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Abstract: - In this research, the problem of improving probe and drogue identification in aerial refueling systems in the presence of uncertainty is 

investigated. This uncertainty is caused by the effects of environmental turbulence and tanker aircraft turbulence on the aerodynamic parameters of 

the refueling aircraft. The purpose of this work is to identify aerial refueling aircraft and extract control parameters for the development of the 

automatic aerial refueling system of tanker aircraft. To do this, a non-linear model of receiver airflow is developed, taking into account tanker airflow 

and environmental turbulence effects. In the second step, the desired algorithm is designed by combining a nonlinear neural network with a parametric 

sigmoid function. Automation of such a scenario requires many activities to be performed by algorithms that are delegated to trained crews. After 

mathematical modeling and obtaining the input and output values with MATLAB software, learning algorithms have been used to train them with 

the network. In this case, after each repetition, the average error of the network in the output production is reduced to achieve convergence. The 

training error is usually reduced in the initial stage of the training connection. By comparing the results, it can be seen that the proposed method has 

a better performance than conventional methods in reducing the mode errors between two planes and limits all signals uniformly. 
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I.INTRODUCTION 

The use of automatic aerial refueling (AAR) has reduced the number of personnel per aircraft (A/C) while 

reducing the risk of human crews, which can increase the accuracy and speed of operations and avoid additional 

long-term support costs. The purpose of AAR is to increase the flight duration, increase the carrying capacity of 

combat equipment and commercial cargo, reduce the cost of the flight fleet and increase the life of A/C [1-4]. 

In AAR, there are two different refueling mechanisms [5]: aerial refueling (AR) by boom and receptacle (BAR) 

and by probe and drogue (PAD) mechanisms, and both of them are important in applications. PAD systems are 

more flexible and simpler than BAR systems. 

This research investigated AR using the PAD method [6]. This refueling method can be used at various refueling 

speeds and refuel several receiver A/Cs simultaneously. In the PAD method, the receiver A/C follows the flexible 

hose and drogue at the end of the hose. The hose is pulled on the back and bottom of the tanker A/C. The drogue 

nose is closed at the end of the hose and the probe is mounted on the receiver A/C. 

During the AR process, the receiver A/C approaches a predetermined route from the bottom and behind the tanker 

A/C. The tanker A/C flies in a level and straight direction with a uniform linear motion at a constant speed and 

altitude. The present study attempts to use convolutional neural networks (CNN) as a subset of artificial neural 

networks (ANN) to identify visual A/C. A robust positioning method is crucial to the achievement of the goals of 

an autonomous A/C guided by artificial intelligence. Position understanding, in turn, requires accurate and 

automatic recognition to convert information into data. So, a firm understanding of the environment helps 

maintain the A/C. Therefore, proper machine intelligence, to control an A/C independently requires much more 

than improved pattern recognition. This study applies recent academic advances in identifying visual patterns with 

ANN to improve the understanding of refueling A/C. A tanker A/C, equipped with a machine vision (MV) system, 

can align the rear cameras with a standard approach vector. This makes the A/C view close to the refueling 

approach as seen from the front and above. Images of the AAR are placed into a system that creates the type of 

A/C for any video frame used to direct the performance of other autonomous systems in the AR process [7].  
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 Using sensors based on Global Positioning System (GPS), MV, laser, and infrared radar has many applications. 

Nevertheless, there are always operational restrictions. The GPS signals may not have adequate coverage in 

different parts of the world. In addition, it may not always be possible to use the GPS signals of the receiver A/C 

[8]. The MV sensors are widely used in AAR. Relative position and rotation can be achieved using these sensors 

by detecting and identifying target-marked data and two-dimensional camera images. The MV sensor's accuracy 

is high and can cover different frequencies. However, the use of an MV sensor is limited due to the distance 

between the sensor and the target [9].  

Due to the extensive research on automatic refueling systems, several activities have been reviewed below. In a 

study, Campa et al. [10] examined the MV development for AR. They found an MV algorithm to calculate the 

position and rotation between the Unmanned Aerial Vehicle (UAV) and the tanker A/C. They used a simple linear 

interpolation method to combine the sensors in AR. However, the linear interpolation method could not contain 

information about the sensor malfunction characteristics due to its simplification. Philip et al. [11] in a study 

examined the status and control estimation for the docking phase. They used different estimators for position 

parameters based on MV output. They also obtained a fixed-interest observer to estimate the position and 

condition of the two A/C. Sinopli et al. [12] examined the A/C performance when approaching each other based 

on the GPS/Inertial Navigation system (INS). In this research, based on the UAV model, they planned a route 

from the initial state to the final state, and then, by moving the UAV in the defined path, they obtained more 

information from the camera to aid in the identification. In a study, Borui et al. [13] investigated the AR issue 

using the multi-sensor combination method. In this study, they showed that MV technology is an effective method 

for achieving the accuracy required between two A/Cs. They also proved that using filters is a useful way to 

combine multiple sensors.  

L.R. Mash [14] concluded in a study that a neural network is adequately and appropriately trained in much the 

same way that the flight crew learns to identify the A/C. It requires three consecutive and relevant research areas: 

optimized parameter selection, optimal data reinforcement, and combination and collection. There are many 

questions about how to design and train a network for a specific classification range. The first sub-question of the 

research is: What set of network design parameters describes the A/C, shape, network capacity, and performance 

optimization of object classification in a specific diagnosis area? He assumed that the general machine learning 

principle, which is deep learning, can be used to achieve optimal network configuration. An increasing amount of 

data is used to improve the neural network's ability to generalize usefully to a wider range of possible inputs for 

training data in deep learning. The second sub-question to be considered is: What combination of data 

enhancement techniques is more applicable to the specific task of A/C classification? A positive function is 

assumed when rotation, obstruction, and scaling are applied randomly. However, these computational techniques 

are complex. Therefore, performance improvement should be considered against the deterrent calculations' 

complexity. Mesh et al. [15] showed that a set of trained NNs exhibits better performance than individual 

networks .The sum structure of groups naturally provides a reliable amount that is associated with the output 

accuracy of the sets. It was also examined that the set of assurances is useful for implementing a decision–making 

framework. Using the combination of MV and GPS, Keyhanifar et al. [16] identified and controlled the receiver 

A/C in the presence of the vortex created by the tanker A/C and atmospheric turbulence.  It was also used to 

integrate information to obtain a relative position between the receiver A/C and drogue. The simulation results 

with MATLAB software indicated a safe and successful connection between the two A/Cs. However, the proposed 

approach in this article requires approval and practical validation by conducting refueling flight tests that have 

not been carried out. In the field of deep learning, increasing data is a strategy used to improve NN’s generalization 

capabilities over a wider range of possible inputs than training data alone. Kanazawa et al. [17], showed that each 

educational image shows the sample of a particular location in a high-dimensional impact function that is learned 

by a NN during training. Krogh et al. [18] used the composition of trained NNs and proved that the combination 

of NNs was significantly better. Moreover, in identifying the receiver A/C, the combined structure provides a 

reliable amount that correlates with output accuracy. 

