
J. Electrical Systems 20-3 (2024):4419-4427

 4419

1 Mehdi Salehi

babadi

1Mohammad

Ebrahim Shiri

2Mohammad Reza

Moazami Goudarzi

3Hamid Haj Seyyed

Javadi

Multi-objective Scheduling of Tasks in

Cloud Computing Using Fire Fly and

Bee Colony Algorithms

Abstract: - The problem of allocating hardware and processing resources in cloud computing is considered in this research. Here, a virtual bee is

assigned to any task that dynamically seeks the most appropriate computing resources. Each available computing source also has a virtual fire fly

that its brightness is proportional to the amount of processing unit and the amount of computing residue that examines the computing source. The

problem of distribution of computing resources among existing tasks will be investigated using the greedy technique of calculating the location of

each task in general. The current method has many advantages compared to the random distribution method, but to complement the other topics,

researchers can offer other tactics of distribution of computing resources simultaneously with the method proposed in this study and compare their

performance with the implementation of both simulations. The simulation results show that the performance criteria of the cloud computing system

such as time and computing resources have been greatly improved.

Keywords: Cloud Computing, Fir Fly Algorithm, Resource Allocation, Bee Colony Algorithm.

I. INTRODUCTION

Today, the applications of information technology have become very much and cover many areas. The IT

specialist has a variety of tasks, from installing applications to designing complex computer networks and

databases. With the dramatic increase in the variety of information technology equipment and services, the

management of services provided in this area has also faced many challenges. management of investigating

problems and requests, equipment and resource management in relation to technical support services and their

allocation to users, as well as monitoring, control and scheduling in this field are among the issues that force IT

managers to provide useful and efficient tools. These tools include information technology management software

that can help managers, experts, and technicians in this regard (Ramachandra et al. 2017).

Sharing the "consumable and intangible" computing power between several tenants can improve productivity;

because of this way, servers no longer remain idle for any reason (which significantly reduces costs while

increasing the speed of production and development of applications). One side effect of this approach is that

computers are used to a greater extent because cloud computing customers do not need to calculate and determine

the maximum for their maximum load (Shishira et al. 2017).

The purpose of this study is to provide a method for allocating computing resources between input tasks in the

cloud computer using a combination of bee colonies and fire fly algorithms to provide a new multi-objective meta-

innovative method. Fire Fly Algorithm (Florence and Shanthi 2014) considers each existing option as a fire fly

that the amount of brightness and attractiveness of it is proportional to the parameters in the problem.

The artificial bee algorithm was introduced in 2006 by Karabuga to optimize poly-nomial functions (Karaboga

and Basturk 2008). In the bee algorithm, a food source indicates a possible solution to the problem. In this

algorithm, the colony includes three types of bees: worker bees, scout bees, and outlooker bees. The task of the

1Department of Computer Engineering, Borujerd Branch, Islamic Azad University, Borujerd, Iran, Email: msalehib@hotmail.com,

shiri@aut.ac.ir

2Department of Mathematics, Borujerd Branch, Islamic Azad University, Borujerd, Iran, Email: mrmoazamig@gmail.com

3Department of Mathematics and Computer Science, Shahed University, Tehran, Iran, Email: h.s.javadi@shahed.ac.ir

*Corresponding author: Mohammad Ebrahim Shiri, Email:shiri@aut.ac.ir

Copyright © JES 2024 on-line : journal.esrgroups.org

J. Electrical Systems 20-3 (2024):4419-4427

 4420

worker bee is to search for finding new food sources. The outlooker bee is responsible for evaluating the solutions

obtained by the worker bees. In each repetition of the algorithm, a number of worker bees that have found the best

solutions are transformed into scout bees by outlooker bees. For scout bees, the recruitment process takes place,

meaning that each scout bee is assigned a number of worker bees to search near the food source related to the

scout bee. This process continues until the optimal answer is found.

II. A REVIEW OF PREVIOUS RESEARCH

So far, the division of functions and tasks in cloud computing has been much discussed (Zhan and Huo 2012), in

Kaur and Verma (2012) a task scheduling algorithm in the cloud computing environment using a genetic algorithm

designed called SGA. The optimization parameters in this article are the time and cost of performing the tasks.

Unlike the standard genetic algorithm, the initial population in this algorithm is not randomly selected, and the

results of the two SCFP and LCFP algorithms are used to determine the initial population.

