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Abstract: - In the endeavour to achieve sustainable development objectives, the notion of smart cities has gained significant importance in 

recent times. New ideas for more sustainable cities have generally surfaced as a result of smart-city services addressing prevalent urban 

issues. One of the most important topics in realm of remote sensing is categorization of hyperspectral images (HSI). For conventional 

machine learning (ML) models, the classification process is quite difficult since HSI typically needs to cope with complicated features and 
nonlinearity among the hyperspectral data. Aim of this research is to propose novel technique in urban area green region analysis based on 

hyperspectral imaging in geographical information system using machine learning and smart grid for sustainable city application. Here the 

IoT based environmental monitoring sensor integrated with smart grid has been used in urban area green region analysis. Then through 
IoT module the monitored sensor hyperspectral images has been collected and processed for analysing the green region using graph 

convolutional U-net adversarial neural network. experimental analysis has been carried out based on various hyperspectral images in terms 

of training accuracy, precision, sensitivity and Normalized square error. Then the analysis of smart grid module is carried out in terms of 

throughput, end-end delay, packet delivery ratio, QoS. Proposed technique training accuracy 97%, precision 96%, Normalized square error 

of 58% and sensitivity of 95% for hyperspectral image analysis. The proposed GCU-netANN obtained accuracy of 97%, packet delivery 

ratio of 95%, QoS of 91%, end-end delay of 75% for IoT smart grid network analysis. 

 Keywords: Urban Area, Green Region Analysis, Hyperspectral Imaging, Geographical Information System, 

Machine Learning, Smart Grid 

 

1. Introduction: 

Driven by global pursuit of Sustainable Development Goals (SDGs) set forth by United Nations, idea of smart 

cities has become a central paradigm in urban development in recent years. There is an inevitable rise in demand 

for smart urban services as a result of the complex issues that cities face as a result of the extraordinary rate of 

urbanisation [1]. This unfavourable situation gives rise to the idea of "smart cities," which provide a picture of 

intelligent, environmentally responsible, and socially inclusive urban settings. The smart-city model now includes 

sustainability as a distinguishing concept. Way cities are planned as well as designed has drastically changed as a 

result of realisation that resource conservation, environmental stewardship, and the enhancement of quality of life 

are crucial elements of urban growth. As a result, the pursuit of the SDGs and worldwide worries about climate 

change and environmental degradation have made it more and more important to turn metropolitan areas into 

smart cities that put the welfare of their residents and the surrounding ecosystems first [2]. Typical urban problems 

such as energy inefficiency, inadequate infrastructure to mitigate pollution, and traffic congestion have been 

evaluated for optimisations supported by smart-city services. Aside from the general notion of "improvement" 

that has been heavily promoted by huge corporations and governments, smart cities can play a pivotal role in 

steering the pressing sustainable revolution in our urban areas. To put it briefly, smarter cities may be built around 

a more harmonic and comprehensive interaction between people and their urban surroundings, even while smart 

services can maximise resource utilisation and minimise waste and pollution [3]. The goal of hyperspectral 

imaging as a remote sensing approach is to extract meaningful information from images that are taken by sensors 

that perform hyperspectral imaging. The HSI sensors gather electromagnetic radiation from the same region of 

the earth's surface that is reflective and has hundreds of extremely small spectral bands. In a hyperspectral image, 

each pixel may be thought of as a vector that contains the spectral reflectance of a material at a particular 

wavelength. Every pixel in the hypercube has a distinct spectral signature due to this spectrum reflectance, and 

these spectral signatures are utilized to distinguish between different types of materials found on the surface of 

the planet. As a result, HSI has been applied in many other domains, including medical science, agriculture, land 

cover, and remote sensing [4]. The spectrum, which is a vector made up of hundreds of elements that measures 
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energy emitted or reflected as a function of wavelength, is what makes up each pixel in a hyperspectral image. 

Therefore, it is possible to think of a hyperspectral image as a three-dimensional data structure that has one spectral 

axis that contains information about the chemical composition of the objects and two spatial axes that carry 

information about the location of the objects. Since the atomic or molecular structure of a material determines 

how light at different wavelengths interacts with it, the spectrum records the chemical information [5]. 