But there is a problem and that is manned air-to-air refueling is a difficult task for the pilot, especially in bad 

weather conditions. Therefore, AAR is considered a challenging task and without the presence of a skilled pilot 

in the cockpit, it becomes a control system challenge during AR maneuver. For AAR to be successful, the receiver 
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A/C must maintain its precise position relative to the tanker A/C, and this is only possible by developing the 

appropriate control system. The research aims to develop an identification system for safe guidance of the A/C. 

Despite the analyses performed by the researchers, there are still challenges in designing the docking identification 

of the A/C aerial refueling because there are precise and sensitive requirements such as tracking error and the 

relative speed limit between the two A/Cs for PAD. In this research, an NN with parametric sigmoid function 

(PSF) based on a Fusion Sensor (FS) strategy using MV data and DGPS is applied to the receiver A/C 

identification. In addition, using NN-PSF, the problem of identifying AAR with high precision even when there 

are effects such as downwash, turbulences, and uncertainty is also solved. The proposed NN-PSF method, when 

considering additional parameters in the activation functions of NN and changing their shapes by adjusting the 

parameters, will increase the network flexibility. 

The main contributions of this work are listed as follows: 

 1. A new framework for PAD-Receiver (UAV) connectivity based on a FS strategy using MV and DGPS data 

has been proposed. 

2- Using neural networks with PSF, results such as: A. Favorable accuracy and high learning speed; B. Sensitizing 

the network and Preventing reduction of the excessive absolute function value due to the of natural logarithms 

utilization in the transfer functions, and; C. Reducing the error between the receiver and tanker. 

Description of the PAD system 

Figure 1 shows the PAD system, having a flexible hose mounted below and behind the tanker A/C. At the end of 

this hose is a conical drogue. The probe is then placed on the receiver A/C. In this process, the receiver A/C sends 

the probe into the drogue, where it locks in place and refueling begins. The receiver A/C waits to receive in-flight 

fuel. 

 

Fig. 1. PAD aerial refueling system 

Reference coordinates and measuring sensors 

To study the AR problem, it is necessary to introduce and recognize coordinate reference devices, distance 

measuring sensors, and distance vectors between A/C, drogue, and camera. 

Reference coordinate system 

Figure 2 is to introduce a reference frame in the AR system. In this figure, OERF is the reference frame located 

on the ground, OTRF is the reference frame located on the tanker A/C, ORRF is the reference frame mounted on 

the receiver A/C, OCRF is the reference frame mounted on the camera and ODRF is the reference device mounted 

on the drogue [19].  

Distance measurement sensors 

Both refueling A/Cs are assumed to be equipped with DGPS and radio communication. It is also assumed that 

DGPS makes measurements on ORRF and OTRF frames and that the receiver A/C is equipped with an MV to 

restore relative position during the connection process. MV receives images of designated points on the tanker 

A/C. MV images are provided on the x, and z planes on the OCRF to facilitate display [19]. 

The distance vectors 



J. Electrical Systems 20-3 (2024):5344-5362 
 

  5347  

 The distance vectors in AAR are shown in Figure 2 as follows. 

 

Fig.2.AAR reference coordinate and distance vectors 

DGPS - related distance  

A receiver A/C with a DGPS sensor can calculate the relative distance between two A/Cs. The camera is mounted 

on the receiver A/C and measures the 𝐿𝐺  distance. 

Drogue actual distance  

 As shown in Figure 2, the vector 𝐿𝐺𝑛0 represent the nominal position of the drogue and tanker A/C. The desired 

position in the receiving A/C reference frame is measured using the 𝐿𝐷𝑛vector. 

𝐿𝐷𝑛 = 𝐿𝐺 − 𝐿𝐺𝑛o.                                                                                                                                              (1)                 

Where  𝐿𝐺 the distance between the two A/C, 𝐿𝐷𝑛 the distance between the drogue and receiver A/C, 𝐿𝐺𝑛o is the 

distance between the drogue and tanker A/C. 

Distance of drogue based on MV 

The 𝐿𝐷 vector is the distance between the camera and drogue based on a MV sensor. 

II.MODELING 

A/C receiver model 

A nonlinear model of receiver A/C is given in the reference [20]. In this paper, the KC-135 has been selected for 

tanker A/C and F-16 A/C due to its UAV-like model, selected for being the receiver A/C. The state vectors (𝑿) 

for each A/C are selected as follows: 

𝑿 = [𝑉 , 𝛼 , 𝛽 , 𝑃 , 𝑞 , 𝑟 , 𝜙 , 𝜃 , 𝛹, 𝑥 , 𝑦 , 𝑧]𝑇                                                                                                                            (2) 

Where V is the A/C velocity. β and 𝛼 are the sideslip angles and angle of attack (AOA), respectively and 𝑃, q, r 

are the rotational velocities in the body reference frame, ϕ, θ, 𝛹 are Euler angles in the body reference frame and 

x, y, and z represent the translational positions in the ground reference frame. The control variables are selected 

as follows: 

𝑈 = [𝛿𝑎, 𝛿𝑒 , 𝛿𝑟 , 𝛿𝑡  ]
𝑇                                                                                                                                                  (3) 

Where 𝛿𝑎 is aileron surface deflection, 𝛿𝑒 is elevator surface deflection, 𝛿𝑟 is rudder surface deflection and 𝛿𝑡 is 

throttle control variable. The assumptions for extracting the equations of receiver A/C are the rigid body, the 

constant mass, the rotation of the ground is ignored, the ignorance gravitational changes due to altitude and the 

C.G does not change the 𝑐̅ percentage. The equation of velocities and acceleration are extracted as follows: 

• Translational velocities: for clarity, sin is abbreviated as s, cos as c and tan as t. 

