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Abstract: - Background: The role of the Terrain is paramount for any autonomous vehicle to drive safely on any type of surface. The 

Autonomous vehicles should have the capability of identifying the terrain and should adapt to the environment. With the evolution of robotics 

and Artificial Intelligence, and understanding diverse terrains, the techniques for terrain identification are also advancing with a major focus 

on safety.  

Methodology: To make Terrain Detection and Identification more reliable we used instance segmentation which is a more sophisticated type 

of segmentation that goes a step ahead of semantic segmentation by performing both object detection and segmentation at the same time. In 

order to perform Instance segmentation, we used the YOLOv8 architecture which is considered to be the state-of-the-art CNN (Convolutional 

Neural Network) architecture. The YOLOv8 model was trained on an Off-road Terrain Dataset. 

Results: Our findings indicate that the state-of-the-art YOLOv8 instance segmentation model provided the best results for terrain detection 

and segmentation with a threshold confidence of 0.60, and the results provide a maximum confidence of 0.92 which indicates an accurate 

segmentation model for the given terrain detection problem.  

Conclusion: The present work motivates for a more viable hardware model that makes use of trained computer vision models and cutting-

edge sensors that can be tested on different soils and terrain. The results obtained can be used to study about the different Terrains and select 

the most suitable model, this in turn drives for further research in the subject of Terrain Identification and Detection. 

Keywords: Internet-of-Vehicles (IoT), Laser Range Finders (LRF), Accelerometers, Image Segmentation, Image 

Detection, Instance Segmentation, Semantic Segmentation, Computer Vision, You-Only-Look-Once (YOLOv8), 

Unmanned Ground Vehicles (UGV), Tensorflow, Pytorch.  

 

I. INTRODUCTION 

    The study related to Autonomous Vehicles started from the late 1970s when Carnegie Mellon University 

created its first autonomous technology known as Navlab. Since then, Autonomous vehicles are been widely 

used in the fields of Transportation, Manufacturing sector, Military, Healthcare industry. The new Generation 

industries known as Industry 4.0 are the one adopting to new technologies, like IoT, AI, Machine Learning, Big 

Data, Robotics, Automation, similar thing goes with healthcare 4.0 etc. These new era industries adopting such 

valuable and reliable technology can enhance the human standard of living. 

 

   There has been a significant growth in research related to Autonomous Driving/ Self Driving Vehicles in recent 

times, many Multi National automobile/technological companies like Mercedes, Nissan, Skoda, Toyota, Google, 

Rivian, Tesla including many leading technical institutions such as Massachusetts Institute of Technology (MIT), 

Stanford University and many more have contributed their part in the developing the autonomous industry [1].  

 

   The research related to autonomous technology is done in every aspect, from selecting the optimal path to 

detecting the obstacles in the path. Fig. (1) shows different features required for a fully Autonomous Vehicle to 

travel from the source to the destination. , 
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       Fig. 1. Features of Autonomous Vehicles 

 

   There are many determinants that determine the journey of an autonomous vehicle, these determinants include 

terrain, traffic, communication, optimum route. The most important factor is the terrain, terrain plays a vital role 

in determining the speed and acceleration of the vehicle. The driver makes decisions based on the type of terrain 

and the elevation of the terrain, to control the speed and acceleration of the vehicle. In case of an autonomous 

vehicle, which have to make the same decisions as a human, based on the type of terrain and elevation requires 

mixture of hardware and software computation.  

 

   The main task is to classify the type of terrain, identify the elevation and adjust the acceleration and speed 

accordingly. The required features for Terrain Classification and Identification are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Features of Terrain Classification and Identification 

 

  In order to achieve the required precisions, the autonomous vehicle must be equipped with the advanced 

sensors, Laser range Finders (LRF), Global Positioning System (GPS), accelerometers, Inertial Measurement 

Units (IMU), wheel encoders [1]. The collective computation gives the vehicle the smoothest path to go on the 

most difficult tracks in the world. If the vehicle is able to travel the hardest paths it can easily be able to maneuver 

the vehicle at any place around the world. The vehicles maneuverability is the most important factor while 

driving, the steering capabilities of a vehicle depends on the size and dimensions of the vehicle including its 

tires, body shape and aerodynamics.  