Hyperspectral sensors installed on satellites and aircraft can identify and locate things, map the land use and cover, 

and comprehend the physical characteristics of materials over a wide geographic area. The primary goal of early 

HSI classification research has been to investigate spectral fingerprints of HSIs using pixel-wise classification 

techniques such as logistic regression (LR), support vector machines (SVM), neural networks (NN). In addition, 

other classification approaches have focused on extracting high-level features and reducing dimensions using 

methods like principal component analysis (PCA), independent component analysis (ICA), linear component 

analysis (LDA). However, because these approaches do not take geographical information into account, the 

classification accuracies have not proven adequate. In several approaches, the incorporation of spatial information 

alongside spectral information has been observed to be beneficial in enhancing classification accuracies. However, 

in the aforementioned approaches, extracting discriminative features from HSIs has proven to be an extremely 

important task [6]. 

2. Background and related works: 

Recent years have seen the successful application of several ML as well as DL, including convolutional neural 

networks (CNN), support vector machine regression (SVR), partial least squares regression (PLSR), NN, random 

forests (RF), to a variety of agricultural condition monitoring, plant disease and insect monitoring, wheat ear 

identification, other areas. For instance, work [7] employed CNN to identify and track pest insects and plant 

illnesses. In order to obtain precise segmentation as well as recognition of quantity of wheat ears, author [8] 

employed CNN. In [9], spectral characteristics were collected from UAV hyperspectral data, and PLSR was used 

to build the winter wheat LAI estimation model. Work [10] used VIs, RF, and PLSR to build an estimating model 

for wheat LAI. The derived spectrum parameters and machine learning methods are integrated in the previously 

stated studies to create inversion models of physiological parameters. Recently, investigations on ground 

monitoring or satellite remote sensing have made extensive use of spectral feature extraction methods such 

principal component analysis (PCA), variable projection importance (VIP), genetic algorithm (GA), continuous 

projection algorithm (SPA). By effectively eliminating redundancy in hyperspectral data, these algorithms can 

lower the likelihood of overfitting and ultimately produce a model with a strong and high prediction accuracy 

[11]. The spectrum data acquired are inconsistent as a result of sensor performance variance. Author [12] showed 

that spectral reflectance properties alone might be used to quickly distinguish between healthy leaves and 

commercial maize kernels infected with toxigenic fungus. Three sugar beet diseases—cercospora leaf spot, 

powdery mildew, leaf rust—were distinguished by work [13] using spectral angle mapper and hyperspectral 

imaging techniques. Author [14] looked at the potential use of hyperspectral imaging to identify two distinct 

tomato leaf diseases: early and late blight. An extreme learning machine method was created to classify healthy 

plants, early blight, late blight of detached leaves. Based on spectral information, the model was able to detect 

diseased plants with an accuracy of 97.1–100%. The accuracy of the texture analysis was roughly 70%. However, 

aforementioned studies consistently ignored significance of data fusion in favour of a standard ML method based 

on spectral signature. There aren't many extensive studies on the use of HSI with spectral analysis, texture analysis, 

data fusion to distinguish between early-stage infected and non-infected leaves and classify various disease 

severity levels. ELM as well as ideally pruned ELM (OP-ELM) were used in [15] to classify soybean varieties 

using hyperspectral photos. Using two datasets, ELM produced classification accuracies for land cover that were 

comparable to those of a back-propagation neural network [16]. In [17], KELM was applied to the categorization 

of multi- and hyperspectral remote sensing pictures. According to results, KELM offers noticeably low 

computational cost and classification accuracy comparable to or higher than SVMs. But in these publications, 