 

𝑥̇𝑅 = V [c α . c β. c θ. c ψ+sβ(s θ. s ϕ . cψ − cϕ. s ψ) + sα. c β (sϕ. s ψ + s θ. c ϕ. cψ)].                                  (4) 
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𝑦̇𝑅 = V [c β. c α. c θ . s ψ+s β(sϕ. s θ. sψ + cϕ. c ψ) + c β. s α (c ϕ. s θ . s ψ + sϕ. c ψ)](.                                (5) 

 

𝑧̇𝑅 = 𝑉[− c 𝛼. c 𝛽. s 𝜃 + s 𝛽. c 𝜃 . s 𝜙  + s 𝛼. c 𝛽. c 𝜃 . c 𝜙].   (6) 

Where 𝑥̇𝑅 , 𝑦̇𝑅 , 𝑧̇𝑅 are translational velocities. 

• Acceleration relative to the ground and flow angles  

 

V̇k = g (s β. s ϕ . c θ + c β. s α . cϕ . c θ − c α. c β . s θ) +
1

m
( −D + T cα . c β).                                                (7) 

 

β̇k = p . s α − r. c α +
g

V
(c α. s β . s θ + cβ. sϕ . c θ − sα. s β . c ϕ. c θ) +

1

mV
(−S − T. c α . s β).                        (8) 

 

α̇k = q − r. s α . t β − p c α . t β +
g

cβV
[(s α . s θ + c α . c ϕ  . c θ) +

1

mV
(−L − T. s α)].                                    (9) 

                  

• Angular velocities 

 

𝜙̇ = 𝑝 + 𝑞 sin 𝜙 tan 𝜃 + 𝑟 cos𝜙 tan 𝜃.                                                                                                           (10) 

 

𝜃̇ = 𝑞 cos𝜙 − 𝑟 sin 𝜙.                                                                                                                                   (11) 

  

𝜓̇ = (𝑞 sin 𝜙 + 𝑟 cos𝜙) sec 𝜃 .                                                                                                                      (12) 

Where 𝜙̇, 𝜃̇, 𝜓 ̇ are angular velocities. 

• Rotational velocities  

𝑝̇ =
1

𝐼𝑥𝐼𝑧−𝐼𝑥𝑧
2  [(𝐼𝑦𝐼𝑧 − 𝐼𝑧

2 − 𝐼𝑥𝑧
2 )𝑟𝑞 + (𝐼𝑥𝐼𝑥𝑧 − 𝐼𝑦𝐼𝑥𝑧 − 𝐼𝑧𝐼𝑥𝑧)𝑝𝑞 + 𝐼𝑧ℒ + 𝐼𝑥𝑧𝑁.                                               (13) 

𝑞̇ =
1

𝐼𝑦
[(𝐼𝑧 − 𝐼𝑥)𝑝𝑟 − 𝐼𝑥𝑧𝑝

2 + 𝐼𝑥𝑧𝑟
2 +𝑀 ].                                                                                                       (14) 

ṙ =
1

𝐼𝑥𝐼𝑧−𝐼𝑥𝑧
2 [(𝐼𝑥

2 − 𝐼𝑥𝐼𝑦 + 𝐼𝑥𝑧
2 )𝑝𝑞 − (𝐼𝑥𝐼𝑥𝑧 − 𝐼𝑦𝐼𝑥𝑧 − 𝐼𝑧𝐼𝑥𝑧)𝑟𝑞 + 𝐼𝑥𝑧ℒ + 𝐼𝑥𝑁].                                               (15) 

Where 𝑝̇, 𝑞̇, ṙ are rotational velocities and  𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 are momentum of inertia in the direction X, Y, Z and 

ℒ,𝑀,𝑁  are moments along the axis. 

PAD system model 

The PAD system is modeled as a link-connected system, where the hose consists of a limited number of rigid 

cylindrical connections connected to spherical connections without friction. The masses and loads associated with 

each joint are concentrated in the joints. Drogue acts as a lumped mass at the end of the tanker A/C hose. It is 

modeled based on the finite element model and uses a limited number of rigid cylindrical joints in the reference 

[19]. 

DGPS sensor 

The DGPS sensor measures the A/C position information based on the equations difference along the (X, Y, Z) 

axes. One of the important applications of the DGPS is to obtain relative position information. These sensors can 
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provide less than a meter scale position accuracy with nanosecond transmission accuracy. However, it should be 

noted, that the tanker A/Cs might overshadow the satellite vision and strongly affect the position accuracy of any 

satellite-based system. Considering that this type of sensor neutralizes most of the atmospheric conditions effects 

and system errors, a DGPS is a good solution for tracking PAD [9, 21]. 

MV sensor 

Object recognition based on images is the subject of many studies and research. Much research is being done to 

improve AAR through MV sensors. The MV sensor can compare images of the tanker A/C, the relative location 

and rotation between the sensor and the A/C by tracking the indicator, and showing the steps for determining and 

estimating the situation [22, 23]. 

Fusion Sensor 

The FS purpose is to combine the distance data provided by the MV and DGPS sensors to generate a feedback 

signal, as shown in Figure 3., the FS is based on the concept that when the receiver-tanker distance is greater than 

a certain threshold distance, only DGPS-based measurement should be used because the MV system may not be 

able to capture an accurate image of the drogue. As the receiver-tanker distance decreases, the target point should 

gradually converge towards the true drogue center. Therefore, the vector r should gradually change from the 

nominal position obtained by the DGPS to the position provided by the MV. Data fusion can be performed through 

a fuzzy fusion strategy of DGPS and MV measurements as a function of tanker-receiver distance. [23, 24]. 

 

Fig. 3. The FS block diagram 

The signal (r) is obtained by a FS between DGPS and MV based on the distance between two A/Cs. At large 

distances, the r signal is provided by the nominal DGPS distance (𝐿𝐷𝑛). 

𝐿(𝑡) > 𝐿1  𝑎𝑛𝑑 𝑟(𝑡) = 𝐿𝐷𝑛(𝑡).                                      (16)     

  

In the above relation, 𝐿1is defined threshold distance also, in the medium distance, the r signal is obtained by 

combining the DGPS position and the specified MV distance: 

If 𝐿2 < 𝐿(𝑡) ≤ 𝐿1 → 𝑟(𝑡) =
1

𝐿2−𝐿1
[𝐿𝐷𝑛(𝑡)(𝑑2 − 2𝐿1 − 𝐿(𝑡)) + 𝐿𝐷(𝑡)(𝐿(𝑡) − 𝐿1)].                                    

