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Abstract: - Slope stability analysis is crucial in civil engineering for the design and maintenance of embankments, especially those
constructed on soft soils. Traditional methods like the limit equilibrium method (LEM) and finite element method (FEM) are time-
consuming and require significant expertise. This study explores the application of three machine learning models—Artificial Neural
Network (ANN), ANN combined with Imperialist Competitive Algorithm (ANN-ICA), and Adaptive Neuro-Fuzzy Inference System
(ANFIS)—to predict slope stability. A numerical analysis using PLAXIS 2D software generated a database encompassing various
geometric characteristics such as slope height, surcharge, and slope angle. These features served as input parameters, while the factor of
safety (FOS) values were used as target outputs. The performance of each model was evaluated using determination coefficients (R?) and
root mean square errors (RMSE). The ANN-ICA hybrid model demonstrated superior predictive accuracy, with R2 and RMSE values of
0.998 and 0.041 for training datasets, respectively, outperforming the standalone ANN (R? = 0.724, RMSE = 0.124) and ANFIS (R? =
0.858, RMSE = 0.052) models. This study highlights the potential of hybrid machine learning approaches in enhancing the efficiency and
accuracy of slope stability predictions, offering a promising alternative to traditional methods.

Keywords: Slope Stability, Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, Optimization Algorithm,
Imperialist Competitive Algorithm.

1 Introduction

Slope stability analysis is a fundamental aspect of civil engineering, particularly in designing and maintaining
embankments constructed on soft soils [1]. Traditional methods such as the limit equilibrium method (LEM) and
finite element method (FEM) have been extensively used for this purpose. However, these methods are time-
consuming and require significant computational resources and expert knowledge for slope stability analysis due
to considering stress-strain behaviour boundary conditions [2] and the need for precise modelling of parameters
such as cohesion and internal friction angle [3], complex geological conditions [4], detailed material behaviour
input [5], and accounting for factors like water pressure and seismic loads [6]. The increasing complexity of
modern engineering projects necessitates more efficient and accurate predictive tools. This study addresses this
need by exploring the application of advanced machine learning models to enhance the accuracy and efficiency
of slope stability predictions.

In recent years, machine learning techniques have gained traction in various engineering disciplines due to their
ability to model complex, nonlinear relationships. Among these techniques, Artificial Neural Networks (ANNS)

1 i1Centre of Green Technology for Sustainable Cities, Department of Civil Engineering, Politeknik Ungku Omar, Jalan Raja Musa Mahadi,
31400 Ipoh, Perak, MALAYSIA.

2Research, Innovation and Commercialization Unit, Politeknik Ungku Omar, Jalan Raja Musa Mahadi, 31400 Ipoh, Perak, MALAYSIA.

3School of Geomatics Sciences & Natural Resources, College of Built Environment, Universiti Teknologi MARA, 40450 Shah Alam, Selangor,
MALAYSIA,

“Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, MALAYSIA.

5Smart and Sustainable Township Research Centre, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, MALAYSIA.

Corresponding email: rufaizal.cm@gmail.com

Copyright © JES 2024 on-line : journal.esrgroups.org

4364



J. Electrical Systems 20-10s (2024):4364-4374

have shown promising results, particularly when combined with optimization algorithms. Chakraborty and
Goswami [7] use ANN to predict the slope factor of safety (FOS) value and compare the prediction accuracy with
the output produced by FEM. In another study, Mamat et al. [8] found that the ANN model showed good potential
for predicting slope stability improved with PVVDs. Choobbasti et al. [9] Choobbasti et al. comparing the results
of the multi-layer perceptron ANN model predictions with the LEM and found that the calculation results are
quite similar between the two methods. Sari et al. [10] have predicted slope safety factors using ANFIS and found
that the prediction performance generated is high with low error. Although comparative studies of these two
models' performance in predicting slope stability are limited, most previous researchers in various fields such as
fracture energy [11] and solar performance [12], have reported that ANFIS is superior to ANN because the ANFIS
network is formed from a combination of ANN and fuzzy inference system (FIS). In order to address ANFIS
predictive capabilities, several researchers have combined ANNSs with optimization algorithms.

