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Abstract: - In this paper, we present an innovative approach to beamforming that combines the strengths of blind and 

non-blind algorithms using Co-Prime Sensor Arrays (CPSA). By cascading the Least Square Constant Modulus 

Algorithm (LS-CMA) and the Least Mean Square (LMS) method, we achieve enhanced performance in terms of 

convergence speed, robustness, and signal quality. The initial stage involves employing the LS-CMA to obtain a 

preliminary estimate of the beamforming weights without requiring a reference signal. Subsequently, the LMS 

algorithm refines these weights to minimize the mean square error using a reference signal. The use of CPSA further 

improves the spatial resolution and reduces the number of sensors required. Simulation results demonstrate the 

effectiveness of the proposed method in various signal conditions, showcasing its potential for advanced 

communication systems and radar applications. 

Keywords: Co-Prime Sensor Arrays (CPSA), beamforming, Least Square Constant Modulus Algorithm (LS-CMA), 

Least Mean Square (LMS), cascaded algorithms, signal processing, spatial resolution, communication systems, radar 

applications. 

 

 

I.  INTRODUCTION  

Beamforming is a signal processing technique that has gained significant attention in modern communication 

systems and radar applications due to its ability to direct the reception or transmission of signals in specific 

directions. This capability enhances signal quality, reduces interference, and optimizes the use of spectral 

resources. Traditional beamforming methods can be broadly classified into blind and non-blind techniques. Blind 

methods, such as the Least Square Constant Modulus Algorithm (LS-CMA), do not require a reference signal, 

making them highly adaptable in environments where training sequences are unavailable. On the other hand, 

non-blind methods, such as the Least Mean Square (LMS) algorithm, rely on a reference signal to fine-tune the 

beamforming weights, thereby achieving precise signal quality and interference suppression. 

 

Despite the individual advantages of LS-CMA and LMS, each method also has inherent limitations. LS-CMA 

can rapidly adapt to the environment but may not achieve the optimal beamforming weights due to the lack of a 

reference signal. Conversely, LMS can attain precise optimization but requires an initial reference signal, which 

might not always be available or may introduce delays in the adaptation process. To address these challenges and 

leverage the strengths of both methods, we propose a novel cascaded approach that integrates LS-CMA and LMS 

algorithms. This hybrid method aims to combine the rapid initial adaptation of LS-CMA with the fine-tuning 

capabilities of LMS, resulting in improved overall performance. 

 

A significant advancement in this domain is the utilization of Co-Prime Sensor Arrays (CPSA). CPSA offers 

a unique structure that allows for higher spatial resolution with fewer sensors compared to traditional uniform 

linear arrays. By strategically placing sensors at co-prime intervals, CPSA mitigates issues related to spatial 

aliasing and provides enhanced beamforming capabilities. The integration of CPSA with our proposed cascaded 
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LS-CMA and LMS method further amplifies the benefits, enabling superior performance in terms of both spatial 

resolution and computational efficiency. 

 

In the initial stage of our proposed method, LS-CMA is employed to quickly converge to an initial estimate of 

the beamforming weights. This blind adaptation phase is crucial in scenarios where reference signals are 

unavailable or insufficient. Once the LS-CMA has provided a satisfactory initial solution, the LMS algorithm 

takes over to refine these weights. This refinement stage utilizes a reference signal to minimize the mean square 

error, thereby enhancing the accuracy and robustness of the beamforming process. The transition from LS-CMA 

to LMS is designed to be seamless, ensuring that the overall system adapts quickly and effectively to changing 

signal environments. The combination of CPSA with the cascaded LS-CMA and LMS approach presents a 

compelling solution for modern communication and radar systems. CPSA's ability to deliver high spatial 

resolution with fewer sensors not only reduces hardware costs but also simplifies the implementation. 

Furthermore, the enhanced beamforming performance achieved through the cascaded algorithm improves signal 

quality, reduces interference, and enhances the overall reliability of the system. 

 

This paper aims to provide a comprehensive analysis of the proposed method, supported by simulation results 

that demonstrate its effectiveness in various signal conditions. We explore the theoretical foundations of both LS-

CMA and LMS, delve into the benefits of CPSA, and present a detailed evaluation of the combined approach. 

The results highlight the potential of this innovative method to significantly advance the field of beamforming, 

offering a robust and efficient solution for future communication and radar applications. By addressing the 

limitations of existing beamforming techniques and leveraging the advantages of CPSA, our research opens new 

avenues for improving signal processing in dynamic and complex environments. This introduction sets the stage 

for a detailed exploration of the proposed method, its implementation, and its impact on modern technological 

applications. 