(17)    

                          

Where 𝐿2 threshold distance is defined. At a small distance, the r signal is obtained through MV. 

𝐿(𝑡) ≤ 𝐿2 →     𝑟(𝑡) = 𝐿𝐷(𝑡).                                                                                                              (18) 

     

Eventually, from the connection stage to the end of the refueling process, the receiver and tanker A/Cs must 

maintain a constant relative distance equal to the value (𝑇𝑑). Because MV does not provide useful information 

during connection, relative position measurement is performed by DGPS (𝐿𝐺) measurement. In this step, r is 

defined using the following equation: 

𝑡 > 𝑇𝑑  → 𝑟(𝑡) = 𝐿𝐺(𝑡) − 𝐿𝐺(𝑇𝑑).                                                                                                                   (19) 

Atmospheric turbulence 
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Using the Dryden turbulence model, the atmospheric turbulence effects on the hose and drogue system as well as 

for both the receiver and tanker A/Cs have been modeled [4]. Light turbulence is selected for AR at high altitudes 

and steady air. 

Effects of tanker A/C 

AAR is a formation flight that flies the receiver A/C in the tanker airfield. Downwash effect due to the waves 

produced by the tanker A/C. In AAR, since the tanker and receiver A/Cs are in a horizontal position, the downwash 

effects of the tanker A/C cannot be ignored. The downwash effect changes the inlet airflow angle, which changes 

the stability status of the A/C, resulting in the experience of various forces and momentum [25]. 

 

Fig. 4. Airflow disturbances from tanker A/C 

Tanker A/C downwash effects  

Due to the direction and pattern of the wing-tip vortices of the tanker A/C, a descending current of the air is 

created at the direct end of the wing. 

According to Figure 4, the trailing vortices are a downward flow of air directly behind the wing. Due to this 

secondary effect, the surrounding air dragged around with them, which resulted in a small downward velocity 

component at the wing. This downward component is called downwash. The presence of downwash, and its effect 

on inclining the local relative wind in the downward direction, has a great effect on the airfoil AOA. This angle 

is given by 𝛼𝑒𝑓𝑓 and is defined as the effective AOA. According to Figure 5, the effective AOA is obtained as: 

𝛼𝑒𝑓𝑓 = 𝛼 − 𝛼𝑖  where, 𝛼𝑖  is the induced AOA and 𝛼 is the geometric AOA [26]. 

 

 

Fig. 5. The downwash effect on the AOA 

Vortex effects on the receiver A/C 

Since the tanker A/C flow field is not uniform, it cannot be considered a linear model. This section examines the 

vortex effects on the trim and control of the receiver A/C. According to Figure 6, 𝜔𝑑 is the downwash angle that 

occurs between the inbound airflow and velocity vector. Since downwash significantly affects the width of the 

receiver A/C, the receiver needs to be trimmed. 
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T cos 𝛼 − 𝐷 −𝑚g sin(𝜔𝑑 + 𝛾) =

0.                                                                                                                                       (20) 

𝐿 −𝑚g cos(𝜔𝑑 +  𝛾 ) + 𝑇 sin 𝛼 =

0.                                                                                                                                      (21) 

𝐶𝑀 =

0.                                                                                                                                                                                           (22) 

In the above equations, 𝛾 the flight path angle, L the lift, D the drag, and 𝐶𝑀 is pitch momentum [20, 22]. 

 

Fig. 6. The downwash effect on the lift and drag vectors direction 

Trim effect 

The state equations obtained in section 6.2, can be solved for X states and input values of U, which produces trim 

conditions. For straight and level flight: 

𝑋̇   = 0 → 𝑢̇, 𝑣̇, 𝑤̇ = 𝑣̇, 𝛼̇, 𝛽̇ = 𝑝̇, 𝑞̇, 𝑟̇ = 0.                                                                                                                 (23) 

After creating trim conditions, a linear dynamic model around trim flight can be obtained. This is intended as a 

representative that represents a nonlinear model in one area around the trim point and will be used to formulate 

control-based rules. State and trim input values can be obtained for flight conditions with A/C velocity and 

altitude. 

Artificial neural networks 

Artificial neural networks (ANN) based on the biological model are systems that are made up of simple, large-

scale processors that have many connections between them. ANN models are trying to apply some of the rules 

known to the human brain. Due to its specific structure, the brain has unique features, including matching power, 

the ability to generalize, learning, parallel processing, error tolerance, and low energy consumption. ANNs are 

designed to meet some of the specifications outlined above. ANN may consists of several neurons to several 

thousand neurons, and the network’s size depends on the problem's complexity. McCulloch and Pitts thought of 

modeling biological neurons for the first time in the 1940s. They developed the NN based on the mathematical 

model of a nerve cell. Nevertheless, in recent years, due to the ability to learn and analyze nonlinear systems, 

much research has been done in the field of neural networks and has been used in many scientific issues. Figure 

7 shows an overview of an ANN structure. This figure shows that an ANN typically consists of three layers: 1. 

Input layer (as the recipient of raw data); 2.   Hidden layer (as the recipient of weighting inputs), and; 3. The 

output layer [27-30]. 

 

Fig. 7. The neural network structure 
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There are two neural network categories based on their structure, i.e., the arrangement of neurons in the model 

and the connections between them. Those are the feed-forward neural networks and the recurrent neural networks 

[31]. Feedforward neural networks are one of the simplest types of neural networks that, as their name suggests, 

only transmit information in one direction. This type of network consists of an input layer, an output layer, and 

one or two hidden layers, and the error back propagation method is used to train them. On the other hand, networks 

with a recurrent structure have connections that transfer information from the end layers of the network to return 

input. This method continues until the network reaches a stable state. This type of structure is particularly useful 

in problems in which the solution does not depend only on the current inputs of the system and all previous entries 

affect it. There are different types of feed-forward neural networks, the three most famous of which are the single-

layer perceptron, the multi-layer perceptron, and the radial basis network. Similarly, recurrent neural networks 

are also very extensive as some of their famous networks can form a competitive network as the self-organizing 

mapping of Kohonen and Hopfield’s network [32]. 

Neural networks with an ordinary sigmoid function 

 An ordinary sigmoid function with amplitude can be written as the following equation in which a = 1 and 𝜌 has 

a constant value. 