ELM was used as a pixel-wise classifier, meaning that spatial information at nearby sites has been ignored and 

just spectral signature has been used. However, for HSI, likelihood of two neighbouring pixels being in the same 

class is very high. It has been demonstrated that taking into account both spectral as well as spatial data greatly 

increases HSI classification accuracy. Spatial features can be used in two main ways: either to extract specific 

types of spatial features or to use nearby pixels directly for joint classification, presuming that these pixels 
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typically belong to same class. Because Gabor features can convey meaningful spatial information, they are 

successfully used for hyperspectral image classification in the first category. Three-dimensional (3-D) Gabor 

filters were utilized in [18] to extract 3-D Gabor features from hyperspectral pictures; two-dimensional (2-D) 

Gabor features were extracted in a subspace projected by PCA. Both supervised and unsupervised learning were 

used in a hybrid strategy that was suggested [19]. When it came to unsupervised learning, the information gathered 

from this approach outperformed deep learning-based HIS categorization based on spectral-spatial features. The 

suggested unsupervised method for Deep Feature Extraction [20] yielded superior results compared to the current 

cutting-edge algorithms, principal component analysis (PCA), kernel counterpart (kPCA), and certain aerial 

classification techniques. The suggested method is more effective at teaching data representations. The technique 

used a single-layer convolution network to achieve high resolution and detailed neighbour pixel results. 

Furthermore, it performs better when it comes to features with complexity and abstraction levels as well as single-

layer variations. The suggested method extracted features in the style of unsupervised learning using the 3-D 

Convolutional Autoencoder (3D-CAE) [21] without training labelling the data. In order to learn the sensor-

specific characteristics, the models extended the unsupervised spatial-spectral feature extraction onto multiple 

images captured by the same sensor. The model therefore learns the spatial-spectral properties of HSI under the 

unsupervised measurement. SVM as well as partial least squares discriminant analysis are regarded as most 

dependable methods among them. This is especially true when there aren't many training data available. Image 

classification has made extensive use of machine learning. One of the benefits of using Multilayer Perceptrons 

(MLP) techniques is their ability to handle enormous amounts of training data [22]. While producing results on 

the HSI classification procedure that were equivalent to those of other methods, these techniques could 

automatically learn features. The target, or weeds, as well as the background and other elements that can have an 

impact on the target species' labelling accuracy, are typically present in the original HSI image. 

3. IoT based sensor integrated with smart grid in urban area green region analysis: 

The detailed description of the suggested IoT sensor-based smart monitoring as well as controlling paradigm for 

smart grid systems is given in this section. This work's primary contribution is the use of an Internet of Things-

based wireless communication network for smart grid system monitoring and control. It also encourages the 

enhancement of high-reliability and voltage-profile smart grid systems' power quality. Smart sensors are often 

regarded as most crucial Internet of Things (IoT) devices for enhancing dependability of smart grid systems. A 

smart sensor is a type of device that gathers environmental data and relays it to controlling systems. Here, the 

main goals of employing smart sensors are to improve system quality and dependability while effectively 

managing anomalous circumstances in smart grid systems. Figure 1 displays architecture representation of smart 

grid methods. 

 

Figure 1 Smart grid IoT architecture 
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The three main components of the suggested framework are the components for analysis, communication, and 

monitoring. The suggested framework's monitoring element is made up of voltage and current sensors that are 

fastened to consumer loads. Other two main components are the analytical and communication components. 

Subsequently, the communication component consists of the WiFi module and Arduino sensor, which provide 

wireless connection. Here, voltage profiles, energy reports, voltage, current are obtained via analysis component, 

which is utilised as a remote application. The cloud-based application system at the power grid's substation 

assesses the real-time target demand against the actual target and adjusts to deliver services like remote power 

supply and security management. The substation-connected assets were monitored, analysed, and shared with 

information via the Internet of Everything (IoE). Following the completion of the data analysis process, the 

appropriate party will grant permission to carry out the necessary steps, transforming power plant as well as SG 

from a traditional into a virtual method. The sophisticated distributed energy management system's power 

consumption efficiency is increased through the use of technology. Utilising pertinent optimisation techniques at 

various stages maximises output while lowering costs, boosting profitability, enhancing dependability, and 

integrating more renewable resources into SG network [16]. A select group of sophisticated applications, such as 

distributed energy resource management methods, low voltage outage management systems, sub-station device 

management, grid analytics, and smart metre data management, are integrated with Internet of Everything. 