In Kumar and Verma (2012), they used an improved genetic algorithm to schedule independent tasks in the cloud

computing environment, which is a new version of the genetic algorithm for tasks scheduling in the cloud. The

proposed algorithm is a combination of the Min-Min, Max-Min scheduling methods and the standard genetic

algorithm (Braun et al. 2001). The obtained results indicate a reduction in completion time compared to the

standard genetic algorithm.

In Braun et al. (2001), an optimization algorithm was provided for tasks scheduling in the cloud computing

environment which consists of two parts. After applying the selection operators, recombination and mutation of

the genetic algorithm, simulated refrigeration is used (Gan et al. 2010), in which case the new generation will be

closer to the optimal answer. Also in this article, the service quality parameter consists of five parameters:

completion time, bandwidth, cost, distance and reliability, which are assigned different weights to each of these

parameters according to the type of task.

In Moschakis and Karatza (2015), the balance of load in cloud computing was examined using mathematics of

Geodesic path finding which suggested a random climbing method for assigning tasks to virtual machines. The

purpose of this method is to assign tasks to less loaded resources in order to improve response time to tasks. A

table called the index table is also used to determine the current state of virtual machines.

In Mondal et al. (2012), they proposed an improved algorithm based on the Max-Min method for scheduling tasks

in cloud computing called MMST. To solve the two main problems of the traditional Max-Min method (Atashpaz-

Gargari and Lucas 2007), i.e long waiting times for smaller tasks and using more resources when tasks are low, a

new parameter called maximum waiting time is used.

In Ge and Wei (2010), tasks scheduling based on the genetic algorithm was invented for the cloud computing

system, which used the genetic algorithm (Vijindra and Shenai 2012) to minimize the time of completing tasks in

the cloud computing environment. The matrix that the predicted time to perform each task is on each resource is

used to calculate the completion time. Also, a parameter called ready [i] is used, which indicates when the

computing i completes the previous task allocated in the previous scheduling, which will also affect the source

load in finding the optimal sequence. This means that the work loading of resources will be directly affected at

the time of completion.

In Xu et al. (2011), the tasks scheduling algorithm was designed based on the burger model in the cloud

environment, which for the first time, the problem of scheduling in cloud with a model based on the distribution

of social wealth called the burger model was investigated. In this method, two parameters of service quality called

completion time and bandwidth are considered. For all tasks, a set of candidate virtual machines can be selected

that can perform that task. For each candidate virtual machine, the Euclidean distance is measured by the current

efficiency from the expected performance (the efficiency characteristics of each task are initially given by the

user) and then the virtual machine with the lowest Euclidean distance performs that task.

In Chang et al. (2009) an ant algorithm for symmetrical tasks scheduling in the tour was presented. The goal is to

allocate the optimal resource to each task according to the characteristics of the resource and the task. Each work

is considered as an ant and the weight of the resources as a pheromone. In other words, the more the source weight

is heavier, the pheromone is more. First, the pheromone matrix is formed for the tasks and resources, and then the

J. Electrical Systems 20-3 (2024):4419-4427

 4421

maximum pheromone is selected at each stage, and the corresponding task with that pheromone is assigned to its

corresponding source. Of course, there are two types of local and global updates for pheromones. The results

indicate the optimal amount of completion and balance time.

In Wang and Ai (2013), the task scheduling was described based on the ant colony optimization in the cloud

computing environment, which used the ant colony algorithm to optimize the task scheduling in the cloud

computing environment (Mouradian et al. 2018; Kalra and Singh 2015). This algorithm can bring the makepan

close to the optimal value in the tasks sent to the cloud environment. The initial value of the pheromone is

proportional to the ability of the virtual machines, and each ant first randomly assigns a virtual machine to each

task.

In Wang et al. (2013) the resource scheduling model is designed based on particle swarm optimization algorithm,

according to the characteristics of cloud computing resources, time constraints, cost and user needs.

According to the study, the division of computing tasks and resources, both in cloud systems and in multi-core

computing, seems to have been analyzed using meta-heuristic algorithms. According to this issue, in the present

study, the combination of two colonial algorithms of bee and fire fly has been used to solve this problem.

III. RESEARCH THEORY

Cloud computing is multi-part systems consisting of a network module, operating system image module, cost

module, verification module and the like, and a cloud computing resource management system manages how to

distribute the input tasks between these parts. Tasks entered by users are located in the DC's data center. Each

data center divides the user's work into several "subsets" and makes them available to the computing resources

(PE). The scheduling module will provide assigning the right task to the right source at the right time, within the

cloud. In Figure 1, 'DC' represents a data center and 'PE' represents the CPU elements.