   

  As per the literature survey done, the research related to autonomous driving is only been implemented on four 

wheelers, these four wheelers can be classified based in its dimensions as SUV, Seden, Hatchback, Truck etc., 

each of it has its own dimensions and steering capabilities. The traversability feature of the terrain is completely 

different for every type. The dimensions of some of the well-known autonomous vehicles are as follows: 
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S. No Vehicle Type Institute Length 

(inches) 

Width 

(inches) 

Height 

(inches) 

Wheelbase 

(inches) 

1 Tesla Model X SUV TESLA 198.3 78.7 66 116.7 

2 Waymo SUV Google 184.3 84.2 61.6 117.7 

3 R1T Pickup 

Truck 

Rivian 217.1 81.8 78.3 135.8 

4 IONIQ 5 SUV Roboride & 

Hyundai 

182.48 74.41 63.98 118.11 

5 Mercedes EQS 

& S class 

Seden Mercedes 207.3 83.7 59.5 126.4 

6 Stanley SUV Stanford 

University & 

Volkswagen 

112.4 187.2 75.9 68.0 

 

Table. 1. Feasible Dimensions of Autonomous Vehicles  

II. RELATED WORK 

  Prior to delving into the off-road component of terrain identification, it is imperative that we comprehend the 

various approaches and procedures utilized in image classification, segmentation tactics, hardware kinds, and 

deep learning techniques. An approach used in robotics and autonomous navigation systems to determine the 

type of terrain or ground surface that is near the robot or vehicle is called the “short-range terrain classification 

based on geometry” algorithm [2].   In order to establish whether the terrain is navigable and drivable for 

Unmanned Ground Vehicles (UGVs), a terrain traversability analysis is conducted. It highlights open problems 

and potential directions for mobile robotics, especially in situations where it is unsafe or impractical for people 

to be present. If a particular vehicle can traverse the trail with little to no damage, we refer to it as traversable for 

one type of vehicle but traversable for another. Therefore, traversability cannot be only characterized by the 

characteristics of the driving trail. Additionally, because different vehicle classes have varying traversing 

capabilities, it depends on the type of corresponding maneuvering vehicle. Terrain traversability refers to the 

ability of a given vehicle to traverse across a specific type of terrain, such as mud, sand, rocky terrain, snow, and 

so on. Traversability is therefore the combination of the terrain type, the vehicle type, and the nature of the 

driving-trail. It describes the ability of a vehicle to traverse across a given terrain with a specific type of trail[3] 

[4]. 

     The ability of a vehicle to go over various types of terrain, such as mud, sand, rugged terrain, snow, and so 

on, is referred to as "terrain traversability". Thus, traversability is determined by the mix of the driving trail's 

features, the kind of vehicle, and the type of terrain. It describes a vehicle's ability to travel on a specific type of 

trail across a specific type of terrain.  Terrain traversability is typically divided into three categories: easy, 

moderate, and challenging. This classification is based on the amount of energy or effort required for a vehicle 

to move across a particular terrain. Based on a counting task, Hisham [5] and his team presented their image-

level low-count (ILC) supervised density map estimation approach based on an ImageNet pre-trained network 

backbone (ResNet50) which is built on an ImageNet pre-trained image-level network backbone. Their proposed 

method has two output sections: image classification and density branch. Du Jiang[6] and their team developed 

a multiscale target multi-task semantic segmentation model by enhancing the Faster-RCNN model. To expedite 

dataset preparation, they boosted the training speed by incorporating depth images. Using a Kinect color camera, 

they captured indoor scene images from diverse angles and backgrounds, constructing an RGB-D dataset for 

experimental purposes. Instance segmentation presents a significant challenge due to the requirement for precise 

delineation of object boundaries and handling overlapping objects. In contrast, semantic segmentation proves to 

be more straightforward as it doesn't necessitate the separation of objects within the same class. 