 

II. MOTIVATION   

The increasing complexity of modern communication systems and radar applications necessitates advanced 

techniques for efficient and accurate signal processing. Beamforming, a critical component in these systems, has 

traditionally relied on either blind or non-blind algorithms, each with its own set of advantages and limitations. 

Blind algorithms, like the Least Square Constant Modulus Algorithm (LS-CMA), offer the benefit of not 

requiring a reference signal, thereby simplifying the initial setup and enhancing robustness. On the other hand, 

non-blind algorithms, such as the Least Mean Square (LMS) method, excel in refining beamforming weights by 

minimizing the mean square error, but depend on the availability of a reference signal. Combining the strengths 

of these two approaches presents an opportunity to overcome their individual limitations, leading to improved 

performance in terms of convergence speed, robustness, and signal quality. Furthermore, the utilization of Co-

Prime Sensor Arrays (CPSA) promises significant advancements in spatial resolution and sensor efficiency. 

CPSA allows for a reduced number of sensors while maintaining high resolution, which is particularly beneficial 

for applications requiring compact and cost-effective solutions. 

 

In this context, our research seeks to address the pressing need for a more efficient and effective beamforming 

technique by integrating the LS-CMA and LMS algorithms within a CPSA framework. This innovative approach 

aims to harness the benefits of both blind and non-blind methods, providing a robust solution capable of handling 

diverse signal conditions. The promising simulation results underscore the potential of our method to 

revolutionize beamforming in advanced communication systems and radar applications, paving the way for more 

reliable and high-performance signal processing technologies. 

 

III. RELATED WORK 

Wherever Beamforming, a crucial technique in signal processing and communication systems, aims to 

enhance signal reception by steering the main lobe of an antenna array towards the desired signal direction while 

minimizing interference from other directions. Over the years, various algorithms have been developed to 

optimize beamforming performance under different environmental and operational conditions. 
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Parra, Xu, and Liu introduced the Least Squares Projective Constant Modulus Approach (LS-PCMA), which 

emphasizes robustness in adaptive beamforming by integrating projective constraints with least squares 

estimation [1]. LS-PCMA has been noted for its ability to handle non-ideal scenarios where constant modulus 

signals are corrupted by noise or interference, making it suitable for applications in wireless communication 

systems where signal conditions may vary unpredictably. Agee proposed the Least-Squares Constant Modulus 

Algorithm (LS-CMA), which focuses on rapidly correcting constant modulus signals using iterative estimation 

techniques [2]. This method is particularly effective in scenarios where real-time adaptation and quick 

convergence are critical, such as in mobile communication systems dealing with rapidly changing channel 

conditions. Rong's work on simulating adaptive array algorithms for CDMA systems provided insights into 

practical implementations of beamforming in the context of Code Division Multiple Access (CDMA) 

technologies [3]. This research highlighted the importance of algorithmic robustness and efficiency in handling 

multiple access interference, a common challenge in dense wireless networks. 

 

Stoica and Moses contributed significantly to spectral analysis techniques, laying the groundwork for 

understanding signal properties and optimization in array processing applications [4]. Their work remains 

foundational in guiding the design and implementation of advanced signal processing algorithms, including those 

used in adaptive beamforming. Hestenes and Stiefel introduced the method of Conjugate Gradients (CG) for 

solving linear systems, which has found applications in iterative signal processing algorithms for optimizing 

antenna array configurations [5]. Choi further extended the CG method's application to optimum array 

processing, demonstrating its effectiveness in improving signal-to-noise ratios and reducing computational 

complexity [6]. Despite these advancements, existing methods often face challenges such as slow convergence in 

non-ideal signal conditions, sensitivity to noise, and high computational complexity. The proposed approach in 

this study aims to address these challenges by integrating the strengths of the LS-CMA and the Least Mean 

Square (LMS) algorithm within the framework of Co-Prime Sensor Arrays (CPSA). Our method innovatively 

cascades the LS-CMA for initial robust estimation of beamforming weights without requiring a reference signal 

[2]. This initial stage is crucial for initializing beamforming weights effectively, especially in dynamic 

environments where rapid adaptation is necessary to maintain signal quality. Subsequently, the LMS algorithm 

refines these weights using a reference signal, minimizing the mean square error and further improving 

beamforming accuracy [7]. This hybrid approach ensures not only rapid adaptation but also enhanced 

performance in terms of signal quality and robustness against interference. The integration of Co-Prime Sensor 

Arrays (CPSA) further enhances the spatial resolution of the antenna array while reducing the number of physical 

sensors required [3]. CPSA leverages the mathematical properties of co-prime arrays to achieve high-resolution 

beamforming capabilities, making it suitable for applications where compact and efficient antenna designs are 

essential. 