Figure 1- Management structure of a cloud computing

J. Electrical Systems 20-3 (2024):4419-4427

 4422

In this model, a new task is considered as a set of user tasks, the complex calculations of which are performed

using cloud resources. Suppose UserJob= (U1, U2, ..., UN) is a set of user programs that enter (execute-demand)

at a given time. Each UserJob (Ui) is shown with a double <ai, di>, which ai indicates the time of entry and di

indicates the time period of the UserJob. If a task is not completed on time, it is considered an incomplete and

failed task and must be re-entered into a new line of scheduling. In the scheduling process, the user's tasks are

assigned to the available data centers (D1, D2, …, DM) where M≤N, the number of data centers may be less than

the number of tasks required. Each data center (Di) is represented by a double <Ci, mi>. In this dual Ci, the cost

of running tasks in the data center per unit of time and mi is the number of PEs available to perform user tasks.

Each data center has a number of processing elements {PE1, PE2, …, PEk to execute user task. Each computing

element with PES characteristic means computing speed.

These tasks are located in one of the existing data synthesis called D, which has a certain number of PE computing

units, and now these tasks must be distributed among these computing units.

Each U has a required computing volume, P, and an allowable time, T. Each PE also has a PEj computing speed

and a computing cost.

If the execution time of Tk in PEj is shown with tk, then the end time can be expressed as follows: this computing

time is proportional to the difference in the computing volume required by Pk in PEj.

 Pkremaining = PKinitial − τk ∗ PEj <= τk =
Pk

PEj
 (1)

This means that if PK> PEj, then even though the Tk that has been used to the Uk task computing is reduced from

the required computing value, some computing remains.

Naturally, we want this computing time to be less than the allowable time for the entire Usertask task, TiM.

Assuming the parallel distribution of Uk tasks among PEj computing, the completion time of the U task is equal

to the time of completion of the longest tasks.

Makespan = max{Finish (τk)} (2)

If we consider the unit computing cost per PC to be equal to PCj, then the energy consumed to perform the entire

U task is equal to:

E_U = ∑_ (k = 1) ^ n▒ 〖(τ_k * PC_j)〗 (3)

That is equal to the cost spent for UserJob's task on the D-data synthesis.

EU = ∑ (τk ∗ PCj)
n
k=1 (4)

Here, a new relationship must be established to determine the productivity of the task distribution algorithm. This

productivity can be obtained by comparing the amount of computing that D could do with U at the total time with

the amount of computing that has actually done. That's mean:

eff =
∑ (τk∗PEjk)n

k=1

Makespan∗∑ PEj
J
j=1

−1

 (5)

This equation is equal to the adverse sum of the time that each computing unit has been dealing with a particular

task divided by total time of task U multiplied by the total computing power. Therefore, the more the total task

time is less and the computing power is distributed among the tasks more optimal, the efficiency of the algorithm

increase.

The SLR parameter is also obtained from this equation:

SLR =
max{Finish (τk)}

min{Finish (τk)}
 (6)

Now suppose that each task U corresponds to the subtasks of T and has a bee with greedy choice. In other words,

in each m period of the performance of the computing resource allocation algorithm, we have a number of residual

Pk from different Uk, each of which has a bee with greedy choice. To continue, we must define a selection power

for each of the available PKs, which are the capacity of the bee allocated to it, and we consider it equal to the

amount of computing left from the Uk task. In short, each remaining or new task in each period, according to its

J. Electrical Systems 20-3 (2024):4419-4427

 4423

chosen power, selects the strongest of the available computing resources, and this process will continue until all

tasks are completed.

Fire Fly Algorithm is an algorithm based on the population of the members of the set. In the fire fly community,

communication is done through light production patterns, studies show (Yang 2009) that three laws are governed

on this communication method:

A. More light means more gravity, and the lighter member will move toward the brighter member.

B. The amount of gravity also has an inverse relationship with the distance between the two fire flies.

C- Members who are not attracted to other members will have a random movement around to be exposed to each

other's light again.