Through integration of devices and real-time data, SG enables the secure and quick delivery of power and 

information to the digital world. The smart energy infrastructure, which includes automated and centralised 

distribution systems, energy metering units, energy storage devices, loads, is depicted in Figure 2 as an 

interconnected network. 

 

Figure 2 IoT-based efficient energy transaction at grid and charging stations 

4. Hyperspectral images based green region analysis using graph convolutional U-net adversarial 

neural network (GCU-netANN): 

We take advantage of the fact that graph convolutions are permutation equivariant and stable to graph 

perturbations to arrive at a stability conclusion for GRNN. We can assess target representation Y by using the fact 

that concealed state zt is a graph signal. In order to do this, we use a GNN (Φ(z_t;S) to produce the estimate 

Yˆ.When yt is a graph signal by itself, ρ can be the activation function by using equation (1), and Π is a simple 

one-layer graph filter. 

𝐲̂𝑡 = 𝜌(𝐂(𝐒)𝐳𝑡)                                 (1) 

Graph signaling concealed state zt has several advantages. First of all, it improves the interpretability of the 

signal's value with respect to the underlying graph support. For instance, we may look at the frequency content of 
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the hidden state and compare it to the frequency content of the graph process xt. Second, it allows zt to be 

computed entirely locally, requiring just recurrent exchanges with the one-hop neighbors of each node. But 

converting zt to a graph signal also means that the size of the concealed state, now set at N, cannot be changed. 

One important hyperparameter in the creation of RNNs is the size of hidden state, as it controls the HMM's 

description capabilities. Graph signal tensors, which assign a vector of features to each node instead of a single 

scalar, are introduced to address this. An operation. A graph signal tensor is X:V→R^F that assigns a vector of 

dimension F to each node. This map is implemented by a bank of F G graph filters of rank K; filter taps are 

provided by a𝐚𝑛
𝑓𝑔

= [𝑎0
𝑓𝑔

, … , 𝑎𝐾−1
𝑓𝑔

]. Equation (2) describes the convolution of graph 𝒜𝐒: ℝ𝑁̃×𝐹 → ℝ𝑁×𝐺̇. 

𝐘 = 𝒜𝐒(𝐗) = ∑𝑘=0
𝐾−1  𝐒𝑘𝐗𝐀𝑘                            (2) 

where A_k is a matrix that satisfies 𝐀𝑘 ∈ ℝ𝐹×𝐻   in this case. It is evident that left-hand operations that modify X 

must respect the graph's sparsity for convolution to stay local on the graph, whereas right-hand operations can 

modify it in any linear way. The purpose of the relevant procedures is to apply the same linear combination—

parameter sharing—to each node by eqn (3) in order to integrate characteristics inside a single node. 

𝐙𝑡 = 𝜎(𝒜𝐒(𝐗𝑡) + ℬ𝐒(𝐙𝑡−1))                           (3) 

𝐘𝑡 = 𝜌(𝒞𝐬(𝐙𝑡))                                    (4) 

with filter taps 𝐂𝑘 ∈ ℝ𝐺×𝐻 , 𝑘 = 0, … , 𝐾 − 1 

By describing the hidden state with graph signal tensors, we regain the ability to alter its descriptive strength 

through the value of H. Remember that each node's distinct hidden state feature values can be used directly to 

produce the output Yt, which lowers communication costs. In this architecture, node contacts are only required 

for updates of the concealed state Zt. 

A 2D-CNN typically uses two activation functions: softmax for the output layer and rectified linear unit (ReLu) 

for the other layers. Softmax uses output scaling between zero and one to provide a likelihood of coverage falling 

into a given class. ReLu is a linear function that will output the value immediately if the input is positive. Anything 

else will result in zero. Additionally, CNN 1 consists of a max-pooling layer that follows three convolutional 

layers in order. Figure 3 displays a graphical depiction of the CNN architecture. 

 
Figure 3. A schematic view of the proposed CNN. 