 

Simulation results demonstrate the effectiveness of our proposed method across various signal conditions, 

showcasing superior performance compared to traditional LS-CMA and LMS approaches [1], [4]. By leveraging 

the complementary strengths of these algorithms and the advantages offered by CPSA, our method achieves 

faster convergence, improved robustness against noise, and enhanced spatial resolution. The proposed approach 

represents a significant advancement in beamforming technology, offering a robust and efficient solution for 

advanced communication systems and radar applications. Future research will focus on validating these findings 

through real-world implementations and further optimizing the algorithm's performance in complex operational 

environments. Adaptive beamforming techniques play a crucial role in enhancing the performance of 

communication systems by improving signal reception, reducing interference, and optimizing spectral efficiency. 

Various methodologies have been explored in literature to address these challenges. Biedka et al. [11] conducted 

a thorough convergence analysis of the Least Squares Constant Modulus Algorithm (LS-CMA) in interference 

cancellation applications. Their study emphasized the algorithm's robustness and effectiveness in mitigating 

signal distortions caused by noise and interference, thereby improving signal quality in noisy environments. 

Zoltowski [12] explored the application of Total Least Squares (TLS) in signal processing, demonstrating its 

utility in minimizing errors introduced by noise and modeling uncertainties. This method proves beneficial in 

scenarios where precise signal reconstruction is crucial for reliable communication. In the realm of multiuser 

detection, researchers have investigated Constraint Constant Modulus Algorithm (CMA) techniques under 

unknown multipath conditions [13]. These approaches focus on enhancing signal detection and isolation 

capabilities in congested communication channels, thereby improving overall system throughput and reliability. 
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Miguez and Castedo [14] proposed a Linearly Constrained Constant Modulus Approach (LCCMA) for 

adaptive interference suppression in multiuser environments. Their method effectively mitigates interference 

from simultaneous signal sources, ensuring clearer and more reliable communication links. Triecheler and Agee 

[15] introduced an innovative approach to multipath correction for constant modulus signals, addressing 

challenges related to signal distortion and phase cancellation. Their method contributes significantly to enhancing 

signal clarity and accuracy in communication systems. Dhami and Vasavada [16] explored blind digital 

beamforming techniques tailored for next-generation communication systems. Their study highlights 

advancements in adaptive antenna technologies aimed at improving signal reception and processing efficiency in 

dynamic and complex environments. Al Kassir et al. [17] provided a comprehensive review of deep learning-

based beamforming techniques, outlining current trends, challenges, and future directions in adaptive antenna 

technology. Their insights contribute to the ongoing evolution of beamforming strategies in modern 

communication networks. 

 

Vasavada et al. [18] developed a blind iterative hybrid analog/digital beamformer optimized for mmWave 

reception using large-scale antenna arrays. Their approach demonstrates significant improvements in signal 

detection and processing efficiency, essential for high-speed wireless communication systems. Yao et al. [19] 

investigated blind beamforming strategies for multiple intelligent reflecting surfaces (IRS), aiming to enhance 

signal coverage and reliability in future wireless networks. Their work explores novel approaches to leveraging 

IRS technology for improved communication performance. Recent advancements also include optimizing IRS 

parameters for channel estimation in double-IRS aided systems [20]. Bazzi and Xu's study focuses on minimizing 

Mean Square Error (MSE), demonstrating effective strategies for enhancing communication performance in 

complex propagation environments. Cooperative passive beamforming designs for multi-user MIMO systems 

assisted by double IRS have been proposed to enhance system throughput and reliability [22]. Zheng et al. 

discuss novel strategies for optimizing spatial diversity and signal reception capabilities in modern wireless 

networks. 

 

These studies collectively underscore the diverse applications and continuous advancements in adaptive 

beamforming techniques. They highlight the critical role of advanced signal processing algorithms in addressing 

the evolving challenges of modern communication systems, from interference mitigation to spectral efficiency 

optimization. Recent advancements in cooperative beamforming and intelligent reflecting surfaces (IRS) 

technologies have revolutionized wireless communication systems, enhancing spectral efficiency, coverage, and 

reliability. Zheng et al. [22] proposed a cooperative passive beamforming design for multi-user MIMO systems 

assisted by double IRS. Their work emphasizes the collaborative optimization of passive beamforming matrices 

across multiple users, significantly enhancing system throughput and reducing interference. Chen et al. [23] 

introduced a cooperative beamforming design tailored for MISO communication systems assisted by double IRS. 

