑢𝑑.

 𝑓𝑜𝑟 𝑢 𝑖𝑛 𝑈:

 𝐼𝑛𝑓𝑜_𝑈[𝑢] = 𝑢. 𝑝𝑟𝑜𝑣𝑖𝑑𝑒_𝑝𝑟𝑖𝑣𝑎𝑐𝑦_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠()

J. Electrical Systems 19-4 (2023): 350-375

361

 𝐶. 𝑝𝑟𝑜𝑣𝑖𝑑𝑒_𝑛𝑜𝑖𝑠𝑒_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠()

 # 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑎 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 𝑛𝑜𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙.

 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑠 = {𝑃1, 𝑃2, . . . , 𝑃𝑚}

 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 = 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙(𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑠)

 # 𝑅𝑒𝑎𝑐ℎ 𝑎𝑛 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑛𝑜𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.

 𝑓𝑜𝑟 𝑢 𝑖𝑛 𝑈:

 𝑢. 𝑎𝑔𝑟𝑒𝑒_𝑜𝑛_𝑛𝑜𝑖𝑠𝑒_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙)

 𝐶. 𝑎𝑔𝑟𝑒𝑒_𝑜𝑛_𝑛𝑜𝑖𝑠𝑒_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙)

 # 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑎𝑔𝑟𝑒𝑒𝑑 − 𝑢𝑝𝑜𝑛 𝑛𝑜𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙

𝑑𝑒𝑓 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝐼𝑛𝑓𝑜_𝑈, 𝐼𝑛𝑓𝑜_𝐶):

 # 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 𝑡ℎ𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 𝑢𝑠𝑒𝑟𝑠 𝑎𝑛𝑑 𝑐𝑙𝑜𝑢𝑑.

 𝐼𝑛𝑓𝑜 = 𝐼𝑛𝑓𝑜_𝑈 | 𝐼𝑛𝑓𝑜_𝐶

 # 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑡ℎ𝑒 𝑛𝑜𝑖𝑠𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.

 𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑁𝑜𝑖𝑠𝑒(𝑠𝑖𝑔𝑚𝑎)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝑁𝑜𝑖𝑠𝑒𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

This function first initializes the information provided by users and cloud. The information provided by users

is their privacy requirements, and the information provided by cloud is the available noise generation techniques.

The function then exchanges information between users and cloud. The users provide their privacy requirements,

and the cloud provides information about the available noise generation techniques. The function then determines

a suitable noise distribution protocol. The protocol is chosen based on the nature of the data, the computational

requirements, and the desired privacy levels. The function then reaches an agreement on the noise distribution

with the users and the cloud. The agreed-upon noise distribution is then returned by the function. This noise

distribution is used to inject controlled noise into query responses, preserving the privacy of individual data items

during computations, and striking a balance between privacy and data utility.

5.4 Proposed System Work

Figure2: Proposed System Architecture

The System Design and Architecture phase focuses on developing a robust and secure architecture for the

privacy-preserving mechanism. These phases involves the integration of various components, such as

J. Electrical Systems 19-4 (2023): 350-375

362

homomorphic encryption, differential privacy, and secure multi-party computation, to achieve the desired privacy

and security objectives as shown in figure 2.

1. Users:

• The users are the end users of the system who interact with the User Application.

• They upload encrypted data and perform computations on their data while ensuring its privacy.

• Users may have sensitive data that they want to store and process in the cloud while preserving its

confidentiality.

2. User Application:

• The User Application is the user-facing application that enables users to interact with the system.

• It provides a user-friendly interface for uploading encrypted data and performing computations securely.

• Users can securely upload their encrypted data to the cloud servers through the User Application.

• The User Application may also provide functionalities for managing and analyzing the encrypted data.

3. Cloud Servers:

• The Cloud Servers represent the third-party cloud service providers that store and process the users'

encrypted data.

• The architecture considers the scalability and accessibility benefits provided by the cloud infrastructure.

• Cloud Servers provide the necessary computational resources and storage capabilities to handle the users'

encrypted data.

4. Secure Storage:

• The Secure Storage component within the Cloud Servers securely stores the users' encrypted data.

• It employs secure storage mechanisms, such as encrypted databases or distributed file systems, to protect

the confidentiality and privacy of the stored data.

• The encrypted data is stored in a manner that prevents unauthorized access and ensures its integrity.

5. Secure Computation:

• The Secure Computation component within the Cloud Servers performs computations on the users'

encrypted data.

• It utilizes the combination of homomorphic encryption, differential privacy, and secure multi-party

computation techniques to enable secure and privacy-preserving computations on the data.

• Homomorphic encryption allows computations to be performed directly on encrypted data without

decrypting it.

• Differential privacy ensures that the computation results do not reveal sensitive information about

individual data items.

• Secure multi-party computation enables collaborative computations among multiple entities without

revealing their private data.

• By leveraging these techniques, the Secure Computation component ensures that users can perform

computations on their encrypted data while preserving its privacy.

The relationships within the architecture are as follows:

• Users interact with the User Application to upload encrypted data and perform computations.

• The User Application communicates with the Secure Storage component to upload the encrypted data

securely.

J. Electrical Systems 19-4 (2023): 350-375

363

• The User Application also communicates with the Secure Computation component to perform computations

on the encrypted data.

• The Cloud Servers, including the Secure Storage and Secure Computation components, ensure the secure

storage and processing of the users' encrypted data.

• The architecture incorporates privacy-preserving techniques such as homomorphic encryption, differential

privacy, and secure multi-party computation to protect the privacy of the users' data.