 

     In 2018, Kailun Yang[7] integrated terrain awareness through real-time semantic segmentation. To enhance 

the effectiveness of segmenting diverse scenes while maintaining efficiency, they crafted an architecture inspired 

by the Seg-Net-based encoder-decoder, similar to ENet. The decoder architecture incorporated the pyramid 

pooling segment, drawing inspiration from PSPNet. Additionally, they employed the ADE20K dataset for 

adaptation, as it encompasses both indoor and outdoor scenarios. Automotive sensors gather information that is 

processed by the autonomous vehicle's computer to regulate the steering, braking, and speed of the car. Decisions 
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about vehicle control are made using not only the automotive sensors but also data uploaded from other cars and 

environmental maps stored in the cloud[8].  Without question, LIDARs are the most popular sensors for 

autonomous cars to track terrain. Instead, there are far more effective radars available. Microwave radar 

operating at 77 GHz is known as long-range radar. It has a low resolution but can measure speed and identify 

objects up to 200 metres away.  

 

      Sophisticated and reasonably priced, short and medium-range radar operates in the 24 GHz and 76 GHz 

bands. This sensor can measure distance and velocity, but its resolution is limited by its broad beams and long 

wavelengths, which also result in complex return signals[9]. In some circumstances, such as inclement weather, 

radar is more effective than lidar and cameras, but it produces less data and has less angular accuracy than lidar. 

Radar has lower processing speeds required to handle data output than lidar and cameras, but it does not process 

any video feeds that contain a lot of data, unlike cameras[10]. Cameras are specialized image sensors that detect 

the visible light spectrum reflected from objects. Considering how much UV and visible light the sun emits, 

image sensors are able to pick up a wide range of visible light frequencies. This resembles the way light is 

perceived by human eyes. High resolution tasks like classification, scene comprehension, and tasks requiring 

color perception like traffic light or sign recognition are areas in which they excel[11], [12].  

    

    When it comes to categorizing road terrain in autonomous land vehicles, the primary mechanism is based on 

acceleration. This method makes use of information gathered from an accelerometer fixed to the suspension of 

the car. One of the important procedures in this methodology is determining the experienced vertical acceleration 

by the vehicle, utilizing a one-quarter vehicle dynamic model estimate road profiles, and extracting different 

features from this data to allow for the classification of terrain. To be more precise, the accelerometer data is 

utilized to record the vibration characteristics of the car, which reveal information about the state of the road[12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         Table.  2. Literature Review - (Classification models) 
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This study offers an overview of how data related to terrain is collected across the regions, the techniques adopted 

by many researchers for identifying the terrain in different regions. The present work focuses on a much more 

accurate and reliable terrain identification model mainly focusing on off road terrain. 

III. EXPERIMENT 

i.  Dataset: 

The Dataset used for the Experiment to identify the Terrain is Cat: CAVS Traversability Dataset which consists 

of 3.45k Off-Road Terrain images which were collected by Mississippi State University and is stated in [4]. The 

data collection was performed near HPCC (High Performance Company Collaboratory) of Mississippi State 

University. The data is collected from three trails i.e., main trail with a length of 0.64 km , powerline trail with 

a length of 0.82 km, brownfield trail with a length of 0.21 km . The images were collected considering the 

required light exposure with different filters compatible with Sekonix SF3325-100 camara model[4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Data collection Sites of CAT-CavS Traversability Dataset[4] 

 

The data in the dataset CAT-CaVS is used in the present work to identify the Drivable region in an Off-road 

scenario. The required annotations were performed (The annotations were performed using an Open-source 

platform Roboflow[13]) on the Dataset in order to label the required Terrian region and segregate the drivable 

region with the other entities in order to train the model to detect the drivable region in real-time. 