Their approach leverages cooperative signal processing techniques to optimize beamforming gains and mitigate 

channel impairments, thereby improving overall system performance. 

 

Cao et al. [24] investigated cooperative double-IRS aided proactive eavesdropping techniques, aiming to 

enhance communication security in wireless networks. Their study focuses on leveraging IRS-enabled 

beamforming to safeguard against potential security threats and eavesdropping activities. Huang et al. [25] 

explored multi-hop RIS-empowered terahertz communications using a Deep Reinforcement Learning (DRL)-

based hybrid beamforming design. Their approach maximizes spectral efficiency and minimizes latency in 

terahertz communication scenarios, showcasing the potential of intelligent reflecting surfaces in future high-

frequency bands.  

 

Chen et al. [26] developed a Weighted Minimum Mean Squared Error (WMMSE)-based alternating 

optimization method for low-complexity multi-IRS MIMO communication. Their study focuses on optimizing 

resource allocation and beamforming strategies, ensuring efficient utilization of IRS resources in practical 

communication environments. Mei and Zhang [27] proposed a distributed beam training approach for IRS-

enabled multi-hop routing, aiming to enhance network reliability and scalability. Their method facilitates 

dynamic beamforming adaptation across multi-hop communication paths, optimizing signal transmission and 

coverage in complex network topologies. In the context of massive MIMO systems, multi-beam multi-hop 
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routing strategies leveraging intelligent reflecting surfaces have been investigated to enhance coverage and 

capacity [28]. These approaches integrate multiple IRS nodes to form adaptive multi-beam networks, effectively 

improving spatial multiplexing and communication robustness. You et al. [29] addressed channel estimation and 

passive beamforming techniques for intelligent reflecting surfaces, focusing on discrete phase shift and 

progressive refinement methods. Their work contributes to advancing IRS capabilities in optimizing channel 

responses and enhancing signal quality in diverse propagation environments.  

 

Yağan et al. [30] introduced a novel blind adaptive beamformer resilient to mutual coupling and 

miscalibration effects in IRS applications. Their study presents robust beamforming strategies to mitigate 

performance degradation caused by hardware imperfections, ensuring reliable and efficient operation of IRS-

enabled communication systems. These studies collectively highlight the transformative impact of cooperative 

beamforming and IRS technologies on modern wireless communication networks. They underscore ongoing 

research efforts aimed at enhancing system performance, scalability, and security through advanced signal 

processing and adaptive antenna techniques. 

 

IV. SIGNAL MODEL USING ENHANCED CO-PRIME SENSOR ARRAYS 

Beamforming is a pivotal signal processing technique widely adopted in modern communication systems and radar 

applications. It enables precise control over the directionality of transmitted or received signals, thereby enhancing 

signal quality, minimizing interference, and optimizing spectral efficiency. Traditional beamforming methods 

encompass both blind and non-blind approaches. Blind methods, such as the Least Square Constant Modulus 

Algorithm (LS-CMA), adapt beamforming weights without requiring a reference signal, making them versatile in 

scenarios lacking training data. Conversely, non-blind methods, exemplified by the Least Mean Square (LMS) 

algorithm, utilize a reference signal to refine beamforming weights, offering optimal performance in noise-rich 

environments. In this research, we propose an innovative approach integrating Cascaded LS-CMA and LMS 

Algorithms with Co-Prime Sensor Arrays (CPSA) to advance beamforming capabilities. Co-Prime Sensor Arrays 

leverage the unique properties of coprime integers M  and N  to construct two sparsely spaced uniform linear sub-

arrays. As illustrated in Figure 1, one subarray comprises 2M sensors spaced by Nd, while the other features N  

sensors with  Md  spacing. 

 

           

                                                  Figure 1: Illustration of the Co-Prime Sensor Array structure. 