𝒇(𝒙) =
𝒂(𝟏−𝒆−𝝆𝒙)

(𝟏+𝒆−𝝆𝒙)
.                                                                                                                                                     (24) 

Where a, is the function gain and 𝜌 is the function's slope. To achieve more accuracy, the function slope and the 

function gain can be changed. The higher the parameters that can be adjusted, the less learning error is obtained 

in the neural network. Yamada's proposed design was to adjust both the slope and the gain of the sigmoid function, 

and he used this design in the controller [33].  

Neural networks with a parametric sigmoid function 

Every neural network needs a transfer function to convert input signals into output signals. Simply put, the 

transmission function determines the status and activation of a neuron in a neural network.  In NN-PSF, the 

transfer function is considered a tangent hyperbolic. 

𝐹𝑞(𝑥) = 𝑡𝑎𝑛ℎ[(𝐿𝑛𝑞)𝑥] ×

(𝐿𝑛𝑞)−1.                                                                                                                                            (25) 

The choice of a parametric function will have three main advantages: 1. Good accuracy and high learning speed; 

2. Obtaining more information about the system, and; 3. High flexibility and reducing the error range. This new 

form of function is desirable because it prevents the absolute function value from being underestimated due to the 

use of (Ln q) instead of q. The following equation can be obtained by expanding and simplifying the above 

equation. In this equation, the change effect of q on the sigmoid function shape can be observed [34]. 

𝐹𝑞(𝑥) =

𝟏−
𝑳𝒏𝒒(𝟐𝒙)

𝟐
+
(𝑳𝒏𝒒)𝟑(𝟐𝒙)𝟐

𝟔
+⋯

𝟏

𝒙
−
𝑳𝒏𝒒

𝟐
+
(𝑳𝒏𝒒)𝟐𝒙

𝟐
−
(𝑳𝒏𝒒)𝟑𝒙𝟐

𝟑
+⋯
.                                                                                                                                                    (26) 

 

Fig. 8. The NN-PSF structure 

Figure 8 shows a neural network with a parametric sigmoid function in which sigmoid functions are represented 

as circles. The weight coefficient is related to the output and usually equals one. The latent neuron receives the 
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sum of the inputs multiplied by the weight factor and produces the output. It receives the output of a k neuron and 

produces the output in the same state. 

In this study, the neural network presented, the structured multi-layer forward network has two hidden layers. Due 

to the inlet and outlet variables of the receiver A/C, the input layer consists of 5 neurons, and the output layer has 

two neurons. The two hidden layers consist of 19 and 13 neurons, respectively. Education of ANNs is done by 

updating weights using backpropagation learning law. The intermediate and output layer errors are used to correct 

the weight coefficients. The last layer output creates an error with the desired value and the difference between 

them. This error is used as a weight updater. The node output is created using the multiplication node input to 

transfer functions concerning previous inputs. This process continues until the first layer and is eventually updated 

by the following equation. 

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝜑(𝑊(𝑡) −𝑊(𝑡 − 1)) −

𝜎ℎ(𝑡)                                                                                                               (27) 

ℎ(𝑡) =
𝜕(∑ (𝑑𝑗−𝑝𝑗)

𝑁
𝑗=1 )

𝜕𝑤𝑗𝑖
.                                                                                                                                                   (28) 

𝐸𝑟𝑟𝑜𝑟 =
1

2
∑ ( 𝑑(𝑘) − 𝑜𝑘 (𝑘))2.                                                                                                                                   (29) 

Where d (k) is the desired output value for kth output. 

In the learning phase, error signals propagate backward through the network. The q-parameter is adjusted by 

tuning the weighting coefficients to minimize the error between the network output and the training and learning 

signals. 

Effect of “q” parameters (NN-PSF learning) 

In this paper, the transfer function used a tangent hyperbolic. Since the parameter "q" defined in the transfer 

function causes it to adapt, it plays an important role in PNN. Changes in this parameter proportional to the 

nonlinear degree, and changes in the data set help the network learning process. The standard form of hyperbolic 

function is equation 25. The control of this function is performed by parameters a, 𝜌 (equation 24). To prevent 

severe changes in these parameters, instead of "a" the limiting function 
1

𝐿𝑛 𝑞
 𝑜𝑟 𝑒−𝑞 are used. The "q" parameter 

has the regulator role for the transfer function. Finally, the effect of the "q" parameter changes in the following 

equations are shown. 

𝑞𝑛𝑒𝑤 = 𝑞𝑜𝑙𝑑 − 𝜌
𝜕𝐸

𝜕𝑞𝑜𝑙𝑑
.                                                                                                                                                 (30) 

Where 𝜌 is the learning rate. 

∆𝑜𝑜(𝑘) ≜
𝜕𝐸

𝜕𝑜𝑜(𝑘)
= 𝑜𝑜(𝑘) − 𝑑(𝑘).                                                                                                                              (31) 

∆𝑜𝑖(𝑘) ≜
𝜕𝐸

𝜕𝑥0(𝑘)
=

𝜕𝐸

𝜕𝑜𝑜(𝑘)

𝜕𝑜𝑜(𝑘)

𝜕𝑥0(𝑘)
= ∆𝑜𝑜(𝑘) × 𝑡𝑎𝑛ℎ

′(ln 𝑞𝑘 ×

𝑥0(𝑘)).                                                                                   (32)  

 ∆ℎ𝑜(𝑗) ≜
𝜕𝐸

𝜕𝑜ℎ(𝑗)
= ∑

𝜕𝐸

𝜕𝑥0(𝑘)

𝜕𝑥0(𝑘)

𝜕𝑜ℎ(𝑗)
𝑘 = ∑ ∆𝑜𝑖𝑘 ×

𝑊𝑘𝑗.                                                                                                                                                     (33) 

∆ℎ𝑖(𝑗) ≜
𝜕𝐸

𝜕𝑥ℎ(𝑗)
=

𝜕𝐸

𝜕𝑜ℎ(𝑗)

𝜕𝑜ℎ(𝑗)

𝜕𝑥ℎ(𝑗)
= ∆ℎ𝑜(𝑗) × 𝑡𝑎𝑛ℎ

′ (ln 𝑞𝑗 ×

𝑥ℎ(𝑗)).                                                                                       (34) 

For q in the kth output neuron. 