By performing the convolution process over the whole input matrix, emotion features are extracted from the N-

grams that the filters convolved themselves with. The learning of weights F and biases b is first phase in the 
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convolutional layer training process. This is a non-linear function, g, which is the hyperbolic tangent in our 

experiment.This is how a feature ci is created by eqn (5) 

𝐶𝑖 = 𝑔(𝐹 ∗ 𝑤𝑖 + ℎ − 1 + 𝑏)                (5) 

All of the N-grams of size h in the sentence are located by filtering the segmented sequence of length n, 

{w1:h,w2:h+1, ···, wn−h+1:n}. For every input sentence, the filtering procedure thus produces a feature of size 

n-h+1. A series of filters creates feature maps; a pooling process is needed to extract the most sensitive responses 

across features. In this work, we apply different sized filters to extract features from different sentence viewpoints. 

Pooling: Subsequently, feature maps are sent to the layer in charge of pooling operations, allowing the best 

solutions to be combined while maintaining the sequential information within the feature. Equation (6) is used to 

determine the highest feature value (cmax) on map C using the max-overtime pooling strategy. 

𝑐max = max{𝐶} = max{𝑐1, ⋯ , 𝑐𝑛−ℎ+1} 

∂

∂𝑤𝑖𝑗

(0)
𝐽𝑁𝑆𝐶𝐷𝑁𝑁(𝑾, 𝒃) =

∂

∂𝑤𝑖𝑗

(0)
𝐽𝐸(𝑾, 𝒃) + 𝛽

∂

∂𝑤𝑖𝑗

(ℎ)
𝐽𝐾𝐿(𝑝 ∥ 𝒑̂) + 𝛼𝑔(𝑤𝑖𝑗

(𝑖)
) 

Where 

𝑔(𝑥) = {
𝑤𝑖𝑗 𝑤𝑖𝑗 < 0

0 𝑤𝑖𝑗 ≥ 0
                                              (6) 

The non-negative constrained softmax classifier's cost function is defined as eqn (7) as, in accordance with our 

methodology, non-negative constraints are also imposed to the classifier's weights during training. 

𝐽𝑁𝐶−𝑆𝑒𝑓𝑡max(𝑾) = 𝐽𝐶𝐿(𝑾) +
𝛼

2
∑  

𝑥𝐿
𝑖=1  ∑  𝑘

𝑗=1  𝑓(𝑤𝑖𝑗
(𝐿)

)                            (7) 

The final step in deep network training is fine-tuning the network for optimal classification in a supervised mode. 

Equation (8) represents the deep network's fine-tuning cost function. 

 𝐽𝐷𝑁(𝑾, 𝒃) = 𝐽𝐶𝐿−𝐷𝑁(𝑾𝐷𝑁, 𝒃𝐷𝑁) +
𝛼

2
∑  

𝑠𝐿
𝑖=1  ∑  𝑘

𝑗=1  𝑓(𝑤𝑖𝑗
(𝐿)

)                    (8) 

In this case, L(θ, φ; xi) can be the form formulated by Eqn. (9). 

ℒ(𝜽, 𝝓; 𝒙𝑖) ≃
1

2
∑𝑗=1

𝐽  (1 + log 𝜎𝑖,𝑗
2 − 𝜇𝑖,𝑗

2 − 𝜎𝑖,𝑗
2 ) +

1

𝐿
∑𝑙=1

𝐿  log 𝑝(𝒙𝑖 ∣ 𝒛𝑙; 𝜽)                  (9) 

where the outputs of the VAEs' encoder are distribution parameters mean µi and variance σ 2 i. Moreover, J stands 

for underlying manifold's dimensionality, L represents sample size utilized in Monte Carlo approach for sampling 

from estimated posterior distributions. 