• Secure data transfer is established between the users and the cloud servers using protocols such as TLS/SSL

to ensure the confidentiality and integrity of the data during transmission.

The System Design and Architecture phase considers factors such as scalability, efficiency, usability, and

integration with existing cloud infrastructure. It aims to provide a robust and secure framework for the privacy-

preserving mechanism, allowing users to securely store and process their data in the cloud while preserving its

privacy. Overall, the System Design and Architecture phase plays a critical role in developing a well-defined and

secure system that incorporates the necessary components and techniques to achieve the desired privacy and

security objectives.

5.5 Secure Computation:

Input: The Secure Computation component receives encrypted data, denoted as E, from the users. The data has

been encrypted using the CKKS (Ciphertext-Keccak-Shor) [27] homomorphic encryption scheme during the data

upload phase. The encrypted data includes the necessary inputs, denoted as I, required for the computations to be

performed. Mathematically, the input can be represented as: 𝐸 = 𝐸𝑛𝑐(𝐼)

Homomorphic Encryption: The Secure Computation component utilizes the CKKS homomorphic encryption

scheme to perform computations on the encrypted data without decrypting it. The CKKS scheme supports various

mathematical operations, allowing computations to be performed directly on the ciphertexts. The homomorphic

encryption scheme ensures the confidentiality of the data and enables computations while preserving privacy.

Mathematically, the computation on the encrypted data can be represented as: 𝐸𝑛𝑐(𝑅𝑒𝑠𝑢𝑙𝑡) =

 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐𝑂𝑝(𝐸𝑛𝑐(𝐼))

Differential Privacy: The Secure Computation component incorporates differential privacy techniques to ensure

that the computation results do not reveal sensitive information about individual data items. The computation

process includes mechanisms to inject controlled noise into the computations, preventing the disclosure of specific

data points.

Secure Multi-Party Computation: The Secure Computation component employs secure multi-party computation

techniques (SPMC) to enable collaborative computations among multiple entities without revealing their private

data. The computation process allows multiple parties, including the users and the cloud servers, to jointly

compute functions on their respective encrypted data inputs. The computations are performed securely without

disclosing the individual inputs to the computation participants.

Computation Operations: The Secure Computation component supports various operations that can be performed

on the encrypted data, such as addition, multiplication, comparison, or more complex computations. These

operations are carried out on the encrypted data without revealing the underlying values, ensuring confidentiality

and privacy.

Result Encryption: After performing the computations on the encrypted data, the Secure Computation component

generates the result, denoted as 𝑅, in an encrypted form. The result remains encrypted throughout the computation

process, ensuring the privacy of the original data. Mathematically, the encrypted result can be represented as:

𝐸𝑛𝑐(𝑅)

Secure Result Transfer: The Secure Computation component securely transfers the encrypted result back to the

users or other relevant entities for further processing or analysis. Secure communication protocols, such as

TLS/SSL, can be employed to ensure the confidentiality and integrity of the result during transfer.

Mathematically, the transfer can be represented as: 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝐸𝑛𝑐(𝑅))

Decryption and Interpretation: The users, possessing their respective decryption keys, can decrypt the result and

interpret it in the context of their computations. By decrypting the result, denoted as 𝐷𝑒𝑐(𝑅), users can obtain the

J. Electrical Systems 19-4 (2023): 350-375

364

final computation outcome without exposing their sensitive data or intermediate computation steps.

Mathematically, the decryption and interpretation can be represented as: 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑅))

5.6 Secure Computation Algorithm:

Figure 3. A flowchart of the secure computation process

Algorithm: SecureComputation (Input: EncryptedData)

Input: EncryptedData - Users' encrypted data

Output: ComputedResult - Result of the secure computation

1. 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛:

 a. Decrypt the encrypted data using the appropriate homomorphic encryption scheme.

 b. Apply the necessary mathematical operations on the decrypted data to perform the desired computation.

2. 𝐴𝑝𝑝𝑙𝑦 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑖𝑣𝑎𝑐𝑦:

 a. Introduce controlled noise to the computed result to ensure differential privacy.

 b. The noise should be carefully determined to balance privacy protection and data utility.

3. 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑆𝑒𝑐𝑢𝑟𝑒 𝑀𝑢𝑙𝑡𝑖 − 𝑃𝑎𝑟𝑡𝑦 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛:

 a. Collaboratively compute the result with other entities involved in the secure computation.

 b. Each entity contributes its part of the computation without revealing its private data.

4. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡:

 a. Encrypt the computed result to preserve its privacy.

 b. Ensure that only authorized entities can access and interpret the encrypted result.

5. 𝐸𝑛𝑑

Psuedocode: SecureComputation(Input: EncryptedData)

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑆𝑒𝑐𝑢𝑟𝑒𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎):

 // 𝑆𝑡𝑒𝑝 1: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

 𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎 = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎)

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐷𝑎𝑡𝑎)

 // 𝑆𝑡𝑒𝑝 2: 𝐴𝑝𝑝𝑙𝑦 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑖𝑣𝑎𝑐𝑦

J. Electrical Systems 19-4 (2023): 350-375

365

 𝑁𝑜𝑖𝑠𝑦𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐼𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑁𝑜𝑖𝑠𝑒(𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡)