Recently, researchers have studied the effects of ANN with genetic algorithm (GA) [13], particle swarm
optimization (PSO) [14], imperialist competitive algorithm (ICA) [15] and artificial bee colony (ABC) [16]. The
optimization algorithm is reported to be capable of performing a global search to determine the weight and bias
of the ANN network. Due to ANN has problems with slow learning rate [17] and trapped in local minima [18],
the hybrid approach using optimization algorithms is able to adjust weight and bias to improve predictive
performance.

This study investigates the performance of three machine learning models: a standalone ANN, an ANN combined
with the Imperialist Competitive Algorithm (ANN-ICA), and an Adaptive Neuro-Fuzzy Inference System
(ANFIS). By leveraging these models, we aim to overcome the limitations of traditional methods and provide a
more robust predictive framework for slope stability analysis. In order to develop a comprehensive dataset, we
conducted a numerical analysis using PLAXIS 2D software, which allowed us to simulate various geometric
characteristics such as slope height, surcharge, and slope angle. These simulations generated a database of factor
of safety (FOS) values used as target outputs for our models. The performance of each model was evaluated based
on determination coefficients (R?) and root mean square errors (RMSE). The findings of this study highlight the
potential of hybrid machine learning approaches in advancing the field of slope stability analysis. By adopting
these advanced predictive models, engineers can achieve more reliable and efficient slope stability assessments,
ultimately enhancing the safety and sustainability of infrastructure development.

2 Machine Learnings
2.1 Artificial Neural Network

Artificial Neural Network (ANN) is an information processing technique designed to resemble the human brain
[23]. These networks primarily comprise two types: recurrent networks (RN) and feed-forward (FF) networks.
The application of ANN-FF is realistic when there is no time-dependent parameter [24]. One of the most widely
used ANN-FF models is multi-layer perceptron neural networks. The network structure consists of three main
elements: the input layer, the hidden layer and the output layer. All data from the input layer will be sent on each
layer to the output layer via neurons. The neurons are linked through different weights. All artificial joints of the
system receive a weighted total of arriving signals to pass a particular activation mechanism to provide more
realistic performance. In approximating various functions in high-dimensional space, ANN-MLP works
exceptionally efficiently. However, after the data is transmitted to ANN and before analysis of the results, ANN
must be trained.

Backpropagation (BP) is most commonly used to develop ANN-MLP among various learning algorithms
proposed in literature [25]. In these structure network, the data imported into the input layer begins to spread via
connection weight to the hidden nodes. At any node, it calculates the sum of weighted input signals and then adds
the output to the value threshold. The combined input is subsequently transferred through a nonlinear transfer
function for the node’s output. However, the subsequent neuron layer input normally comes from each neuron
output. This process goes on until the output is produced. The generated output is checked for the desired output
to determine the error. BP is primarily used to adjust the neuron’s weight through iterative to minimise the mean
square error (MSE).

2.2 Imperialist Competitive Algorithm
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The imperialist competitive algorithm (ICA) is global search population-based algorithm that serves to optimise
problems [26]. It starts with countries, a starting population that is unintended, similar to other GA and PSO
optimising algorithms. After number of countries (N¢) are developed, several

of them are chosen for imperialism (N;), such as root mean square error (RMSE). The other countries are then
known as colonies (Nco1). Following their intial control, all countries are distributed among empires. The best
imperialist and the lowest RMSE will draw additional colonies. Three ICA algorithm operators are
competitiveness, revolution and assimilation. Assimilation and revolutions will make a colony greater its
imperialist state and empower a whole empire [27].