The total number of training movies that include both the motion and spatial representations is denoted by N. n-

th sample is expressed as a 3-tuple as (xs n, xm n, yn), where averaged spatial and motion features are given by 

𝐱𝑛
𝑠 = ∑𝑡=1

𝑇  𝐱𝑛,𝑡
𝑠 ∈ ℝ𝑑𝑠  and 𝐱𝑛

𝑚 = ∑𝑡=1
𝑇  𝐱𝑛,𝑡

𝑚 ∈ ℝ𝑑𝑚  and corresponding label of n-th sample. Let's start by 

discussing a degraded scenario, in which there is only one feature available, for the sake of clarity by eqn (10) 

min𝐖  ∑𝑖=1
𝑁  ∥∥𝑔(𝐱𝑖) − 𝐲𝑖∥∥

2
+ 𝜆1Φ(𝐖)                       (10) 

where the second component is often a regularizer based on the Frobenius norm to prevent over-fitting, first term 

quantifies difference between output g(xi) and ground-truth label yi. Situation of fusion as well as prediction with 

two features is what we will talk about next. It should be noted that the method is easily expandable to 

accommodate more than two input features. 

The discriminator network and generator network are the two subnetworks that make up a GAN's architecture. 

The generator network creates artificial images by obtaining visual features. As opposed to this, the discriminator 
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network gathers artificial images, separates them from real photos, then adjusts loss function until created and real 

images are identical. To simplify the model architecture and lower the time complexity of implementing our model 

without compromising model features, we treat the autoencoder module's decoder network as the GAN module's 

generator network. Furthermore, decoder network produces image samples for minority classes, just as GAN 

module's generating network ought to. So, the discriminator network is our main concern. The design of 

discriminator network is shown in Figure 6. 

 

Figure 4. The illustration of the discriminator network. 

 According to Figure 4, There are three convolution layers in the discriminator network, and they are all two-

dimensional layers. ReLU activation is applied in first and second layers, while sigmoid activation is used in final 

layer to differentiate between genuine and synthetic image types. The only distinction between the classifier and 

discriminator networks' designs is the usage of the SoftMax function in the final convolution layer. The SoftMax 

loss value is derived from the classifier network's computation of each image class's scores. The following is how 

the categorization network's training and testing procedures are put into practice. Testing data is used to verify 

classification accuracy for every classification method, and training samples of every balanced image class were 

used to carry out the classification procedure. 

5. Experimental analysis: 

In this study, hyperspectral image classification method is proposed and the proposed method is tested. We have 

done all our experiments by utilizing Python 2.7with Spyder Integrated Development Environment(IDE) 

andKeras and TensorFlow frameworks utilizing deviceGforceGTX 770, CUDNN 5110. We assess performanceof 

our watermarking framework with standard datasetwith learning ratee of 0.5. We trained our method on 

multipleepochs. Every time it gives almost same error rate as well as same accuracy. 

Datasets: To evaluate the efficacy of our model, we employed four hyperspectral unbalanced datasets from 

different environments: Salinas, Botswana, Kennedy Space Centre, Indian Pines, and Salinas. The datasets are 

described briefly here. 

1. In the Indian Pines region of Indiana, the AVIRIS sensor is used to gather the Indian Pines dataset. There are 

224 bands in collection, their wavelength range is 0.4–2.5 × 10−6 m. The image measures 145 by 145 pixels. 

Table 1 provides further information about the classes and samples of Indian Pines.  

Table 1. Classes information of Indian Pines dataset. 

Number Land Cover Class Samples 

1 Alfalfa 46 
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2 Corn 237 

3 Corn-mintill 830 

4 Corn notill 1428 

5 Grass-pasture 483 

6 Hay-windrowed 478 

7 Grass-pasture-mowed 28 

8 Grass-trees 730 

9 Oats 20 

10 Soybean-notill 972 

2. In the Californian Salinas region, the AVIRIS sensor is used to gather the Salinas dataset. The picture size of 

the Salinas dataset is 512 × 217 pixels, with 204 bands. Table 2 provides more information regarding land cover 

classes in Salinas dataset, including samples.  

Table 2. Classes information of Salinas dataset. 