 // 𝑆𝑡𝑒𝑝 3: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑆𝑒𝑐𝑢𝑟𝑒 𝑀𝑢𝑙𝑡𝑖 − 𝑃𝑎𝑟𝑡𝑦 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑒𝑊𝑖𝑡ℎ𝑂𝑡ℎ𝑒𝑟𝑠(𝑁𝑜𝑖𝑠𝑦𝑅𝑒𝑠𝑢𝑙𝑡)

 // 𝑆𝑡𝑒𝑝 4: 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡

 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒𝑅𝑒𝑠𝑢𝑙𝑡)

 𝑟𝑒𝑡𝑢𝑟𝑛 𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝑅𝑒𝑠𝑢𝑙𝑡

𝑒𝑛𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

5.7 CKKS homomorphic encryption scheme:

Homomorphic encryption scheme CKKS (Ciphertext-Keccak-Shor) facilitates secure operations on encrypted

information. Encryption enables mathematical computations directly on cryptic ciphers, yields cryptically encoded

results. This property protects the privacy and confidentiality of the data being processed throughout the

computation. Working operations of the CKKS homomorphic encryption scheme in the context of secure

computation:

Let

• 𝑝𝑘 be the public encryption key

• 𝑠𝑘 be the private decryption key

• 𝑚 be the plaintext message

• 𝐶 be the encrypted ciphertext

• 𝐶′ be the result of the homomorphic operation on ciphertexts 𝐶1 and 𝐶2

Then the CKKS homomorphic encryption scheme can be represented as follows:

Key Generation: 𝑝𝑘 and 𝑠𝑘 are generated using a key generation algorithm.

Encryption: 𝐶 = 𝐸𝑛𝑐(𝑝𝑘, 𝑚), where 𝐶 is the encrypted ciphertext and m is the plaintext message.

Homomorphic Operations: 𝐶′ = 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐𝑂𝑝(𝐶1, 𝐶2), where 𝐶′ is the result of the homomorphic

operation on ciphertexts 𝐶1 and 𝐶2.Decryption: 𝑚′ = 𝐷𝑒𝑐(𝑠𝑘, 𝐶′), where 𝑚′ is the decrypted result and 𝑠𝑘 is the

private decryption key.

The homomorphic properties of the CKKS homomorphic encryption scheme enable secure operations on

ciphertexts, allowing for privacy-preserving computations without the need for decrypting the data. For example,

if we want to add two encrypted ciphertexts 𝐶1 and 𝐶2, we can simply perform the following homomorphic

operation:

𝐶′ = 𝐻𝑜𝑚𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐𝑂𝑝(𝐶1, 𝐶2) = 𝐶1 + 𝐶2

The result of the homomorphic operation, 𝐶′, is an encrypted ciphertext that represents the sum of the two original

ciphertexts, 𝐶1 and 𝐶2. The decrypted result, 𝑚′, can be obtained by decrypting 𝐶′ using the private decryption

key, 𝑠𝑘.

𝑚′ = 𝐷𝑒𝑐(𝑠𝑘, 𝐶′) = 𝑚1 + 𝑚2

Where, 𝑚1 and 𝑚2 are the plaintext messages that were encrypted to obtain 𝐶1 and 𝐶2, respectively.

5.8 Differential privacy: Laplace Mechanism

By leveraging differential privacy, computation can be performed while preserving data privacy. By

introducing noise to the data before processing, this is accomplished. With computational accuracy maintained

while safeguarding personal data privacy, the noise is added in this manner. Integrating the Laplace mechanism

allows for computations with private data to maintain security. The mechanism of Laplace [28] introduces

unpredictability to the dataset through a Laplace-distributed random contribution. Due to its symmetry, the

Laplace distribution treats adding positive or negative noise with equal likelihood.

J. Electrical Systems 19-4 (2023): 350-375

366

Let

• 𝐷 be the original dataset

• 𝐷′ be the noisy dataset

• 𝜖 be the privacy budget

• 𝐿 be the Laplace distribution with mean 0 and scale 1

Then the Laplace mechanism can be used to add noise to the dataset as follows: 𝐷′ = 𝐷 + 𝐿(𝜖)

The noisy dataset, 𝐷′ is obtained by adding a random number from the Laplace distribution, 𝐿(𝜖), to each data

point in the original dataset, 𝐷.

The amount of noise that is added to each data point depends on the privacy budget, ϵ. A larger privacy

budget means that less noise is added to each data point, which means that the results of the computation are more

accurate. However, a larger privacy budget also means that the adversary has less information about the individual

data points. The following is the mathematical definition of differential privacy: A randomized mechanism M

satisfies ϵ −differential privacy if for all possible datasets D and D′ that differ in at most one data point, and for all

possible outputs o of M, we have:

𝑃𝑟[𝑀(𝐷) = 𝑜] ≤ 𝜀 ∗ 𝑃𝑟[𝑀(𝐷′) = 𝑜]

This means that for any two datasets that differ in at most one data point, the probability of the mechanism

outputting a certain result is at most eϵ times more likely for one dataset than the other.

5.9 Secure multiparty computation:

The SMC component plays a crucial role in enabling secure computations on users' encrypted data stored in

the cloud. It allows multiple parties, including the users and the cloud servers, to jointly perform computations

without revealing their individual data to one another.

Input: Encrypted data from multiple users: 𝑬𝟏, 𝑬𝟐, . . . , 𝑬𝒏

Output: Computation result: 𝑅𝑒𝑠𝑢𝑙𝑡

Algorithm:

1. Initialize a secure computation protocol, 𝑃.

2. Distribute the encrypted data among the participants:

• Each participant securely receives the encrypted data from the users, 𝐸𝑖.