 

Assume of a coprime array that consists of two subarrays: Subarray 1 is made up of 𝑀 sensors that are spaced 𝑁 

𝑑 apart, and Subarray 2 is made up of 𝑁 sensors that are spaced 𝑀𝑑 apart. Let us assume that 𝑀 and 𝑁 are 

coprime positive integers. According to Figure 1, 𝑑 represents the minimal unit inter-sensor spacing. Align the 

rightmost sensor of each subarray as the reference point, assuming 𝑀 < 𝑁. The coprime array's sensor positions 

can be shown as follows:  
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S ={𝑚𝑁𝑑−𝑀(𝑁−1)𝑑|0≤𝑚≤𝑀−1} ∪ {𝑛𝑀𝑑−𝑀(𝑁−1)𝑑|0≤𝑛≤𝑁−1}                                                                       (1) 

  

Thus, |S| = 𝑀+𝑁−1 is the total number of sensors. Let l = [−𝑙|S |, −𝑙|S|−1,..., −𝑙1] be defined. w as the sensor 

positions, where w = 1, 2,..., |S|, and −𝑙𝑖 = 0.  

 

Assume 𝐾 far-field narrowband coherent signals are coming from various directions, denoted by 𝜃 =[𝜃1, 𝜃2, . . . , 

𝜃𝐾 ]𝑇 .  

 

As a result, the coprime array's received data at time 𝑡 is represented as follows:  
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In this case,  

𝑎𝑆 (𝜃𝑘) = [𝑒−𝑙|𝑆|  �̄�𝑘 , 𝑒−𝑙|𝑆|−1  ̄𝜃𝑘 , . . . , 𝑒−𝑙1  ̄𝜃𝑘 ]𝑇                                                                                                   (3) 

With the normalized DOA �̄�𝑘 = 𝑗2𝜋 sin 𝜃𝑘 /𝜆, where 𝜆 indicates the signal wavelength, 𝑇 represents the steering 

vector. The manifold matrix is  

A = [𝑎𝑆 (𝜃1), 𝑎𝑆 (𝜃2), . . . , 𝑎𝑆 (𝜃𝐾)]                                                                                                                    (4) 

The reference signal waveform is represented by 𝑠(𝑡), which is 𝛼 = [𝛼1, 𝛼2, . . . , 𝛼𝐾 ]𝑇. A random additive white 

noise vector n𝑆(𝑡) follows a complex Gaussian distribution 𝐶𝑁 (0, 𝜎2
𝑛 𝐼), uncorrelated to signals, with 𝜎2

𝑛 

denoting the noise strength. 𝑇 represents the nonzero complex-valued fading coefficient vector. 

 

V. THE PROPOSED METHOD 

The slow convergence rate of the CMA beamformer is its main drawback. The algorithm's performance 

deteriorates because to its poor convergence rate. In fact, using non-linear least squares can greatly speed up 

convergence. As a result, this technique is known as least-square CMA when applied to CMA. This technique is, 

in practice, approximately 100 times faster than the conventional CMA [2].  

 

The LS-CMA algorithm aims to estimate the spatial signatures ak of the sources using the received signals X 

without prior knowledge of S.  

  w

H
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wĴ = complex Jacobin of    and this can be expressed as  

 KwJ  = ,...ˆ
1                   (6) 

The weight update expression for LS-CMA can be given as 
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The LS-CMA weights are computed as:  
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Once the weights wLS-CMA are obtained, they are applied to the received signals x(t) to achieve beamforming. This 

signal model lays the foundation for the application of the LS-CMA algorithm in array signal processing, 

providing a basis for adaptive beamforming techniques in various communication and radar systems 

The estimated spatial signatures are obtained by solving the following optimization problem:  

                 

Improved LS-CMA Signal Model: In this section, we present and analyze the performance of the proposed 

hybrid beamforming method, which combines the improved Least Square Constant Modulus Algorithm (LS-

CMA) and the Standard Least Mean Square (LMS) algorithm. The standard LS-CMA algorithm can be enhanced 

to improve convergence speed and robustness in practical applications. One approach is to introduce a 

regularization term to the optimization problem, which mitigates the effects of noise and enhances the estimation 

of spatial signatures ak. Consider the regularized LS-CMA formulation, where the optimization problem is 

modified as follows: 

 

ALS-CMA = arg min A ∥X − AS∥2                                                                                                                                                                                                     (8) 
 

where λ is a regularization parameter and ∥·∥F denotes the Frobenius norm. The regularization term λ ∥A∥ 2 F 

penalizes large weights in A, thereby promoting smoother and more stable solutions. The regularized LS-CMA 

weights wRLS-CMA are computed as: 

 

wRLS-CMA = (AHA + λI) −1AHx(t)                                                                                                                              (9) 

 

 The regularization parameter λ controls the trade-off between fitting the data X and regularization. A larger λ 

leads to stronger regularization, which can improve robustness but may reduce performance in noise-free 

scenarios. The regularized LS-CMA algorithm enhances the standard LS-CMA by offering improved 

convergence and noise robustness, making it suitable for real-world applications where noise and interference are 

prevalent. This improved LS-CMA model extends the capabilities of traditional LS-CMA, providing adaptive 

beamforming solutions that are effective across various signal environments in communication and radar 

systems. In this section, we propose a hybrid beamforming approach that combines the Regularized Least Square 

Constant Modulus Algorithm (RLS-CMA) with the Standard Least Mean Square (LMS) method, leveraging the 

advantages of Co-Prime Sensor Arrays (CPSA). 