  There are many other Datasets that can be used for Terrain Identification and Classifications, the dataset must 

be selected based on the traversability of the vehicle, if the vehicle is to traverse the city roads, suburban roads, 

the urban/suburban road Terrain Dataset must be selected, if the vehicle have to travel off-road terrain, the dataset 

according to the region have to be selected, the datasets that are feasible for terrain identification and analysis 

are: 
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Dataset Resource                  Region Purpose 

Cat: CAVS 

Traversability 

Dataset[4] 

Camara Off-Road Terrain Identification 

Berkeley 

DeepDrive[14] 

Video Sequence On-Road Obstacle, Lane Detection 

nuScenes 

Dataset[15] 

Camara and Lidar 

Sensing 

On-Road Object Detection 

Open Images 

V5[16] 

Camara  On-Road Object Detection 

Waymo Open 

Dataset[17] 

Video Sequence On-Road/Off-Road Environment Awareness 

Frieburg 

Forest[18] 

Camara On-Road/Off Road Environment Awareness 

Oxford Radar 

RobotCar[19] 

Radar Sensing On-Road Path Planning 

 

Table. 3. Computer Vision Datasets for Autonomous Driving 

ii.Hardware Requirements: 

 

The Hardware Requirements are dependent on different applications of Terrain Identification and Analysis. In 

the present experiment does not involve any hardware other than the hardware required for the computational 

task. The hardware configuration used for computation and to identify the feasible/drivable region is: 

 

S No Device 

1 Platform: 

       ASUS Zephyrus G15 

2 CPU:  

     AMD Ryzen 9 5900HX 3.30 GHz 

3 GPU:  

     NVIDIA GeForce RTX 3050 Ti - 6GB Card 

4 RAM:  

     LPDDR5 16 GB Memory 

 

Table. 4. Hardware Requirements 

The hardware configuration can vary based on the complexity of the computation; the above given hardware 

configuration is considered sufficient for training a model with 3.5 k images.  

The hardware requirements to control the speed and acceleration of the vehicle based on the slope of the vehicle 

can also be included in further study of the topic, the required hardware configuration is discussed in the literature 

part of the paper. 

iii. Software Requirements: 

 

The Software Requirements play a vital role in performing the experiment and the required computation. The 

experiment was performed on python, using different python libraries with suitable and compatible version with 

the hardware configuration. The Software Configuration include libraries like Ultralytics for importing the 

required YOLO model, TensorFlow, Pytorch, Keras, Roboflow. The compatible versions adhering the 

dependencies are: 
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S No Library 

1 Ultralytics: 8.0.175[20] 

2 Tensorflow: 2.10.0 

3 Tensorflow-gpu: 2.10.0 

4 Pytorch: 2.0.1+cu117  

5 Torchvision: 2.0.2+cu117  

6 Roboflow: 1.1.7 [13] 

7 Keras: 2.10.0 

8 Opencv-Python: 4.8.1.78 

 

Table. 5. Software Requirements 

 

The above software configuration was required to perform instance segmentation using YOLOv8 

architecture[20]. 

 

The Experiment involves the CAT-CaVS Traversability Dataset as discussed earlier in the paper, the dataset 

was trained using YOLOv8 architecture which is considered to be the state-of-the-art CNN architecture for 

segmentation.  

The Off-Road images in the CAT-CaVS dataset is first annotated using an Open-source annotation platform 

Roboflow[13]. Out of 3.5k images the most refined images of 1.24 k are selected and the drivable region is 

labelled for every image. The annotated images are used to train the model with a greater rate of efficiency, as 

it selects a particular set of pixels to be identified which helps the model to identify the required region in the 

complete image.  

The annotated images are then downloaded into the platform using the required Roboflow program, the 

annotated images are then used for training the model. The YOLOv8 segmentation model is used in this 

experiment to perform instance segmentation on the annotated images of CAT-CaVS Dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Raw Image/Annotated Image 

 

Fig. 4 can clearly give an overview of how the image is annotated for training a model[20]. Next comes the 

Preprocessing stage where the images are reshaped into 640x640 pixels to make it compatible with the YOLOv8 

model. The Preprocessing stage is an important step in order to provide accurate and reliable data to the model 

and makes the computation much simpler.  
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After Preprocessing the data, Augmentation is performed in order to highlight the colour to the masks provided 

for segmentation. In this step the mask is given a required colour scheme to differentiate it with the surroundings. 

The Pre-processed /transformed data is split into test, train, val(validation) data, the train data consists of 88% 

images, while the val and test data consists of 8% and 4% respectively. Now the version of the dataset is set to 

be generated and used for training the model. 