𝜕𝐸

𝜕𝑞𝑘
=

𝜕𝐸

𝜕𝑜𝑜(𝑘)

𝜕𝑜𝑜

𝜕𝑞𝑘
=

−1

𝑞𝑘×ln𝑞𝑘
× {∆𝑜𝑜(𝑘) × 𝑜𝑜(𝑘) − ∆𝑜𝑖(𝑘) ×

𝑥0(𝑘)}.                                                                                     (35) 
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For q in the hidden neuron, the gradients can be calculated as, 

𝜕𝐸

𝜕𝑞𝑗
= −

1

𝑞𝑗×ln 𝑞𝑗
× {∆ℎ𝑜(𝑗) × 𝑜ℎ(𝑗) − ∆ℎ𝑖(𝑗) × 𝑥ℎ(𝑗)}.                                                                                              (36) 

All the weights and "q" parameters can be updated using the above error signals [29, 33]. 

 

Parametric neural networks training 

After selecting the type of NN, it is time to train them. It has two data groups. A data group is an input vector to 

the network, which includes control variables and A/C states at different moments. The second data group is the 

desired output of each network at any moment. In other words, it is the amount that is expected to produce a 

specific input for a vector [14]. Figure 9 shows the parametric neural network training. 

 

 

Fig. 9. The network training method schematic 

Neural network training is done with the available data. In practical work, the data is obtained through flight 

testing [15]. In this study, the analytical simulation output was used for training due to a lack of flight test data. 

This means that the simulated models are applied to a receiver A/C, and the results are recorded for use in the 

training process. It is noteworthy that the identification method presented in this study can be applied to the test 

results extracted from the actual flight test. In other words, if the model works properly for simulator outputs, this 

method can also be applied to flight test data. 

System identification 

System identification is the process of appropriate use of mathematical models and learning algorithms to draw a 

map of experimental data by minimizing an error criterion between the desired system output and the model 

output. The autoregressive moving average (ARMA) model are linear regression model which is presented below 

in discrete form [36] 

𝑦(𝑘) = 𝑎0𝑥(𝑘) + ⋯+ 𝑎𝑛𝑥(𝑘 − 𝑛) + 𝑏1𝑦(𝑘 − 1) + ⋯+ 𝑏𝑚𝑦(𝑘 −

𝑚).                                                                         (37)   

Where x (k) and y(k) are the model’s input and output. Another way to show is as follows: 

𝑦(𝑘) =∑𝑎𝑖𝑥(𝑘 − 𝑖)

𝑛

𝑖=0

+∑𝑏𝑗𝑦(𝑘 − 𝑗).

𝑚

𝑗=1

                                                                                                                               (38) 

Where 𝑎𝑖 and 𝑏𝑗  are the model’s parameters at sample k. The transfer function is obtained as follows: 

𝑇. 𝐹 = 𝐻(𝑧)

=
𝑎0 + 𝑎1𝑧

−1 +⋯+ 𝑎𝑛𝑧
−𝑛

1 − 𝑏1𝑧
−1 −⋯− 𝑏𝑚𝑧

−𝑚
 .                                                                                                                          (39) 
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Equation 37 can be contracted as a vector format 𝑦(𝑘) = 𝛼𝑇𝛽(𝑘) where 𝛼𝑇 = [𝑏1, … , 𝑏𝑚, 𝑎0, … , 𝑎𝑛] is the 

parameter vector and 𝛽(𝑘) = [𝑦(𝑘 − 1), … , 𝑦(𝑘 −𝑚) , 𝑥(𝑘), … , 𝑥(𝑘 − 𝑛)]𝑇is the measurement vector. The 

block diagram of general system identification is shown in figure 10. 

 

Fig. 10. Block diagram of general system identification 

Algorithms such as least squares (LS), recursive least squares (RLS), and recursive prediction error method 

(RPEM) are used for system identification purposes. [35, 36]. Since most existing physical systems are nonlinear, 

therefore they require nonlinear modeling. However, the existence of nonlinear relationships between the input 

and output of dynamic systems, makes it difficult to identify different types of these systems with accurate 

parametric models. Identification of such models should be done through the Volterra series and the Hammerstein 

model. To modify the linear ARMA model and create a nonlinear ARMA model there would be 

𝑦(𝑘) = ∑ 𝑎𝑖   𝑥(𝑘 − 𝑖) + ∑  𝑏𝑗   𝑦(𝑘 − 𝑗)
𝑚
𝑗=1 + ∑ ∑  𝑎𝑖𝑗  𝑥(𝑘 − 𝑖)𝑥(𝑘 − 𝑗) + ∑ ∑  𝑏𝑖𝑗𝑦(𝑘 −

𝑚
𝑗=1

𝑛
𝑖=1

𝑚
𝑗=0

𝑛
𝑖=0

𝑛
𝑖=0

𝑖) 𝑦(𝑘 − 𝑗) + ∑ ∑  𝑐𝑖𝑗 𝑥(𝑘 − 𝑖) 𝑦(𝑘 −
𝑚
𝑗=1

𝑛
𝑖=0

𝑗) .                                                                                                                                    (40)  

In the nonlinear form of ARMA, New parameters (( 𝑎𝑖𝑗 ,  𝑏𝑖𝑗 ,  𝑐𝑖𝑗 ) are added [37]. 

 

PNN identification (reference path) 

The reference path built to link the probe and the drogue must meet these two crucial criteria: To prevent a 

collision between the two A/Cs and the drogue hose system, one must first ensure the safety of both A/Cs and the 

refueling accessories. Additionally, the drogue movement, while affected by current disturbances, shouldn't 

necessarily disrupt the path's overall design. As a result, the vertical position error between the probe and the 

drogue in the first portion of the path has been fixed, and now the drogue's movement in the last part of the route 

has to be taken into account. Furthermore, the planned route needs to work while considering the receiver A/C's 

dynamic restrictions. A consistent and obvious, smooth path needs to be created to satisfy the second criterion. 

Figure 11 depicts the reference path layout between the two A/Cs (receiver and tanker). 