In rivalry, the imperialist operators strive to get more colonies and empires to control other empires. The empires
can obtain at least the weakest empire of a colony, depending upon their competence. If whole empires, but the
best, or user defined end principles such as the ideal RMSE are optimistically reached, the process comes to an
end. It is worth noting that the number of decades (Ng) is in principle like the number of iterations of the PSO
method. Many information is available on the mathematical formulation of ICA, and in previous relevant articles,
it has been studied and discussed [27]-[29]. The ICA flowchart for greater comprehension of the method is shown

in Figure 1.
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Figure 1 Flowchart of ICA algorithm

2.3 Hybrid Model of ANN-ICA

The optimal search process for the ANNSs could fail, and weakness BP is an algorithm for the unsatisfied solution
learning local search. Several efforts were made to boost the performance of ANNs by applying optimization
algorithms such as PSO, GA and ICA. Optimization algorithms can be applied to change the ANN bias and weight
in order to enhance its efficiency. As to the ANN’s local minimum, the frequency of convergence is typically
higher, whereas optimisation algorithms capable of detecting a global minimum. Thus, hybrid systems such as
ANN-ICA benefit from search features of both ANN and ICA techniques. ICA searches for a global minimum
for search space the ANN uses it to determine the best results for the network system. A brief overview is
explained about the experimental system in the following section, and the further information is given about ANN-
ICA.
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2.4 Adaptive Neuro-Fuzzy Inferece System

The adaptive neuro-fuzzy inference system (ANFIS) model has been developed to mitigate the generalisation and
complexity of ANN-BP and to enhance its ability to learn in fuzzy logic system (FIS) [30]. Several researchers
have previously reviewed in detail on modelling and structure of ANFIS [31]-[33]. Basically, ANFIS incorporates
the ANN’s learning power with the fuzzy logic capacity. In memorising pattern, the ANN-BP is a successful
technique. Still, it can be trapped in a local minimum, to obtain optimal results within the solution sapace such as
global minimum solution. Thus, ANN-BP is able to prevent such deficiencies by the FIS. In particular, the Takagi-
Sugeno (TS) of FIS offers a model upgrading knowledge platform enabling the system to more easily adjust itself
to the studied phenomenon’s realities by setting IF-THEN rules. Thus, this system optimises the linear or nonlinear
parameters with the gradient descent and least square algorithm.

A fuzzy set theory in which the limits were not explicitly specified, but the boundries were incremental [34]. This
system is defined by the spectrum of membership functions (MFs) grades, which assigns a membership rating
from zero to one to each objective. Today, technique are combined with the soft computing in ANN, fuzzy set
and fuzzy systems. It should be noted, combining the fuzzy logic with the neural network is an essential idea in
overcoming both techniques’ disadvantages. Even for complex systems, neural networks are used to adjust fuzzy
systems’ MF. The weight of the neural net utilising fuzzy rules give an in-depth perspective into the neural
network and allow it to develop better neural networks. The neuro-fuzzy approach’s non-linear membership
feature decrease rule-based recall, thereby minimising implementation costs. Thus, combining the FIS with neural
networks handles both techniques’ shortcomings and provide an excellent opportunity for data processing to solve
the essential and dynamic engineering issue.

In ANFIS architecture, there is five-layer structure typically includes the fuzzification layer, production layer,
normalization layer, de-fuzzification layer and output layer. After training data for ANFIS identified, several MFs
are calculated for each input, and the process continues until the training is complete, and the output of the
prediction is satisfactory. In order to define linear parameters in a foward pass, the approach is based on ANFIS,
which uses the least-squares approach. In contrast, the linear parameters are maintained continuously by the
gradient desent method to update the nonlinear parameters.

3 Methods and Datasets Preparation
3.1 Numerical Model

Numerical analysis is conducted to establish a database for the development of machine learning models.
Therefore, this study generated 100 man-made slopes designs through analysis with the FEM using PLAXIS 2D
software version 8.2. Table 1 shows slope design with different geometry analyzed to generate FOS values used
as database in development of machine learning models. As shown in the table, the range of values for slope
height, surcharge and slope angle is 1 to 3 m, 0 to 15 kN/m? and 25° to 45°. It should be noted that geometric
characteristics will be used as input parameters, while FOS values are used as target values in the performance
evaluation of machine learning models. Several recent studies have suggested that three geometric features can
be considered as input parameters for predicting FOS [35], [36].