Number Land Cover Class Samples 

1 Fallow 1976 

2 Brocoli_green_weeds_2 3726 

3 Brocoli_green_weeds_1 2009 

4 Fallow_rough_plow 1394 

5 Celery 3579 

6 Stubble 3959 

7 Fallow_smooth 2678 

8 Grapes_untrained 11,271 

9 Corn_senesced_green_weeds 3278 

10 Soil_vinyard_develop 6203 

3. NASA AVIRIS is used at Kennedy Space Centre location in Florida to collect Kennedy Space Centre dataset. 

KSC dataset has 512 × 614 pixel images with 224 spectral reflectance bands. The KSC dataset's classes and 

sample details were reported in Table 3.  

Table 3. Classes information of KSC dataset. 

Number Land Cover Class Samples 

1 CP hammock 256 

2 Willow swamp 243 

3 Scrub 761 
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4 Slash Pine 252 

5 Swap 105 

6 Hardwood 229 

7 Oak/Broadleaf 161 

8 Graminoid marsh 431 

9 Cattail marsh 404 

10 Spartina marsh 520 

Training Settings: Our suggested model's layer weights were initialised at random, and the Adam optimizer was 

used to update the model's parameters together with a 0.0002 learning rate. For every dataset, 400 epochs was the 

maximum number that could be used. Every trial in our method training phase was ran through 4000 iterations, 

and the procedure came to an end when the artificial images of the minority classes' generalisation stabilised. For 

each of the four datasets, a 25 × 25 × D spatial window was chosen, with D standing for the number of bands. For 

every dataset, there were varying numbers of samples used in the training and testing phases. For instance, 

Soybean-mintill was deemed the majority class since Indian Pines had greatest number of samples. 1500 samples 

were used in experiment as sample size for actual training dataset. Some classes were deemed minority classes, 

meaning they had to provide artificial samples as well as adjust each minority class's sample size. For every 

dataset, the number of testing samples is equal to one-fourth of the training samples. Due to their high degree of 

inter-band correlation, hyperspectral images are considered high-dimensional data. This might lead to information 

redundancy as wekk as instability in multivariate prediction methods convergence. Using fewer wavebands will 

result in more stable models as well as make multispectral imaging method that follows easier to build. 

Table-4 Comparative analysis in Hyperspectral image classification for various datasets 

Dataset Hyperspectral Input Image Processed image 
urban area based 

green region analysis 

Indian Pines dataset 

   

Salinas dataset 

   

KSC dataset 
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A comparative comparison of hyperspectral image categorization for different input datasets is presented in Table 

4 above. Based on the image classification used to distinguish the land surfaces from the gathered hyperspectral 

image, a comparison has been made. The suggested model-based categorization, out of all the methods previously 

compared, produced an improved and precise output when assessing the input hyperspectral image. 

Table-5 Comparative based on various hyperspectral image dataset 

Dataset Techniques 
Training 

accuracy 
precision 

Normalized 

square 

error 

Sensitivity 

Indian 

Pines 

dataset 

RFNN 79 78 63 69 

GAN 81 80 57 73 

GCU-netANN 85 85 53 80 

SALINAS 

dataset 

RFNN 84 83 63 83 

GAN 87 88 65 85 

GCU-netANN 90 92 60 90 

KSC 

dataset 

RFNN 87 87 66 89 

GAN 90 92 63 93 

GCU-netANN 97 96 58 95 

Table-5 shows comparative for hyperspectral image dataset. here the dataset compared are Indian Pines dataset, 

SALINAS dataset, KSC dataset in terms of training accuracy, precision, specificity, Normalized square error and 

sensitivity.  

 
(a) Training accuracy 

 
(b) Precision 

 
(c) Normalized square error 

 
(d) Sensitivity 

Figure-5 Parametric analysis for Indian Pines dataset, SALINAS dataset, KSC dataset in terms of (a) Training 

accuracy, (b) Precision, (c) Specificity, (d) Normalized square error, (e) Sensitivity 
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the above figure 5 shows comparative for Indian Pines dataset. proposed technique attained training accuracy 

82%, F_1 score of 68%, Normalized square error of 73% and sensitivity of 65%, existing RFNN attained training 

accuracy 77%, precision of 62%, Normalized square error of 68% and sensitivity of 59%, GAN attained training 

accuracy 79%, precision of 63%, Normalized square error of 72% and sensitivity of 63%. comparative analysis 

between proposed and existing technique for SALINAS dataset is shown. here the training accuracy attained is 