The required dataset was loaded into the platform and YOLOv8 segmentation model was trained on the dataset 

with number of epochs set to 100, image size was set to 640, with batch size set to be 16. The model was trained 

to segment the feasible drivable region with the other environment [20]. 

 

 

 

 

 
Fig. 5. Loss Functions for Train/Val Data 

 

 
 

Fig. 6. Training Metrics 
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 The above shown figure illustrates the different loss functions and the performance metrics of the training model. 

The loss functions include box loss, segmentation loss, class loss for both validation and training data. These loss 

functions are important to measure the closeness of the predicted segments and boxes with the original. The 

performance metrics consists of the precision and recall at every stage of training the dataset. 

The YOLOv8 model involve feature extraction at multiple stages while the training process, the experiment 

involved 21 stages of feature extraction while training the dataset. The first and the final stage of feature 

extraction is as follows: 

 

Fig. 7. Stage 1 

 

 
Fig. 8. Stage 21 

 

YOLOv8 Model provides a state-of-the-art segmentation and classification capabilities. YOLOv8 developed by 

Ultralytics involves a sophisticated structure for segmentation tasks. The YOLOv8 architecture is a combination 

of multiple Convolutional Layers, Max Pooling, Concat Layers which provide a generalized structure for any 

segmentation problem[20]. 

IV. RESULTS 

The YOLOv8 model provides a sophisticated instance segmentation model for image identification and analysis. 

Instance segmentation model is considered to be more finely grained and refined than semantic segmentation 

model to provide a detailed view of different instances in a road terrain scenario. 

The experiments performed in, is a semantic segmentation model which only provides a bigger picture of the 

terrain identified, but instance segmentation provides a more refined identification of the terrain, even detecting 

obstacles and trees in an Off-Road scenario. The results of the experiment conducted in the present work finely 

segments the tress, small plants, drivable road, obstacles etc, while in the required road is only identified while 

neglecting the other areas of the image. 

Instance Segmentation model is useful to identify and classify between different instances of the image giving a 

clearer view of the other objects and increases the awareness score of the traversal. The trained instance 

segmentation model gave some accurate results as discussed in the experiment section.  
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The Trained model is then subjected to validation in order to check the closeness of the feature extracted with 

that of the trained data with that of the features extracted with the validation data. The trained model gave the 

following results while the validation stage of the experiment: 

 

 

Fig. 9. Train Results 

 

The model is then prepared for further tracking and predictions. The model after validation an image is taken for 

predictions and detection of the required drivable region. The desired drivable region is detected from the image 

with the help of the trained Instance Segmentation model, which clearly bifurcated the drivable region with the 

other environment. The predicted images are as follows: 

 

Fig. 10. Segmentation Result-1 

 

 
Fig. 11. Segmentation Result-2 

The model was then tested based on different performance metrics which include F1 Score, Precision, Confidence, 

etc. The Curves for the performance metrics are as follows:  
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Fig. 12. Precision- Confidence Curve 

 

 
Fig. 13. F1-Confidence Curve 

 

V. CONCLUSION AND FUTURE SCOPE 

  Over the years the industry of Autonomous Vehicles has seen a rapid growth and the growth in the future is 

also imminent. The OEM’s (Original Equipment Manufacturer) are adopting to new technologies like IoT, 

Artificial Intelligence, Machine Learning while increasing their R&D capabilities, this motivates for further 

research in the field of autonomous driving. 

 

    The research provides an answer to “How can a terrain or a drivable region be detected by an autonomous 

vehicle?”. The implementation in the present work only focuses on the computational research, which motivates 

to further continue the research in terms of a more practical hardware implementation. 

 

The present work can provide computational capabilities to any hardware working model and can be used to 

perform terrain identification in real-time. The Future work for the field terrain identification will include a 

working hardware model that can provide a much more generalized and sophisticated model that can identify 

any type of terrain and can control the maneuverability of the vehicle accordingly. 
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   The model is aimed to be trained on a more accurate dataset collected with advanced camara modules working 

in real-time. The existing terrain model can further be integrated with models that can be used for path planning, 

object detection, GPS; aiming to build a fully autonomous vehicle in the future. 
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