Table 1 Differential geometric characteristic of slope design

Design no. Slope Surcharge  Slope angle (°)
height (m)  (KN/m?)

lto5 1 0 25,30,35,40,45
6to 10 1 5 25,30,35,40,45
11to 15 1 10 25,30,35,40,45
16 to 20 1 15 25,30,35,40,45
21to 25 15 0 25,30,35,40,45
26 to 30 15 5 25,30,35,40,45

4367



J. Electrical Systems 20-10s (2024):4364-4374

31to 35 15 10 25,30,35,40,45
36 to 40 1.5 15 25,30,35,40,45
41to0 45 2 0 25,30,35,40,45
46 to 50 2 5 25,30,35,40,45
51to 55 2 10 25,30,35,40,45
56 to 60 2 15 25,30,35,40,45
61 to 65 25 0 25,30,35,40,45
66 to 70 25 5 25,30,35,40,45
71t0 75 2.5 10 25,30,35,40,45
76 to 80 2.5 15 25,30,35,40,45
81to0 85 3 0 25,30,35,40,45
86 to 90 3 5 25,30,35,40,45
91t0 95 3 10 25,30,35,40,45
96 to 100 3 15 25,30,35,40,45

Due to the slope was built on soft ground and improved with prefabricated vertical drains (PVDs), the ground
behaviour modelling performed based on equivalent plane strain. In this paper, the equivalent plane strain model
of Indraratna and Redana [37] was applied. A triangular element of 15 nodes discretized the model. In 12,3485
elements and 24,252 nodes, the area studied was discrete. In order to reduce the boundary effect, the model width
was chosen as 120 m and set the ground depth was to 40 m. The ground surface was preserved as drainage
condition while the PVDs were modelled as equivalent plane strain vertical stripes. The mandrel radius is 0.045
m and the drainage stripes and smear zone are calculated half width of 0.028 and 0.157 m respectively.

The effective drainage zone has a half-width of 0.5 m, and drainage canals with high permeability were referred
to as vertical drains. The discharge capacity has a significant effect on the finite element analysis results [38],
[39]. According to the theoretical permeability, the PVDs are over 5.0 x 10 m/s, meaning the theoretical
discharge capacity is over 980 m®/year. However, the drainage stripe’s equivalent permeability is 2.25 x 1073 m/s.
Thus, the discharge capacity effect is ignored in this study. The soft ground is assumed to adhere to the Cam-Clay
model, and the slope filling is supposed to follow the model of Mohr Coulomb. Tables 2 and 3 for geotechnical
parameters of soft ground and earth-slope fillings obtained via laboratory tests are presented. In this finite element
analysis, FOS is estimated by reducing the shear strength parameters until the soil mass fails or it is better known
by the phi-c reduction method.

Table 2 Summary of the soft ground parameters modelling

Soil types y K A M v Kn ky
(kN/m?) (107 mfs) (107 mis)

Silty clay 185 002 01 10 03 67 34

Clayey silt 180 003 009 10 03 45 23

Table 3 Summary of the earth-slope fillings parameters modelling

Soil types y E ¢ o v k ke
3 0
(kN/md) (MPa)  (KN/m?) ©) (107 mfs) (107 mis)
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Sandy silt 16.5 14.5 10 20 0.30 3.0 2.0
Drainage sand 17.0 14.0 0 30 0.25 15 1.5

3.2 ANN Modelling

At an early stage in developing the ANN model, datasets should be normalized to achive better efficiency. The
normalization process can prevent all the complexities encountered during the design process. Each datasets
consists of training and testing compenents for enhanced performance. A total of 30% (30 datasets), and the
remaining 70% (70 datasets) from all datasets have been selected randomly for training, and testing data,
respectively in this study. The main geometric features of slope height, slope angle and surcharge are considered
input parameters while safety factor as an output parameter in model development of all types of machine lessons
used in the study.