• The data is stored in a secure and confidential manner, 𝐷𝑖.

3. Perform secure computations on the encrypted data:

• Each participant applies the necessary computations on their respective encrypted data without

decrypting it, 𝐶𝑖 = 𝑃(𝐸𝑖).

• The computations can involve mathematical operations such as addition, multiplication, or more complex

operations supported by the chosen homomorphic encryption scheme, 𝐻.

• The intermediate results are kept private and encrypted throughout the computation process, 𝑅𝑖.

4. Collaborate to generate a joint computation result:

• The participants engage in a secure multi-party computation protocol, 𝑃.

• The protocol allows the participants to jointly compute a function on their individual encrypted data

without revealing their private inputs to each other, 𝐽 = 𝑃(𝐶1, 𝐶2, . . . , 𝐶𝑛).

• The result of the joint computation is a secure and encrypted output that is shared among the

participants, 𝑆.

J. Electrical Systems 19-4 (2023): 350-375

367

5. Combine the encrypted results to obtain the final computation result:

• The participants securely combine their individual encrypted results using the secure computation

protocol, 𝑃.

• The combined result is an encrypted output that preserves the privacy and confidentiality of the

individual inputs, 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑃(𝑆).

6. Decrypt and interpret the result:

• Each participant, with their respective decryption keys, can decrypt the combined result, 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐻 −

1(𝑅𝑒𝑠𝑢𝑙𝑡). The decryption process ensures that the final computation result is obtained in a usable

form, 𝑅. Participants can interpret the decrypted result in the context of their computations or desired

outcome.

The SMC component of our proposed mechanism ensures that computations on encrypted data can be

performed securely and collaboratively, without compromising the privacy of individual inputs. It enables users to

leverage the benefits of cloud storage and computation while maintaining control over their sensitive data. By

utilizing SMC techniques, our proposed mechanism offers enhanced privacy guarantees and security for data

stored in the cloud. It ensures that users can securely store their data and perform computations on it, while the

privacy of their data is preserved throughout the process.

5.10 Security Analysis

The proposed mechanism is designed to provide robust security against various attacks, including collusion

attacks, side-channel attacks, and replay attacks [29]. The security analysis of the mechanism can be summarized

as follows:

Collusion Attacks

The use of homomorphic encryption ensures that data remains encrypted throughout computations,

preventing collusion parties from gaining access to the actual data. This can be mathematically modeled as

follows: Let D be the original dataset, and D′ be the encrypted dataset. Let C be the set of colluding parties. Then,

the following holds: D′ = Enc(D), where Enc is the homomorphic encryption function. This means that even if

the colluding parties have access to the encrypted dataset, they cannot decrypt it to obtain the original data. The

mechanism also employs secure multi-party computation, which allows multiple entities to jointly compute a

function on their private data without revealing their individual inputs. This ensures that colluding parties cannot

obtain sensitive information from other participants during the computation process. This can be mathematically

modeled as follows:

Let 𝑓 be the function that is being computed, and let 𝑥1, 𝑥2, … , 𝑥𝑛 be the private inputs of the colluding parties.

Then, the following holds:

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑆𝑀𝑃𝐶(𝑓, 𝑥1, 𝑥2, … , 𝑥𝑛)

where 𝑆𝑀𝑃𝐶 is the secure multi-party computation function. This means that even if the colluding parties collude,

they cannot obtain any information about each other's private inputs.

Side-Channel Attacks

The mechanism addresses side-channel attacks through the following measures:

• Homomorphic encryption: By using homomorphic encryption, the mechanism ensures that the data remains

confidential, even if side-channel information is obtained. The encryption scheme should be carefully chosen

to mitigate side-channel leakage.

• Secure implementation: The mechanism employs secure implementation practices to minimize side-channel

leakage. This includes techniques such as constant-time algorithms, randomization, and hardware or

software countermeasures to mitigate potential side-channel vulnerabilities.

J. Electrical Systems 19-4 (2023): 350-375

368

This can be mathematically modeled as follows:

Let 𝐾 be the encryption key, and let 𝐸 be the encryption function. Then, the following holds: 𝐸(𝐾, 𝐷) = 𝐷′ where

𝐷′ is the encrypted dataset. This means that even if side-channel information is obtained, it cannot be used to

decrypt the encrypted dataset.

Replay Attacks

The mechanism protects against replay attacks through the following measures:

• Secure communication protocols: The use of secure communication protocols, such as TLS/SSL [29],

ensures that messages exchanged between entities are protected against replay attacks. These protocols

provide mechanisms for message integrity, non-repudiation, and freshness of data.

• Message authentication: The mechanism incorporates message authentication techniques, such as digital

signatures or message authentication codes (MACs)[30] , to verify the authenticity and integrity of the

exchanged messages. This prevents replayed messages from being accepted by the system.

This can be mathematically modeled as follows:

Let 𝑀 be the message, and let 𝐻 be the hash function. Then, the following holds:

𝑀𝐴𝐶(𝐻(𝑀)) = 𝑡𝑎𝑔, where tag is the message authentication tag. This means that even if a replayed message is

received, it will be rejected because the message authentication tag will not match.

Overall Security

The proposed privacy-preserving mechanism demonstrates resilience against collusion attacks, side-channel

attacks, and replay attacks through the careful integration of homomorphic encryption, differential privacy, secure

multi-party computation, access controls, secure implementation practices, and secure communication protocols.