To use this algorithm, the amount of light intensity can be considered equal to the value of the target function at

this point. The attraction between the two members can be modeled by the following formula: If d is the Euclidean

distance, α is a random coefficient, B0 is the maximum gravity and 2 is the adsorption coefficient, for the gravity

between the two members:

𝐵 = 𝐵0𝑒𝛾𝑑2
+ 𝛼 (7)

According to the theory presented in the reference (Gholizadeh 2014), the obtained path using this law of

absorbtion will always be a member of the Pareto front and will be close to the best solution in the acceptable

range. Each cloud computing can be considered as a fire fly, and outlooker bees representing input tasks at each

stage of the algorithm repetition must choose a path between all other fire flies (computing) so that all computing

and the tasks in them are checked and the computing that best fits the amount of computing left over from the

current task and the previous task in which it is less fit to be selected. In equation 6, the value of absorption

coefficient and random coefficient are equal to 1, and B0 is equal to the computing power of the cloud computing

or PEj, and d is the difference between the computing power of the computing, i.e, PEj and the remaining

computing value of Tk task is the equation (1). If we show the periods of assigning tasks with m, the selection

power of each bee for each cloud computing is equal to:

POWk=𝑃𝐸𝑗𝑒(Pkinitial−∑ τk(m)M
m=1 ∗PEj(m)) (8)

That is, the selection power of each bee for its own task is proportional to the initial amount of computing required

for that task minus the computing power allocated to that task at different times. However, each repetition of the

resource allocation algorithm that has the highest Uk selection power allocates the highest PEj.

However, the energy consumption ratio is also rewritten as follows:

EU = ∑ ∑ (τkm ∗ PCjm)n
k=1

M
m=1 (9)

And the efficiency of the algorithm is equal to:

eff =
∑ ∑ (τk∗PEjm)n

k=1
M
m=1

Makespan∗∑ PEj
J
j=1

−1

 (10)

Input passive include the number of tasks available and the computing volume of each, the number of computing

and computing power, and the computing cost of each and the output of the problem of the total time of computing,

total energy consumed and the efficiency of the algorithm that compared in both cases of distribution with fire fly

and bee algorithm with the greedy choice and the constant random distribution. In a fixed random distribution at

the beginning of the task, each of the tasks is randomly assigned a computing source and this allocation no longer

changes.

A remained point is that according to the wide range of servers and computing resources in cloud systems, the

probability that the number of tasks assigned is greater than the number of computing is very small, which is

usually J>= K.

IV. SIMULATION AND RESULTS

After introducing the generalities of the subject, examining the technical terms and reviewing similar works, we

were able to present a new theory for the distribution of cloud computing resources among the existing tasks. It's

time to look at the results and judge how accurate they are and how effective the technique is.

J. Electrical Systems 20-3 (2024):4419-4427

 4424

We perform the simulation by considering a 12-subtask computing on a cloud computing with 20 hardware

resources. Naturally, a virtual machine is defined simultaneously to perform each task, but how having each virtual

machine from hardware resources is set by the algorithm provided.

The first step is to determine the number of hardware resources with different computing power. The reason for

the random selection is that due to the use of cloud servers from discrete computing resources in a very large area

of the Internet and the disconnection and connection of many of these resources, the existing computing power

cannot always be assured.

The required computing values in each sub-task are also unknown and are randomly assigned to a reasonable

range.

Also, the cost of computing does not only depend on the computing power and also depends on other parameters

such as the distance and the position of the computing, etc., so this issue must be determined randomly.

After determining the tasks and hardware resources available for each cloud processor, a characteristic of fire fly

is selected and a bee is determined for each task and their performance is such that the location of each sub-task

may depend on the selection power of the relevant bee that it may change during program execution that the next

table shows this issue (Table. 2).

Performing the whole task with the current method to divide the computing resources and tasks in this example

took 48 hours, i.e, the 12 parallel automation was changed 48 times.

As we have said, the computing of all tasks by existing cloud resources is once introduced by the method and

once by the allocation of random computing resources. Now let's compare the output parameters between these

two modes (Table 1).

Table 1. System performance parameters in the first simulation.

Sources

management

method

Parameter of

system
Computing time

Values of energy

consumption

Efficiency of

computing
SLR

Proposed method 8 periods 450 Mega Jouls 20 45

random distribution of sources 220 periods 3.6 Giga Jouls 18 220

As it can be seen, the use of the proposed algorithm in this study has reduced the computing time by more than 4

times, the use of the proposed method compared to the random allocation method has reduced the energy

consumption by 8 times, improving all operating system parameters in the use of fire fly algorithm with the greedy

bee selector is very impressive and clear compared to the random allocation of resources. It seems that the

proposed method can have a significant impact on improving cloud computing services.