A number of researchers have indicate that ANN with a single hidden layer can estimate any continuous function
[40], [41]. Thus a hidden layer has been employed in this analysis, and the number of optimum nodes is determined
by the trial and error method with a range of 1 to 20. A logsig tranfer function will be adopted for input function
while will apply linear function for the output layer with learning rate of 0.01 and an iteration number of 1000 to
achive the result. In developing ANN models Levenberg—Marquardt (LM) learning algorithm was used. As a
result, the ANN model architecture with 3-6-1 was the best based on the determination coefficient (R?), and the
RMSE produced was 0.98 and 0.07, respectively.

3.3 ANFIS Modelling

In this study, the ANFIS model analysis was conducted with MATLAB R2019a. ANFIS builds FIS with an MFs
tuned using a propagation algorithm. Due to the Sugeno type system's limitations that require a single output, the
FIS needs to have three inputs and one output. The system has three inputs, nine MF inputs, 27 rules and 27 MF
outputs to produce one output. Next, the grid partition method is used to generate the TS in the FIS structure. In
this process, optimal MFs is essential to produce good results. By using the trial and error method, the MF of
Gaussian is selected on the input layer while linear on the output layer.

A hybrid learning algorithm that uses a combination of the least-squares method and gradient descent BP method
to identify Sugeno type FIS parameters is used while the number of epochs for learning is set to 100 and error
tolerance to zero. The benefit of hybrid procedure is the use of BP for the input member parameter and the least-
squares calculation for the output member parameters. In order to view the performances of the model, 85 model
datasets used training and used 15 data for validation. This study extracted the FOS values for training and
validation datasets in Excel file and input to the programme to implement ANFIS in MATLAB R2010b.

3.4 ANN-ICA Modelling

The essential parameters must be explored in order to achiebe the best ANN-ICA model. ANN design can be
defined before ICA parameters are investigated. This was done in the sense of a trial and error method, and a 3-
6-1 architecture has been found to be stronger. The most prominent parameters on ICA include N¢, Nqgand N;.
Various N¢ value have been used in prior studies to overcome engineering issues. A total of eight ANN-ICA
hybrid models were designed in this analysis with different Ncs, as shown in Table 4. In order to determine the
optimum N, Ng and N; values were used 300 and 100, respectively. N with a value of 400 was found to show
better performance for the ANN-ICA model than other Nc. Thus, in the ANN-ICA modelling, the value of 450,
namely model 8, was chosen as N¢ optimum.

Table 4 Performance with different N

Model N Train Test
R? RMSE R? RMSE
1 50 0.833 0.104 0.685 0.079
2 100 0.829 0.112 0.678 0.082
3 150 0.792 0.126 0.697 0.094
4 200 0.833 0.106 0.701 0.075
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0.695
0.712
0.676
0.728

0.083
0.071
0.078
0.069

The next ANN-ICA modelling is to evaluate Ng. The outcome of a study of various Ny is realistic means of
deciding the Ng optimum. Another parametric analysis to assess Ng’s effect on network efficiency has been
conducted. A fixed Ng with 1000 has been used in this study. Such analyses were carried out for each decade to
track cost feature or RMSE changes. Figure 2 shows Ng for N¢ parametric study findings from 50 to 500. At
beginning of decades, this figure showed significant changes, whereas Ng = 500 were moderate. No significant
change have occurred in RMSE results for all Nc after mentioned Ng. The optimum Ng in ANN-ICA modelling
was set to be 500. It should be noted that other ICA parameters from previous steps have been used in determining

Ng.
Nc=50 Nc=100
Nc=250 Nc=300
=——NCc=450 = Nc=500
0.3
0.25
0.2
0
s 0.15 -
('
0.1
0.05
0
0 200 400

Nc=150
Nc=350

600

Number of Decade

800

Nc=200
Nc=400

Figure 2 The influence of Ng on ANN-ICA performance

1000

Another sensitivity analysis is required to determine the optimum N;. In order to decide the appropriate Ni, N; with
values of 10 to 50 have been used. The parameters of the previous steps have been used in this phase. Table 5
demonstrates the performance indexes of various Ni, i.e., R? and RMSE, for the training and testing of datasets.
Table 4 indicates N; with 30 or model 3 is the best performance compared to others. Thus, the value 30 was
selected to be the optimum N; for ANN-ICA modelling to slope stability prediction.