 

Fig. 11. Structure of the reference path 

Now to create the reference path, when the AR process between the two A/Cs begins at the time  𝑡0. The receiver 

A/C control rules must create a suitable route to achieve the desired 𝑟𝑠 target at a reasonable time despite the 

receiver A/C dynamic constraints. Therefore, this method is defined to program a smooth reference path 𝑟𝑑 that 

is avoided by following the distance r from high accelerations and velocities. In designing the reference path, the 

speed and height are assumed to be constant. 
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𝑟𝛼 = [𝑉 , 𝛼 , 𝛽 , 𝑃 , 𝑞 , 𝑟 , 𝜙 , 𝜃 , 𝛹]𝑟𝑒𝑓
𝑇 = [𝑉𝑛 , 𝛼𝑛, 𝛽𝑛 , 0 , 0,0,0, 𝜃𝑛, 𝛹𝑛]

𝑇.                                                          

(41) 

Where the index n shows the connection point values. The position and interpolation of the cube are used to form 

the reference path components 𝑟𝑑 = [𝑟𝑑𝑥  , 𝑟𝑑𝑦 , 𝑟𝑑𝑧]
𝑇
. That means: 

𝑟𝑑𝑖(𝑡) = 𝑎𝑖𝑡
3 + 𝑏𝑖𝑡

2 + 𝑐𝑖𝑡 + 𝑑𝑖 , 𝑖 = 𝑥 , 𝑦 , 𝑧.                                                                                                          (42)

  

Where the coefficients 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 and 𝑑𝑖 are obtained through the following boundary conditions. By setting the 

initial maneuver time at 𝑡0 = 0 and keeping the optimal final maneuver time constant at 𝑡𝑑𝑖 = 𝑇𝑑𝑖, it is necessary 

to: 

𝑟𝑑(𝑡0) = 𝑟𝑖(0) ,  𝑟𝑑𝑖(𝑇𝑑𝑖) = 0 , 𝑖 = 𝑥 , 𝑦 , 𝑧.                                                                                                              (43)

        

In addition, the initial and final speeds of the reference signals are considered to be zero: 

ṙ𝑑𝑖(0) = 0,   ṙ𝑑𝑖(𝑇𝑑𝑖) = 0,   𝑖 = 𝑥 , 𝑦 , 𝑧.                                                                                             (44) 

     

Algebraic calculations show that Equation 42 solves constraints 43 and 44 with the following equations. 

The maximum velocity and acceleration values along the path are obtained as follows. 

𝑟𝑑𝑖(𝑡) =
2𝑟𝑖(0)

𝑇𝑑𝑖
3 𝑡3 −

3𝑟𝑖(0)

𝑇𝑑𝑖
2 𝑡2 + 𝑟𝑖(0)                  

0 ≤ 𝑡 ≤ 𝑇𝑑𝑖     ,   𝑖 =

𝑥 , 𝑦 , 𝑧 .                                                                                                                                         (45)             

       

The maximum speed and acceleration values along the path are obtained as follows: 

𝑉max  𝑖 = −
3𝑟𝑖

2𝑇𝑑𝑖
 .   𝐴𝐶max  𝑖 = ±

6𝑟𝑖(0)

𝑇𝑑𝑖
2 .                                                                                             

(46)  

The initial position distance vector [𝑟𝑑𝑥(0) , 𝑟𝑑𝑦(0), 𝑟𝑑𝑧(0)] in the above equations can be used to obtain the 

minimum maneuver time 𝑇𝑑𝑖; which guarantees the desired values for maximum speed or acceleration. In this 

paper, the receiver A/C direction along the Y-Z plane of the ORRF frame and then the direction along the X 

direction for maneuvering is selected. The connection sequence is longer than the other two, given the 

maneuvering time (𝑇𝑑𝑥) along the forward X direction. Based on this we will have [19, 38].  

𝑇𝑦𝑧 = max(𝑇𝑑𝑦  , 𝑇𝑑𝑧) → 𝐼𝑓 (𝑇𝑑𝑥 < 𝑇𝑦𝑧)
𝑡ℎ𝑒𝑛
→  𝑇𝑑𝑥 = 𝑇𝑦𝑧 + 5 𝑠.                                               (47) 

III.SIMULATION AND DISCUSSION 

A MATLAB-based simulation environment has been developed to simulate the AAR docking stage. It should be 

noted that in NNs with PSF, due to the use of additional parameters in the performance function, it has more 

power in the detection, identification, and flexibility of the AR system. In the docking phases, training errors will 

normally decrease during the initial training phase. If tracking error is increased between the drogue (tanker A/C) 

and probe (receiver A/C), the weights have to be adjusted the process goes back to evaluate the output of the 

network. The weights of the connections will then be adjusted to get the network output closer to the desired state. 

Repeating this technique results in good convergence and a decreased error value. The inaccuracy in the training 

phase, however, tends to rise as the PNN attempts to match the data. The training terminates and the weights and 

bias return to the level with the least amount of error once the tracking error has grown for a certain number of 

iterations. In NN-PSF networks, there is at least one reversal signal from one neuron to the same neuron or neurons 

of the same layer or previous layers. Reversible networks can show behavior related to the temporal properties 

and dynamics of systems. In this type of network, which is designed according to the dynamic nature of the 
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problem, after the network learning stage, the parameters are also changed and corrected. In this paper, state 

variables are the relative position coordinates of the PAD (x, y, z), velocities (u, v, w), angular velocities (p, q, r) 

and altitude angles ( 𝜙, 𝜃, 𝛹) under the body coordinate system of receiver A/C. The control (input) variables are 

selected 𝛿𝑎, 𝛿𝑒, 𝛿𝑟 , 𝛿𝑡 . The output variables are the relative position coordinates of the probe to the drogue under 

the ground coordinate system of receiver A/C. The following data have been used for numerical simulation and 

modeling [39]. 

M=8.838 × 105kg,  𝑐̅ = 8.763 𝑚  b=39.877 m,   𝐼𝑥𝑥 = 3.186 × 10
4𝑘𝑔.𝑚2,   𝐼𝑦𝑦 = 8.757 × 10

4𝑘𝑔.𝑚2,  𝐼𝑧𝑧 =

1.223 × 105𝑘𝑔.𝑚2  𝐼𝑥𝑧 = −546.394. 𝑘𝑔.𝑚
2   S = 226.03𝑚2 

𝐶𝐷𝛿𝑒2 = 0.25,   𝐶𝑠0 = 0,  𝐶𝐷0 = 0.023, 𝐶𝐷𝛼 = 0  ,     𝐶𝐷𝛼2 = 0.7,    𝐶𝐷𝛿𝑒 = 0 𝐶𝑠𝛽 = −0.812,  𝐶𝑠𝛿𝑟 = 0.184,

𝐶𝐿0 = 0.1  

𝐶𝐿𝛼 = 4.8,    𝐶𝐿𝛼2 = 0,   𝐶𝐿𝑞 = 5.65,   𝐶𝐿𝛿𝑟 = 0.19,  𝐶𝑙0 = 0,  𝐶𝑙𝛿𝑎 = −0.05,   𝐶𝑙𝛿𝑟 = 0. 019,   𝐶𝑙𝛽 =