The mathematical models presented above provide a formal way to analyze the security of the proposed

mechanism. These models can be used to identify and mitigate any potential vulnerabilities or weaknesses in the

mechanism.

6. RESULTS AND ANALYSIS

In the results and analysis of the proposed model, a synthetic dataset is used to evaluate the performance and

effectiveness of the privacy-preserving mechanism. The system was implemented and tested on a computer with

the following specifications: Processor: Intel Core i5-7500, RAM: 8GB, Graphics Card: NVIDIA GeForce GTX

1050, Hard Drive: 500GB. The proposed work can be implemented using the following steps: Install the

holomorphic encryption and secure multiparty computation libraries. The homomorphic encryption library used

was the Microsoft SEAL library. The secure multiparty computation library used was the SPDZ library and the

programming language used was Python. The proposed work was able to successfully perform secure multiparty

computation on encrypted data. The results of the secure multiparty computation were accurate and the privacy of

the individual inputs was preserved. Various metrics are measured and compared against predefined benchmarks

to assess the performance of the proposed model. These metrics include:

1. Execution Time: The time taken by the system to perform computations on the encrypted data. This metric

evaluates the efficiency and computational overhead of the mechanism.

The execution time can be calculated as follows:

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = (𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 𝑑𝑎𝑡𝑎) + (𝑇𝑖𝑚𝑒 𝑡𝑜 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛) +

 (𝑇𝑖𝑚𝑒 𝑡𝑜 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 𝑑𝑎𝑡𝑎) (1)

2. Execution time of decryption (ms): This metric measures the time it takes to decrypt the data. The execution

time of decryption is calculated as follows:

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 ∗ (1 + 𝑁𝑜𝑖𝑠𝑒) (2)

3. Communication Overhead: The amount of data exchanged between the users and the cloud servers during

the secure computation process. This metric assesses the efficiency and effectiveness of the communication

protocols employed. The communication overhead can be calculated as follows:

J. Electrical Systems 19-4 (2023): 350-375

369

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = (𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑) ∗ (𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑏𝑦𝑡𝑒) (3)

4. Storage Requirements: The amount of storage space required to store the encrypted data and associated

metadata. This metric evaluates the scalability and storage efficiency of the mechanism. The storage

requirements can be calculated as follows:

𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = (𝑆𝑖𝑧𝑒 𝑜𝑓 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑑𝑎𝑡𝑎) + (𝑆𝑖𝑧𝑒 𝑜𝑓 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎) (4)

5. Scalability: The ability of the system to handle large-scale datasets and an increasing number of users. This

metric assesses the performance of the mechanism as the system grows in size and complexity. The

scalability can be calculate

Scalability =
(Performance with N users)

(Performance with 1 user)
 (5)

Where, N is the number of users. These metrics can be used to evaluate the performance of the proposed

mechanism. The lower the values of these metrics, the better the performance of the mechanism. In addition to

these metrics, the security analysis of the mechanism can be evaluated using the following metrics:

• Collusion resistance: The ability of the mechanism to resist collusion attacks. This can be evaluated by

measuring the probability that an adversary can collude to learn sensitive information about the data.

• Side-channel resistance: The ability of the mechanism to resist side-channel attacks. This can be evaluated

by measuring the amount of information that an adversary can learn about the data by monitoring side-

channel information, such as timing or power consumption.

• Replay resistance: The ability of the mechanism to resist replay attacks. This can be evaluated by measuring

the difficulty for an adversary to replay previously recorded messages to gain unauthorized access or disrupt

the system.

6.1 Datasets:

Small Gaussian Dataset: Size: 100 samples; Data Distribution: Gaussian distribution with mean μ = 0 and

standard deviation σ = 1 and Features: 10-dimensional feature vectors

Medium Gaussian Dataset: Size: 10,000 samples; Data Distribution: Gaussian distribution with mean μ = 0 and

standard deviation σ = 1 and Features: 20-dimensional feature vectors

Large Gaussian Dataset: Size: 1,000,000 samples; Data Distribution: Gaussian distribution with mean μ = 0 and

standard deviation σ = 1 and Features: 50-dimensional feature vectors.

Collusion Attacks: The probability of a collusion attack is negligible because the mechanism uses secure key

management. , where 𝑃(𝑐𝑜𝑙𝑙𝑢𝑠𝑖𝑜𝑛 𝑎𝑡𝑡𝑎𝑐𝑘) = 0

Side-Channel Attacks: The probability of a successful side-channel attack is mitigated by the side-channel

defenses implemented in the mechanism. Where

𝑃(𝑠𝑖𝑑𝑒 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑎𝑡𝑡𝑎𝑐𝑘) = 1 – 𝑃(𝑠𝑖𝑑𝑒 − 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑑𝑒𝑓𝑒𝑛𝑠𝑒𝑠)

Replay Attacks: The mechanism is resistant to replay attacks because it uses secure protocols. Where

𝑃(𝑟𝑒𝑝𝑙𝑎𝑦 𝑎𝑡𝑡𝑎𝑐𝑘) = 0

The security analysis of the proposed mechanism is an important part of the overall security of the mechanism.

The analysis shows that the mechanism is resistant to some common attacks, but it is vulnerable to others. The

mechanism can be further improved by implementing additional countermeasures to mitigate the vulnerability to

timing attacks.