 

RLS-CMA Signal Model: The RLS-CMA algorithm enhances the standard LS-CMA by introducing a 

regularization term to improve convergence speed and robustness in practical scenarios. The optimization 

problem is formulated as: 

 

                                                                           (10) 

 

where X is the received signal matrix, S is the source signal matrix, λ is a regularization parameter, and ∥·∥F 

denotes the Frobenius norm. The regularized weights wRLS-CMA are computed as: 

 

                                                                                                 (11) 

 

where I is the identity matrix. 

Hybrid Approach:  The proposed hybrid approach cascades RLS-CMA for initial estimation of beamforming 

weights, leveraging the spatial diversity offered by CPSA. Subsequently, the standard LMS algorithm refines 

these weights using a reference signal, further optimizing beamforming performance. The use of CPSA enhances 

spatial resolution and reduces sensor requirements, making the method suitable for diverse signal environments 

in communication and radar systems. The RLS-CMA algorithm is used initially to estimate the beamforming 

weights wRLS-CMA without a reference signal, using the spatial diversity provided by CPSA. The RLSCMA 

weights are computed as follows: 

 

wRLS-CMA = (AHA + λI) −1AHx(t)                                                                                                                             (12) 
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where A is the steering matrix, x(t) is the received signal vector, λ is the regularization parameter, and I is the 

identity matrix. 

 

Benefits of CPSA:  The use of CPSA enhances spatial resolution and reduces sensor requirements, making the 

hybrid approach suitable for diverse signal environments in communication and radar systems 

    

VI. RESULTS AND DISCUSSIONS 

In this section, we present and analyze the performance of the proposed hybrid beamforming method, which 

combines the improved Least Square Constant Modulus Algorithm (LS-CMA) and the Standard Least Mean 

Square (LMS) algorithm using Co-Prime Sensor Arrays (CPSA). The proposed method is named RLS-CMA. 

The analysis includes Array Factor beamforming, signal and array output comparison, Mean Square Error (MSE) 

evaluation, and a comparison of different beamforming methods. First, we analyze the Array Factor 

beamforming versus the Angle of Arrival (AOA) for a target signal at 20 degrees using the proposed method. 

The beamforming pattern is shown in Figure 2. This figure illustrates the capability of the proposed method to 

accurately steer the beam towards the desired direction while minimizing interference from other directions. The 

array factor, which is crucial in determining the beam pattern, is computed based on the beamforming weights 

obtained from the RLS-CMA algorithm. The figure shows the enhanced spatial resolution resulting from the 

proposed method. 

 

                   Figure 2: Array Factor Beamforming vs. AOA for the proposed method at 20 degrees. 

 

       Figure 3: Desired Signal and Array Output of the proposed method over iterations. 
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Next, we compare the desired signal and the array output of the proposed method over a number of iterations. 

Figure 3 shows the convergence of the array output to the desired signal, demonstrating the effectiveness of the 

hybrid approach in achieving accurate beamforming through iterative refinement. 

 

Initially, the RLS-CMA algorithm provides an estimate of the beamforming weights without the need for a 

reference signal. This is followed by the LMS algorithm, which refines these weights using a reference signal to 

minimize the mean square error (MSE). The iterative refinement process is shown in Figure 2. We analyze the 

Mean Square Error (MSE) of the array output versus the number of iterations. The MSE is calculated using 

standard methods. As shown in Figure 4, the MSE decreases rapidly and reaches zero after approximately 18 

iterations. This indicates the quick convergence of the proposed hybrid method. The rapid decrease in MSE 

demonstrates the effectiveness of the RLS-CMA in providing a good initial estimate, which the LMS algorithm 

then fine-tunes to achieve minimal error. The regularization term in RLS-CMA helps in mitigating noise and 

enhancing the stability of the beamforming weights. Finally, we compare the performance of three beamforming 

methods: LMS, LS-CMA, and the proposed RLS-CMA for CPSA. Figure 5 illustrates that the proposed method 

provides more accurate beamforming compared to the LMS and LS-CMA methods, highlighting the benefits of 

the hybrid approach and the use of CPSA. The LMS algorithm, though simple and widely used, often struggles 

with convergence speed and accuracy in highly dynamic environments. The LS-CMA, on the other hand, offers 

better performance by operating without a reference signal but still lacks the fine-tuning capability provided by 

LMS. By integrating RLS-CMA, which introduces regularization to LS-CMA, with the LMS algorithm, our 

proposed method benefits from both rapid initial convergence and fine-tuning capabilities.   