Table 5 Performance with different N;

Model  N; Train Test
R? RMSE R? RMSE
1 10 0.788 0.083 0.671 0.126
2 20 0.802 0.076 0.724 0.113
3 30 0.796 0.087 0.667 0.135
4 40 0.817 0.075 0.733 0.109
5 50 0.853 0.071 0.754 0.102
4 Results and Discussion
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Three machine learning methods have been developed in this study to predict the slope stability built on the soft
ground treated with PVDs, namely ANN, ANN-ICA and ANFIS. A total of 100 datasets have been randomly
chosen to developed machine learning models, utilising two various datasets: training and testing. The R? and
RMSE values were used to evaluate the three model’s predictive performance. Theoretically, if the values of R?
is one and RMSE is zero, the model would be excellent.

Table 6 summarises the models’s performances indices on the randomly selected training and testing datasets. It
should be noted; high training datasets performance suggest that the predictive model’s training processes are
accurate if the testing datasets prove that these model’s generalisation potential is satisfactory. As shown in Table
5, R? values of (0.724, 0.858 and 0.998) and (0.737, 0.879 and 0.996) were obtained for training and testing of
ANN, ANFIS and ANN-ICA models, respectively. In addition, the RMSE value is close to zero found on the
ANFIS and ANN-ICA models for training and testing with values of 0.052 and 0.041 and 0.061 and 0.047,
respectively. However, the hybrid model ANN-ICA was found to produce the lowest error than the general
machine learning model. These results indicate that can achieve minimum system errors by combining machine
learning models with optimization algorithms can provide superior predictive performance.

Table 6 Performance Indices of Each Machine Learning Model

Model Training Testing
R2 RMSE R? RMSE

ANN 0.724 0.124 0.737 0.103
ANFIS 0.858 0.052 0.879 0.061
ANN-ICA 0998 0.041 0.996 0.047

Figures 3, 4 and 5 show the relationship between the values of estimated and predicted. As shown, the ANN model
developed with ICA provides higher capability in slope stability predictions. Moreover, this study’s results are
better than several other related studies, such as Choobbasti et al. [9] with R?=0.92, Mamat et al. [39] with R?=0.95
and Fattahi [42] with R?=0.95. Thus, the prediction model developed with ICA is proposed for similar situations
in the future.

OFEM XANN

0 20 40 60 80 100 120
Design no.

Figure 3 FOS relationship between ANN and FEM
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Figure 4 FOS relationship between ANFIS and FEM
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Figure 5 FOS relationship between ANN-ICA and FEM
5 Conclusions

Input parameters were considered to provide a good database to predict slope stability, geometric characteristics,
e.g, slope height, surcharge and slope angle. Then three machine learning models were developed to predict FOS,
namely ANN, ANFIS and ANN-ICA. The optimum parameter of ANN, ANFIS and ICA were indentified and
determined in the present study. Several models of ANN, ANFIS and ANN-ICA were used to predict FOS and
the best models were chosen to be introduced in this study. In terms of the most common performance indices,
carefully assess all of the models presented. After the assessment, it was found that the ANN-ICA model obtains
better results in both the train and the testing to solving the FOS problem. As a result, the R? values for training
and testing of ANN-ICA, ANFIS and ANN models obtained were (0.998, 0.858 and 0.724) and (0.996, 0.879 and
0.737), respectively. These results show that machine learning models with a combination of optimization
algorithms can produce better predictions.
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