Table 2. Performance and Robustness Analysis of the Proposed Model for Different Datasets

Dataset Amount

of noise

injected

Computational

complexity of

encryption and

decryption

algorithms

Security of

cryptographic

protocols used

Number of

queries that

can be

answered

without

Resistance

of the model

to collusion

attacks

Resilience of

the model to

failures of

individual

cloud servers

J. Electrical Systems 19-4 (2023): 350-375

370

revealing the

privacy of the

data

Small

Gaussian

Dataset

10 bits 𝑂(𝑛2) 128-bit

encryption

1000 High High

Medium

Gaussian

Dataset

10 bits 𝑂(𝑛2) 128-bit

encryption

1000 High High

Large

Gaussian

Dataset

10 bits 𝑂(𝑛2) 128-bit

encryption

1000 High High

The table 3 shows that the proposed model is robust to attacks on all three datasets. The attacker was not able to

successfully access the data within a reasonable amount of time, even when using a number of different attacks.

This shows that the proposed model is a promising approach for privacy-preserving data processing on different

datasets.

Table 4: Evaluation of Proposed Mechanisms against Potential Attacks

Potential

Attacks

Proposed

Mechanism

Vulnerability

Counter Measures Implemented Evaluation of

Mechanism's

Resistance

Collusion

Attacks

No vulnerabilities

identified

Secure key management with 256-bit

encryption and key diversification

Resistant against

collusion attacks

Side-Channel

Attacks

Vulnerable to timing

attacks

Implementation of side-channel defenses,

Including:

• Randomized number generation

• Data obfuscation

• Memory scrubbing

• Differential power analysis

countermeasures

Mitigated side-channel

vulnerabilities

Replay

Attacks

Resistant against

replay attacks

Use of secure protocols with noises and

message authentication codes

No vulnerabilities

detected

The security analysis in Table 4 reveals the proposed mechanism's vulnerability to potential attacks. It is not

vulnerable to collusion attacks due to strong key management with 256-bit encryption. However, it is susceptible

to timing attacks. To mitigate this, side-channel defenses like randomized number generation and data obfuscation

are implemented. Despite this vulnerability, the mechanism resists replay attacks by using secure protocols with

noises and cryptographic hash functions. Overall, the proposed mechanism demonstrates resilience against

collusion, side-channel, and replay attacks, though it remains vulnerable to timing attacks, mitigated by

implemented defences[31][32].

Table 5: Performance and Scalability Analysis for Different Dataset Sizes

Dataset Size Execution

Time (ms)

Execution time of

decryption (ms)

Communication

Overhead (MB)

Storage

Requirements

(MB)

Scalability

Small 61 0.05 0.05 1 0.95

Medium 350 7.5 1.5 10 0.92

Large 2500 750 100 500 0.88

Table 5 shows the performance metrics of the proposed mechanism for small, medium, and large datasets.

The metrics include execution time, communication overhead, storage requirements, and scalability. The

execution time of encryption, decryption, communication overhead, and storage requirements all increase with the

size of the dataset as shown in figure 4(a) to 4(e). However, the increases are not significant. The execution time

of encryption increases by 5.7 times, the execution time of decryption increases by 1.9 times, the communication

J. Electrical Systems 19-4 (2023): 350-375

371

overhead increases by 16.7 times, and the storage requirements increase by 12.5 times. These results show that the

proposed model is efficient and scalable for privacy-preserving data processing on large datasets.

The proposed model is efficient because the execution time of encryption and decryption does not increase

significantly as the size of the dataset increases. The model is also scalable because the communication overhead

and storage requirements increase proportionally to the size of the dataset. Overall, the proposed model is a

promising approach for privacy-preserving data processing on large datasets.

J. Electrical Systems 19-4 (2023): 350-375

372

Table 6: Performance Analysis of Encryption on Gaussian Datasets

Dataset Size

(Gaussian Dataset)

Encryption

Time

Computation

Time

Decryption

Time

Resource

Consumption

Scalability

Analysis

Small 2 second 0.5 seconds 800

milliseconds

Low Efficient

Medium 5 seconds 2 seconds 3 seconds Moderate Scalable

Large 60 seconds 30 seconds 40 seconds High Efficient

Table 6 presents quantitative results of a performance evaluation for the proposed mechanism utilizing CKKS

holomorphic encryption. It includes encryption, computation, and decryption times, resource consumption, and

scalability analysis for three dataset sizes: small, medium, and large. As dataset size increases, encryption,

computation, and decryption times increase due to additional cryptographic operations. Resource consumption

also rises with larger datasets as more memory and CPU resources are allocated. The mechanism demonstrates

scalability, maintaining performance as dataset size increases. Additionally, the table shows that the proposed

mechanism is efficient, with relatively short encryption, computation, and decryption times, even for large

datasets as shown in figure 5.

J. Electrical Systems 19-4 (2023): 350-375

373

The table 7 also shows the performance evaluation of the three mechanisms. The proposed mechanism is the

most efficient and scalable, but it also provides the strongest privacy guarantees. Basic secure encryption is less

efficient and scalable, but it provides limited privacy guarantees. Homomorphic encryption only is the least

efficient and scalable, but it provides the same privacy guarantees as basic secure encryption. The table 7 shows

that there is a trade-off between privacy and performance in privacy-preserving mechanisms. The proposed

mechanism provides the strongest privacy guarantees, but it is less efficient and scalable than the other two

mechanisms. Basic secure encryption provides limited privacy guarantees, but it is more efficient and scalable

than the proposed mechanism. Homomorphic encryption only provides the same privacy guarantees as basic

secure encryption, but it is less efficient and scalable than basic secure encryption.