  

Figure 4: MSE vs. Iterations for the proposed method. 

 

Figure 5: Comparison of LMS, LS-CMA, and proposed RLS-CMA for CPSA. 
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The CPSA further enhances performance by providing increased spatial resolution with fewer sensors, 

leveraging the unique properties of co-prime integers. This allows for more precise beamforming and improved 

detection of signals in complex environments, which is crucial for advanced communication systems and radar 

applications. 

 

VII. CONCLUSION 

In this paper, we presented a novel hybrid beamforming approach that combines the improved Least Square 

Constant Modulus Algorithm (LS-CMA) and the Least Mean Square (LMS) algorithm using Co-Prime Sensor 

Arrays (CPSA). The proposed method leverages the strengths of both blind and non-blind algorithms to achieve 

enhanced performance in terms of convergence speed, robustness, and signal quality. The RLS-CMA provides an 

initial estimation of the beamforming weights without requiring a reference signal, while the LMS algorithm 

refines these weights to minimize the mean square error. The use of CPSA further improves spatial resolution 

and reduces the number of sensors required, making the proposed method highly efficient for diverse signal 

environments in communication and radar systems. Our comprehensive analysis included simulations of Array 

Factor beamforming versus Angle of Arrival (AOA), convergence of the array output to the desired signal, and 

Mean Square Error (MSE) evaluation across iterations. The results demonstrated that the proposed hybrid 

method significantly outperforms traditional LMS and LS-CMA algorithms, providing more accurate and robust 

beamforming. 

VIII.  REFERENCES 

[1] Parra, G. Xu, and H. Liu, “Least squares projective constant modulus approach,” in Proc. IEEE Int. Symp. Personal, 

Indoor and Mobile Radio Communications, Toronto, Canada, 1995, pp. 673–676. 

[2] B. Agee, “The Least-Squares CMA: A New Technique for Rapid Correction of Constant Modulus Signals,” in IEEE 

International Conference on ICASSP ’86, vol. 11, pp. 953–956, April 1986. 

[3] Z. Rong, “Simulation of Adaptive Array Algorithms for CDMA Systems,” Master’s Thesis, Mobile & Portable Radio 

Research Group, Virginia Tech, Blacksburg, VA, Sept. 1996. 

[4] P. Stoica and R. Moses, Introduction to Spectral Analysis. New York, NY, USA: Prentice Hall, 1997. 

[5] M. Hestenes and E. Stiefel, “Method of Conjugate Gradients for Solving Linear Systems,” Journal of Research of the 

National Bureau of Standards, vol. 49, pp. 409–436, 1952. 

[6] S. Choi, Application of the Conjugate Gradient Method for Optimum Array Processing, Book Series on PIER (Progress 

in Electromagnetics Research), vol. 5, Elsevier, Amsterdam, The Netherlands, 1991. 

[7] S. Choi and T. Sarkar, “Adaptive antenna array utilizing the conjugate gradient method for multipath mobile 

communication,” Signal Processing, vol. 29, pp. 319–333, 1992. Trans. Antennas Propagat., vol. AP-29, pp. 847–856, 

1981. 

[8] S. Choi, Application of the Conjugate Gradient Method for Optimum Array Processing, vol. V. Amsterdam, The 

Netherlands: Elsevier, 1991, ch. 16. 

[9] S. Choi and D. H. Kim, “Adaptive antenna array utilizing the conjugate gradient method for compensation of multipath 

fading in a land mobile communication,” in Proc. IEEE 42nd Vehicular Technology Conf., Denver, CO, 1992, pp. 33–

36. 

[10] S. A. Vorobyov, “Array and statistical signal processing,” Elsevier Academic Press Library in Signal Processing, vol. 

3, pp. 1-51, 2014. 

[11] T. E. Biedka, W. H. Tranter, and J. H. Reed, "Convergence Analysis of the Least Squares Constant Modulus Algorithm 

in Interference Cancellation Applications," IEEE Trans. Communications, vol. 48, no. 3, pp. 491-501, March 2000. 