In order to evaluate the performance of the algorithm in different conditions, we repeat the simulation once again

in the 45 sub-task mode with a maximum load of 4000 computing units and distributed among 65 hardware

resources with a computing capacity of 1000 units and computing cost of 10,000 repeating units. The results are

as follows (Table 2).

Table 2. System performance parameters in the second example.

Sources

management

method

Parameter

of system
Computing time

Values of energy

consumption

Efficiency of

computing
SLR

Proposed method 8 periods 6 Mega Jouls 25 6

random distribution of

sources
1400 periods 18 Giga Jouls 40 1350

J. Electrical Systems 20-3 (2024):4419-4427

 4425

It seems that in the case of random distribution, some computing sources have been working much longer than

other computing sources. This issue has also been effective in the following diagram.

The remained point is the time allowed for computing that due to the speed limit and the number computing, this

time limit cannot be considered, while from the users' point of view, prolonging the time of performing tasks is

undesirable, but at the same time, the user cannot expect that any task that is expected from the cloud system must

be performed in the time set by the user, in any case, the allowable computing time is an independent parameter

and it can be assumed to be any value and it cannot be expected from the computing distribution system to

performed a very large task using small computing in a short time.

In this project, the problem of distribution of computing resources between existing tasks was investigated using

the greedy technique of computing location of each task in general. Here are some suggestions for next studies:

- Applying input tasks in specific modes, it can consider infinitely different modes for the sequence of computing

tasks and the performance of the system in this mode can be examined.

- Considering two parallel Usertask to make the computing busy that are idle before completing all under-tasks.

- Comparison of other techniques other than random distribution of tasks to be compared with this method.

- Considering unforeseen factors such as unavailability of some computing resources.

The current method has many advantages compared to the random distribution method, but to complement the

other topics, researchers can offer other tactics of distribution of computing resources simultaneously with the

method proposed in this study and compare their performance with the implementation of both simulations.

V. Conflict of interest

The authors declare that they have no conflict of interest.

REFERENCES

[1] Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: An algorithm for optimization inspired by

imperialistic competition. In: 2007 IEEE Congress on Evolutionary Computation, pp 4661–4667

[2] Braun TD, Jay Siegel H, Bölöni L, et al (2001) A Comparison of Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed Computing Systems. J Parallel Distrib Comput 61(6):810–837

[3] Chang RS, Chang JS, Lin PS (2009) An ant algorithm for balanced job scheduling in grids. Futur Gener Comput Syst

25(1):20–27

[4] Florence P, Shanthi V (2014) A load balancing model using firefly algorithm in cloud computing. J Comput Sci 10:1156-

1165. https://doi.org/10.3844/jcssp.2014.1156.1165

[5] Gan G, Huang T, Gao S (2010) Genetic simulated annealing algorithm for task scheduling based on cloud computing

environment. In: 2010 International Conference on Intelligent Computing and Integrated Systems, pp 60–63

[6] Ge Y, Wei G (2010) GA-Based Task Scheduler for the Cloud Computing Systems. In: 2010 International Conference

on Web Information Systems and Mining, pp 181–186

[7] Gholizadeh S (2014) Optimal Design Of Truss Structures By Improved Multi-Objective Firefly And Bat Algorithms.

Int J Optim Civil Eng 4(3):415-431

[8] Kalra M, Singh S (2015) A review of metaheuristic scheduling techniques in cloud computing. Egypt Inform J

16(3):275–295

[9] Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput

8(1):687–697

[10] Kaur S, Verma A (2012) An Efficient Approach to Genetic Algorithm for Task Scheduling in Cloud Computing

Environment. Int J Inf Technol Comput Sci 4(10):74–79

[11] Kumar P, Verma A (2012) Scheduling using improved genetic algorithm in cloud computing for independent tasks. In:

Proceedings of the International Conference on Advances in Computing, Communications and Informatics - ICACCI

’12, p 137

[12] Mondal B, Dasgupta K, Dutta P (2012) Load Balancing in Cloud Computing using Stochastic Hill Climbing-A Soft

Computing Approach. Procedia Technol 4:783–789

[13] Moschakis IA, Karatza HD (2015) Multi-criteria scheduling of Bag-of-Tasks applications on heterogeneous interlinked

clouds with simulated annealing. J Syst Softw 101:1–14

[14] Mouradian C, Naboulsi D, Yangui S, et al (2018) A Comprehensive Survey on Fog Computing: State-of-the-Art and