Table 7: Comparison of Mechanisms - Security Features, Privacy Guarantees, and Performance Evaluation

Mechanism Security Features Privacy Guarantees Performance

Evaluation

Proposed Mechanism Homomorphic encryption,

differential privacy, secure

multi-party computation

Protection against

collusion attacks, side-

channel attacks, replay

attacks

Efficient and

scalable

Basic Secure

Encryption

Secure encryption, no

differential privacy or secure

multi-party computation

Limited protection against

attacks

Moderate

efficiency, limited

scalability

Homomorphic

Encryption Only

Homomorphic encryption only Limited protection against

attacks

Efficient, limited

scalability

Findings and Suggestion

1. The proposed privacy-preserving mechanism offers strong privacy guarantees, protecting against collusion,

side-channel, and replay attacks in distributed cloud storage.

2. The mechanism is efficient and scalable for small to medium-sized datasets. However, efficiency reduces as

dataset size increases.

3. Vulnerability to timing attacks was observed, but mitigated by effective side-channel defenses.

Suggestions:

4. Strengthen security against timing attacks through advanced countermeasures.

5. Optimize performance for larger datasets using algorithmic and hardware enhancements.

6. Explore alternative cryptographic techniques to enhance security.

7. Conduct real-world testing to validate the mechanism's performance.

J. Electrical Systems 19-4 (2023): 350-375

374

8. Compare with other privacy-preserving solutions for better insights.

9. Gather user feedback and conduct usability testing for practicality.

10. Stay updated with the latest cryptographic research and implement improvements.

7. CONCLUSION

The proposed privacy-preserving mechanism has been evaluated using a 3 different benchmark datasets

varied in size i.e small, medium, and Large dataset . The results show that the mechanism is efficient, scalable,

and secure for small to medium-sized datasets. However, the mechanism is vulnerable to side-channel attacks, and

it could be improved by strengthening security against timing attacks and optimizing performance for larger

datasets. The proposed privacy-preserving mechanism offers an effective solution for protecting data privacy in

the cloud. By addressing the identified vulnerabilities, optimizing performance, and embracing advancements in

cryptography, the mechanism holds significant potential to revolutionize data storage and sharing practices while

ensuring robust privacy protection. The future scope of the proposed mechanism includes strengthening security

against timing attacks, optimizing performance for larger datasets, exploring alternative cryptographic techniques,

conducting real-world testing, and gathering user feedback.

REFERENCES

[1] Bandari, V. (2022). Optimizing IT Modernization through Cloud Migration: Strategies for a Secure, Efficient and Cost-

Effective Transition. Applied Research in Artificial Intelligence and Cloud Computing, 5(1), 66-83.

[2] Ravikumar, G. ., Begum, Z. ., Kumar, A. S. ., Kiranmai, V., Bhavsingh, M., & Kumar, O. K. . (2022). Cloud Host

Selection using Iterative Particle-Swarm Optimization for Dynamic Container Consolidation. International Journal on

Recent and Innovation Trends in Computing and Communication, 10(1s), 247–253.

[3] Mishra, A., Jabar, T. S., Alzoubi, Y. I., & Mishra, K. N. (2023). Enhancing privacy‐preserving mechanisms in Cloud

storage: A novel conceptual framework. Concurrency and Computation: Practice and Experience, e7831.

[4] N. Meghasree, U.Veeresh, & Dr.S.Prem Kumar. (2015). Multi Cloud Architecture to Provide Data Privacy and

Integrity. International Journal of Computer Engineering in Research Trends, 2(9), 558–564.

[5] Lakshmi, M. S. ., Ramana, K. S. ., Pasha, M. J. ., Lakshmi, K. ., Parashuram, N. ., & Bhavsingh, M. . (2022). Minimizing

the Localization Error in Wireless Sensor Networks Using Multi-Objective Optimization Techniques. International

Journal on Recent and Innovation Trends in Computing and Communication, 10(2s), 306–312.

[6] V.VIDYA, K.PADMA KIRAN, C.VANI, & K.TARAKESWAR. (2014). Two Layer Encryption be Imminent to

Protected Data Sharing in Cloud Computing. International Journal of Computer Engineering in Research Trends, 1(5),

266–270.

[7] Shen, J., Yang, H., Vijayakumar, P., & Kumar, N. (2021). A privacy-preserving and untraceable group data sharing

scheme in cloud computing. IEEE Transactions on Dependable and Secure Computing, 19(4), 2198-2210.

[8] Guillermo Ramos-Salazar, Sabrina Rahaman, & Md. Amzad. (2023). A Machine Learning-based Approach for Detecting

Malicious Activities in Cloud Computing Environments . International Journal of Computer Engineering in Research

Trends, 10(9), 22–28.

[9] Liu, H., Ning, H., Xiong, Q., & Yang, L. T. (2014). Shared authority based privacy-preserving authentication protocol in

cloud computing. IEEE Transactions on parallel and distributed systems, 26(1), 241-251.

[10] Kamal, M., Amin, S., Ferooz, F., Awan, M. J., Mohammed, M. A., Al-Boridi, O., & Abdulkareem, K. H. (2022).

Privacy-aware genetic algorithm based data security framework for distributed cloud storage. Microprocessors and

Microsystems, 94, 104673.

[11] Haque, R. U., Hasan, A. T., Daria, A., Rasool, A., Chen, H., Jiang, Q., & Zhang, Y. (2023). A novel secure and

distributed architecture for privacy-preserving healthcare system. Journal of Network and Computer Applications,

103696.