[12] M. D. Zoltowski, "Signal Processing Application of the method of Total Least Squares," in Proc. 21 Asilomar Conf. on 

Circuit and Computers, Pacific Grove, CA, 2000, pp. 290-296. 

[13] "Constraint CMA-Based Multiuser Detection under Unknown Multipath," in 12th IEEE International Symposium on 

Personal, Indoor and Mobile Radio Communications, vol. 1, October 2001. 



J. Electrical Systems 20-10s (2024):3633-3643 

3643 

[14] J. Miguez and L. Castedo, "A Linearly Constrained Constant Modulus Approach to Blind Adaptive Multiuser 

Interference Suppression," IEEE Communications Letters, vol. 2, no. 8, August 1998. 

[15] R. Triecheler and B. G. Agee, "A New Approach to Multipath Correction of Constant Modulus Signal," IEEE Trans. 

Acoustic Speech and Signal Processing, vol. 31, Apr. 1983. 

[16] Dhami and Y. Vasavada, "Blind Digital Beamforming Techniques for Next Generation Communication Systems," in 2023    

IEEE Wireless Antenna and Microwave Symposium (WAMS), Ahmedabad, India, 2023, pp. 1-5. 

[17] H. Al Kassir et al., "A review of the state of the art and future challenges of deep learning-based beamforming," IEEE 

Access, 2022. 

[18] Y. Vasavada, N. Parekh, A. Dhami, and C. Prakash, "A blind iterative hybrid analog/digital beamformer for the single 

user mmwave reception using a large scale antenna array," in 2021 National Conference on Communications (NCC), 

2021, pp. 1-6. 

[19] J. Yao et al., "Blind Beamforming for Multiple Intelligent Reflecting Surfaces," in ICC 2023 - IEEE International 

Conference on Communications, Rome, Italy, 2023, pp. 871-876. 

[20] S. Bazzi and W. Xu, "IRS parameter optimization for channel estimation MSE minimization in double-IRS aided 

systems," IEEE Wireless Commun. Lett., vol. 11, no. 10, pp. 2170-2174, Oct. 2022. 

[21] You, B. Zheng, and R. Zhang, "Wireless communication via double IRS: Channel estimation and passive beamforming 

designs," IEEE Wireless Commun. Lett., vol. 10, no. 2, pp. 431-435, Feb. 2021. 

[22] Zheng, C. You, and R. Zhang, "Double-IRS assisted multi-user MIMO: Cooperative passive beamforming design," 

IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4513-4526, Jul. 2021. 

[23] X. Chen et al., "Cooperative beamforming design for double-IRS-assisted MISO communication system," Physical 

Commun., vol. 55, pp. 101826, Dec. 2022. 

[24] Y. Cao et al., "Cooperative double-IRS aided proactive eavesdropping," IEEE Trans. Commun., vol. 70, no. 9, pp. 

6228-6240, Sep. 2022. 

[25] Huang et al., "Multi-hop RIS-empowered terahertz communications: A DRL-based hybrid beamforming design," IEEE J. 

Sel. Areas Commun., vol. 39, no. 6, pp. 1663-1677, Jun. 2021. 

[26] C. W. Chen et al., "WMMSE-based alternating optimization for low-complexity multi-IRS MIMO communication," 

IEEE Trans. Veh. Technol., vol. 71, no. 10, pp. 11234-11239, Oct. 2022. 

[27] W. Mei and R. Zhang, "Distributed beam training for intelligent reflecting surface enabled multi-hop routing," IEEE 

Wireless Commun. Lett., vol. 10, no. 11, pp. 2489-2493, Nov. 2021. 

[28] "Multi-beam multi-hop routing for intelligent reflecting surfaces aided massive MIMO," IEEE Trans. Wireless 

Commun., vol. 21, no. 3, pp. 1897-1912, Mar. 2022. 

[29] C. You, B. Zheng, and R. Zhang, "Channel estimation and passive beamforming for intelligent reflecting surface: 

Discrete phase shift and progressive refinement," IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2604-2620, Nov. 

2020. 

[30] M. Y. Yağan, A. F. Coşkun, and A. E. Pusane, "A Novel Blind Adaptive Beamformer with Robustness against Mutual 

Coupling and Miscalibration Effects," in 2023 17th European Conference on Antennas and Propagation (EuCAP), 

Florence, Italy, 2023, pp. 1-5. 

 

 