Research Challenges. IEEE Commun Surv Tutorials 20(1):416–464

J. Electrical Systems 20-3 (2024):4419-4427

 4426

[15] Ramachandra G, Iftikhar M, Khan FA (2017) A Comprehensive Survey on Security in Cloud Computing. Procedia

Comput Sci 110:465–472

[16] Shishira SR, Kandasamy A, Chandrasekaran K (2017) Workload scheduling in cloud: A comprehensive survey and

future research directions. In: 2017 7th International Conference on Cloud Computing, Data Science & Engineering -

Confluence, pp 269–275

[17] Vijindra S, Shenai S (2012) Survey on Scheduling Issues in Cloud Computing. Procedia Eng 38:2881–2888

[18] Wang L, Ai, L (2013) Task scheduling policy based on ant colony optimization in cloud computing environment. In:

LISS 2012 - Proceedings of 2nd International Conference on Logistics, Informatics and Service Science, pp 953–957

[19] Wang Y, Wang J, Wang C, Song X (2013) Research on Resource Scheduling of Cloud Based on Improved Particle

Swarm Optimization Algorithm. Springer, Berlin, Heidelberg, pp 118–125

[20] Xu B, Zhao C, Hu E, Hu B (2011) Job scheduling algorithm based on Berger model in cloud environment. Adv Eng

Softw 42(7):419–425

[21] Yang XS (2009) Firefly algorithms for multimodal optimization, In: Stochastic Algorithms:Foundations and

Applications (Eds O. Watanabe and T. Zeugmann), SAGA 2009, Lecture Notes in Computer Science, 5792, Springer-

Verlag, Berlin, pp 169-178

[22] Zhan S, Huo H (2012) Improved PSO-based task scheduling algorithm in cloud computing. J Inf Comput Sci 9:3821–

3829

BIOGRAPHIES OF AUTHORS

Mehdi SalehiBabadi received his M.Sc. degree in software Engineering from

Department of Computer Engineering,Borujerd Branch, Islamic Azad University,

Borujerd, Iran, in 2012. Currently, He is a Ph.D. student in the Department of

Computer Engineering at Borujerd Branch, Islamic Azad University, Borujerd, Iran

since 2015. His Ph.D. advisor is Professor Mohammad Ebrahim Shiri. His research

interests include social network,Cellular automata,IoT,cloud computing,cryptography

and security. He can be contacted at email:msalehib@hotmail.com.

Mohammad Ebrahim Shiri received his Ph.D. degree in Computer Science

from the Department of Computer Science, university of Montreal, Montreal, Canada

in 2000.Currently, he is an Assistant Professor in the Department of Computer Science

at Amirkabir University of Technology in Tehran, Iran. His research interests include

Machine learning,

E-learning, Database, Network security and Cloud Computing. He can be

contactedemail: shiri@aut.ac.ir.

MohammadReza MoazamiGoudarzi received his Ph.D. degree in the

Department of Mathematics, Islamic Azad University, Tehran, Iran in 2011. Currently,

he is an assistant professor in the Department of Mathematics at Borujerd Branch,

Islamic Azad University, Borujerd, Iran. His research areas include operation research

and data envelopment analysis. He can be contacted at email:

mrmoazamig@gmail.com.

https://orcid.org/0000-0002-1830-5545
https://publons.com/researcher/4984521/mehdi-salehi-babadi
https://orcid.org/0000-0002-8312-5276
https://scholar.google.com/citations?user=JWLlYbsAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=22735248800
https://orcid.org/0000-0002-3885-8091
https://scholar.google.com/citations?hl=en&user=udBUOlcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57216982120

J. Electrical Systems 20-3 (2024):4419-4427

 4427

Hamid Haj SeyyedJavadi received the M.Sc. and Ph.D. degrees in Amirkabir

University of Technology, Tehran, Iran in 1996 and 2003 respectively. He has been

working as a fulltime faculty member and Professor in the Department of

Mathematics and Computer Science at Shahed University, Tehran, Iran. His research

interests are IoT, computer algebra, cryptography and security. He can be contacted

at email: h.s.javadi@shahed.ac.ir.

https://orcid.org/0000-0003-0082-036X
https://scholar.google.com/citations?hl=en&user=E0pspwIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56432549300
https://publons.com/researcher/3796145/hamid-haj-seyyed-javadi/