[12] K., V. R. ., Yadav G., H. K. ., Basha P., H. ., Sambasivarao, L. V. ., Rao Y. V., 5Balarama K. ., & Bhavsingh , M. .

(2023). Secure and Efficient Energy Trading using Homomorphic Encryption on the Green Trade Platform. International

Journal of Intelligent Systems and Applications in Engineering, 12(1s), 345–360. Retrieved from

[13] Deshmukh, J. Y., Yadav, S. K., & Bhandari, G. M. (2023). Attribute-Based encryption mechanism with Privacy-

Preserving approach in cloud computing. Materials Today: Proceedings, 80, 1786-1791.

[14] Ganapathy, S. (2019). A secured storage and privacy-preserving model using CRT for providing security on cloud and

IoT-based applications. Computer Networks, 151, 181-190.

[15] B, G. D., K, S. R., & P, V. K. (2023). SMERAS - State Management with Efficient Resource Allocation and Scheduling

in Big Data Stream Processing Systems. International Journal of Computer Engineering in Research Trends, 10(4),

150–154.

J. Electrical Systems 19-4 (2023): 350-375

375

[16] Nayomi, B. D. D. ., Mallika, S. S. ., T., S. ., G., J. ., Laxmikanth, P. ., & Bhavsingh, M. . (2023). A Cloud-Assisted

Framework Utilizing Blockchain, Machine Learning, and Artificial Intelligence to Countermeasure Phishing Attacks in

Smart Cities. International Journal of Intelligent Systems and Applications in Engineering, 12(1s), 313–327

[17] Vengala, D. V. K., Kavitha, D., & Kumar, A. S. (2020). Secure data transmission on a distributed cloud server with the

help of HMCA and data encryption using optimized CP-ABE-ECC. Cluster Computing, 23, 1683-1696.

[18] Hilal Ahmad Shah, Inzimam Ul Hassan, & Inam Ul Haq. (2023). Future of Communication-LIFI (Light Fidelity): A

Review. International Journal of Computer Engineering in Research Trends, 10(2), 54–60.

[19] Samunnisa, K., Kumar, G. S. V., & Madhavi, K. (2023). Intrusion detection system in distributed cloud computing:

Hybrid clustering and classification methods. Measurement: Sensors, 25, 100612.

[20] Samunnisa, K., Vijaya Kumar, G. S., & Madhavi, K. (2021). Cloud Security Solutions through Machine Learning-

Approaches: A Survey. Int. J. of Aquatic Science, 12(2), 1958-1972.

[21] Goud, M., & Malya, P. (2015). Dynamic Group data sharing framework on Cloud Servers,Macaw International Journal

of Advanced Research in Computer Science and Engineering, 1(1), 16-20.

[22] Abbas, A., & Khan, S. U. (2014). A review on the state-of-the-art privacy-preserving approaches in the e-health

clouds. IEEE journal of Biomedical and health informatics, 18(4), 1431-1441.

[23] Gholami, A., & Laure, E. (2016). Security and privacy of sensitive data in cloud computing: a survey of recent

developments. arXiv preprint arXiv:1601.01498.

[24] Shuroq Jawad Mahdi. (2016). Preventing From Collusion Data Sharing Mechanism for Dynamic Group in the

Cloud. Macaw International Journal of Advanced Research in Computer Science and Engineering, 2(7), 113-118.

[25] Barkley, J. (1997, November). Comparing simple role based access control models and access control lists.

In Proceedings of the second ACM workshop on Role-based access control (pp. 127-132).

[26] Kumari, K. A., Sadasivam, G. S., & Rohini, L. (2016). An efficient 3d elliptic curve Diffie–Hellman (ECDH) based two-

server password-only authenticated key exchange protocol with provable security. IETE Journal of Research, 62(6), 762-

773.

[27] Shuroq Jawad Mahdi. (2016). Cloud based IoT for Agriculture in India, Macaw International Journal of Advanced

Research in Computer Science and Engineering, 2(12), 5-10.

[28] Phan, N., Wu, X., Hu, H., & Dou, D. (2017, November). Adaptive laplace mechanism: Differential privacy preservation

in deep learning. In 2017 IEEE international conference on data mining (ICDM) (pp. 385-394). IEEE.

[29] N.Swetha, S Ramachandram. (2016). Dynamic Secure Multi-Keyword Ranked Search over Encrypted Cloud Data.

Macaw International Journal of Advanced Research in Computer Science and Engineering, 2(3), 1-5.

[30] Bernstein, D. J. (2005, February). The Poly1305-AES message-authentication code. In International workshop on fast

software encryption (pp. 32-49). Berlin, Heidelberg: Springer Berlin Heidelberg.

[31] Mallareddy, A., Sridevi, R., & Prasad, C. G. V. N. (2019). Enhanced P-gene based data hiding for data security in cloud.

International Journal of Recent Technology and Engineering, 8(1), 2086–2093.

[32] Mahalakshmi, J., Reddy, A. Mallareddy., Sowmya, T., Chowdary, B. V., & Raju, P. R. (2023). Enhancing Cloud

Security with AuthPrivacyChain: A Blockchain-based Approach for Access Control and Privacy Protection.

International Journal of Intelligent Systems and Applications in Engineering, 11(6s), 370-384.

© 2023. This work is published under

https://creativecommons.org/licenses/by/4.0/legalcode(the“Licens

e”). Notwithstanding the ProQuest Terms and Conditions, you

may use this content in accordance with the terms of the

License.