88%, Precision of 71%, Normalized square error of 77% and sensitivity of 73% by proposed technique; while 

existing RFNN training accuracy 82%, precision 65%, Normalized square error of 73% and sensitivity of 66%, 

GAN attained training accuracy of 85%, precision of 69%, Normalized square error of 75% and sensitivity of 

69%. comparative for KSC dataset. proposed technique attained training accuracy 97%, precision 96%, 

Normalized square error of 58% and sensitivity 95%, existing RFNN attained training accuracy 85%, precision 

of 67%, Normalized square error of 76%, sensitivity 69%, GAN attained training accuracy 88%, precision 72%, 

Normalized square error of 77% and sensitivity of 73%. 

Table-6 Comparison based on smart grid analysis 

Techniques Throughput Packet Delivery Ratio QoS End-End Delay 

GAN 91 85 85 83 

RFNN 93 89 89 87 

GCU-netANN 97 95 91 75 

 

 
(a) throughput 

 
(b) packet delivery ratio 

 
(c) QoS 

 
(d) end-end delay 

Figure-6 Comparative analysis of Classification in terms of (a) throughput, (b) packet delivery ratio, (c) QoS, 

(d) end-end delay 

Above table-6 shows comparison based on smart grid analysis using machine learning model. here the parametric 

analysis has been carried out in terms of throughput, packet delivery ratio, QoS, end-end delay. The proposed 

GCU-netANN obtained accuracy of 97%, packet delivery ratio of 95%, QoS of 91%, end-end delay of 75% as 
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shown in figure 6 (a)- (e). while existing GAN obtained accuracy of 91%, packet delivery ratio of 85%, QoS of 

85%, end-end delay of 87%, RFNN obtained accuracy of 93%, packet delivery ratio of 89%, QoS of 89%, end-

end delay of 83%. There are several grayscale images at continuous wavelengths in the hyperspectral cube, also 

known as the hyperspectral image. Each grayscale image's extracted texture features produce redundant 

information that is difficult to interpret and unhelpful for early tobacco illness detection. Following that, we used 

the suggested method to extract four different types of textural features from hyperspectral pictures solely at 

chosen EWs. To investigate the association between texture variables as well as stage reference values, Pearson 

correlation (r) was employed. 

6. Conclusion: 

In order to support sustainable city applications, this project aims to present a unique technique for urban area 

green zone analysis based on hyperspectral imaging in geographic information systems utilising machine learning 

and smart grid. This urban area green region study makes use of an Internet of Things (IoT)-based environmental 

monitoring sensor that is integrated with a smart grid. Next, using an adversarial neural network with graph 

convolution, the monitored sensor hyperspectral pictures were gathered and processed via an IoT module in order 

to analyse the green zone. Utilising two significant open-source software tools, our work illustrates the potential 

of hyperspectral analysis for yield and biomass prediction in complex design fields: R language hyperspectral 

processing package as well as Python's Auto-Sklearn ML technology. We used a variety of hyperspectral 

vegetation indicators to characterise crop productivity as well as straw bulk, performance evaluation we conducted 

was satisfactory. We propose that they can be extended to further crop biophysical properties. The application of 

HSI in plant identification will be greatly advanced by this innovative Sp-based method. When used in grazing 

fields, especially in mixed swards of a few plant species, this is quite helpful. In order to cope with complicated 

systems like mixed swards, future study should concentrate on developing a system that enables categorization 

utilising spectral signature and/or morphological traits linked with decision tree methodologies. More samples 

with specific spatial metadata can be added to the current database in future studies, enabling more accurate 

verification using geographic indicators. Samples from various batches, types, seasons, and years, as well as 

samples from different continents, can all be used for model validation. To validate the concept and identify the 

selective wavelength zones, more focused analysis are required. In the future, it might be possible to construct an 

automated system using hyperspectral photography in the field to verify the origin of coffee automatically without 

handling or destroying samples. 
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