−0.177,   𝐶𝑙𝑝 = −0.312,  𝐶𝑙𝑟 = 0.1153,   𝐶𝑙𝛿𝑒 = 0, 𝐶𝑀0 = 0,  𝐶𝑀𝑞 = 4.5,  𝐶𝑀𝛼 = −0.65,  𝐶𝑀𝛿𝑒 = −0.57,   𝐶𝑁0 =

0, 𝐶𝑁𝛿𝑎 = 0.008,  𝐶𝑁𝛿𝑟 = −0.076,   𝐶𝑁𝛽 = 0.129, 𝐶𝑁𝑝 = −0.011  𝑎𝑛𝑑   𝐶𝑁𝑟 = −0.165  𝑥(0) =

130𝑚 , 𝑦(0) = 25𝑚, 𝑧(0) = 30𝑚, 𝑉(0) = 180
𝑚

𝑠
, 𝛼(0) = 0.03 𝑟𝑎𝑑, 𝜃(0) = 0.02 𝑟𝑎𝑑, 𝛾(0) = 0 𝑟𝑎𝑑,

𝑞(0) = 0 
𝑟𝑎𝑑

𝑠
𝐿𝐺(0) و   = [130, 25, 30]𝑚 و    𝐿𝐺𝑛𝑜(0) = [20, 0, 10]𝑚و   𝑟𝑑 = [6, 0, 0]𝑚,   𝐿𝐷(0) =

[130 − 20, 25 − 0 , 30 − 10] = [110, 25, 20] 

In this regard, to obtain the convergence of the network output and the real output, after modeling the receiving 

A/C and obtaining the input and output through MATLAB software, the following results were obtained: 

Figure 12 (a) shows tracking error value vs. iteration and (b) shows the convergence of network output and real 

output in the X direction. As can be seen, the amount of tracking error is close to 0.0001 after 2000 iterations and 

also, the convergence of the network output with the real output is obtained. 

Figure 13 (a) shows the tracking error value vs. iteration and (b) shows the convergence of network output and 

real output in the Y direction. As can be seen, the tracking error amount is close to 0.001 after 10000 iterations, 

and also, the convergence of the network output with the real output is obtained.  

 

Fig. 12. (a) Tracking error value vs. iteration (b) Convergence of network output and real output in the X 

direction 
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Fig. 13. (a) Tracking error value vs. iteration (b) Convergence of network output and real output in Y direction 

Figure 14(a) shows tracking error value vs. iteration and (b) shows the convergence of network output and real 

output in the Z -direction. As can be seen, the tracking error amount is close to 0.0001 after 2500 iterations, and 

also, the convergence of the network output with the real output is obtained. 

 

Fig. 14. (a) Tracking error value vs. iteration (b) Convergence of network output and real output in the Z -

direction 

Figure 15 shows the drogue and the probe trajectory. Due to the non-uniform turbulence of the tanker A/C, the 

hose and drogue system gradually stabilize at equilibrium. The drogue position around the equilibrium will also 

fluctuate due to turbulence. 

 

Fig. 15. Drogue and probe trajectory 
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The results of tracking the position of the receiver A/C, taking into account the effects of the tanker A/C, are 

extracted as follows:  

Figure 16, results comparison of the position tracking of the receiver A/C considering the tanker A/C effects.  

Figure 17 shows the drogue displacement with stable flight conditions. As can be seen from the figure, after 90 

seconds, the drogue oscillations due to turbulence in the three directions X, Y and Z, converge to stable conditions. 

The elements of the r signal and the matching reference that creates the programmed path are shown in Figure 18. 

With the connecting maneuver, 90 seconds is the ideal tracking period for the three components. With the help of 

the NN-PSF rule, the receiver A/C can precisely monitor the drogue. The connection stages are pretty successful 

in 90 seconds because detection faults satisfy the requirements of the connection step. 

 

Fig. 16. Position tracking of the receiver considering the tanker effects in two directions of X and Z 

 

Fig17. Drogue displacement vs time in three direction X, Y, Z 

Figure 19 shows the time response of system states, including velocity, path angle, turn angle, and turn angle rate. 

As shown in Figure 19, by simulating MATLAB software, the speed and angle of the path converge to the nominal 

conditions. The pitch angle and rate change rapidly to compensate for external turbulence effects. 
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Fig. 18. Path tracking error during the connection phase in three directions X, Y, Z 

 

Fig. 19. Time response of receiver A/C modes 

Figure 20 shows the steps before and after the refueling connection in three directions. As it is known, before 

connection, the drogue will fluctuate a lot due to the non-uniform waves of the tanker A/C. However, from the 

moment the two A/Cs connect, they gradually reach a steady state of equilibrium. 

 

Fig. 20. 𝐿𝐺vector components during the AR process 

IV.CONCLUSION 

This research studies the AR system mechanism model in the presence of disturbance effects and proposes a 

method based on neural network with parametric sigmoid function for air refueling detection. After determining 
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the mathematical model, the input and output values of the modes were extracted using MATLAB software. The 

final analysis and conclusion of this research can be summarized as follows: 

1. In this research, the NN-PSF method was used to identify A/C in order to use its results in the development of 

AAR. In the proposed method, which provides advantages such as the ability to learn and the ability to adapt to 

new conditions, such as the lack of comprehensive information about the structure of the nonlinear model in the 

presence of disturbances, the graphs are continuously estimated. 

2. In the proposed method, three different forms of neural network including normal sigmoid function, parametric 

sigmoid function and parametric sigmoid function with natural logarithm are used to identify the air refueling 

system. By implementing all of them and comparing the results, it was found that the neural network with the 

parametric sigmoid function method (natural logarithm) has three main advantages over others: 1. Greater 

reduction of the error between the receiver and the tanker, 2. Obtaining limited and uniform signals, and; 3. The 

ability to learn the system in turbulent aerodynamic conditions and uncertainty. 

The following can be considered for the future development of this research: 

• Compared to reality, there are certain differences in modeling and identification for future research. For 

example, applying a sudden and momentary load causes elasticity and wear of the probe and drogue. 

• To ensure the correctness of the proposed model, possible simulated results will be compared with real 

data in future research, as practical confirmation is possible by conducting refueling flight tests. 
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