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Abstract: - The problem of allocating hardware and processing resources in cloud computing is considered in this research. Here, a virtual bee is 

assigned to any task that dynamically seeks the most appropriate computing resources. Each available computing source also has a virtual fire fly 

that its brightness is proportional to the amount of processing unit and the amount of computing residue that examines the computing source. The 

problem of distribution of computing resources among existing tasks will be investigated using the greedy technique of calculating the location of 

each task in general. The current method has many advantages compared to the random distribution method, but to complement the other topics, 

researchers can offer other tactics of distribution of computing resources simultaneously with the method proposed in this study and compare their 

performance with the implementation of both simulations. The simulation results show that the performance criteria of the cloud computing system 

such as time and computing resources have been greatly improved. 
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I. INTRODUCTION 

Today, the applications of information technology have become very much and cover many areas. The IT 

specialist has a variety of tasks, from installing applications to designing complex computer networks and 

databases. With the dramatic increase in the variety of information technology equipment and services, the 

management of services provided in this area has also faced many challenges. management of investigating 

problems and requests, equipment and resource management in relation to technical support services and their 

allocation to users, as well as monitoring, control and scheduling in this field are among the issues that force IT 

managers to provide useful and efficient tools. These tools include information technology management software 

that can help managers, experts, and technicians in this regard (Ramachandra et al. 2017). 

Sharing the "consumable and intangible" computing power between several tenants can improve productivity; 

because of this way, servers no longer remain idle for any reason (which significantly reduces costs while 

increasing the speed of production and development of applications). One side effect of this approach is that 

computers are used to a greater extent because cloud computing customers do not need to calculate and determine 

the maximum for their maximum load (Shishira et al. 2017). 

The purpose of this study is to provide a method for allocating computing resources between input tasks in the 

cloud computer using a combination of bee colonies and fire fly algorithms to provide a new multi-objective meta-

innovative method. Fire Fly Algorithm (Florence and Shanthi 2014) considers each existing option as a fire fly 

that the amount of brightness and attractiveness of it is proportional to the parameters in the problem. 

The artificial bee algorithm was introduced in 2006 by Karabuga to optimize poly-nomial functions (Karaboga 

and Basturk 2008). In the bee algorithm, a food source indicates a possible solution to the problem. In this 

algorithm, the colony includes three types of bees: worker bees, scout bees, and outlooker bees. The task of the 
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worker bee is to search for finding new food sources. The outlooker bee is responsible for evaluating the solutions 

obtained by the worker bees. In each repetition of the algorithm, a number of worker bees that have found the best 

solutions are transformed into scout bees by outlooker bees. For scout bees, the recruitment process takes place, 

meaning that each scout bee is assigned a number of worker bees to search near the food source related to the 

scout bee. This process continues until the optimal answer is found. 

II. A REVIEW OF PREVIOUS RESEARCH 

So far, the division of functions and tasks in cloud computing has been much discussed (Zhan and Huo 2012), in 

Kaur and Verma (2012) a task scheduling algorithm in the cloud computing environment using a genetic algorithm 

designed called SGA. The optimization parameters in this article are the time and cost of performing the tasks. 

Unlike the standard genetic algorithm, the initial population in this algorithm is not randomly selected, and the 

results of the two SCFP and LCFP algorithms are used to determine the initial population. 

In Kumar and Verma (2012), they used an improved genetic algorithm to schedule independent tasks in the cloud 

computing environment, which is a new version of the genetic algorithm for tasks scheduling in the cloud. The 

proposed algorithm is a combination of the Min-Min, Max-Min scheduling methods and the standard genetic 

algorithm (Braun et al. 2001). The obtained results indicate a reduction in completion time compared to the 

standard genetic algorithm. 

In Braun et al. (2001), an optimization algorithm was provided for tasks scheduling in the cloud computing 

environment which consists of two parts. After applying the selection operators, recombination and mutation of 

the genetic algorithm, simulated refrigeration is used (Gan et al. 2010), in which case the new generation will be 

closer to the optimal answer. Also in this article, the service quality parameter consists of five parameters: 

completion time, bandwidth, cost, distance and reliability, which are assigned different weights to each of these 

parameters according to the type of task. 

In Moschakis and Karatza (2015), the balance of load in cloud computing was examined using mathematics of 

Geodesic path finding which suggested a random climbing method for assigning tasks to virtual machines. The 

purpose of this method is to assign tasks to less loaded resources in order to improve response time to tasks. A 

table called the index table is also used to determine the current state of virtual machines. 

In Mondal et al. (2012), they proposed an improved algorithm based on the Max-Min method for scheduling tasks 

in cloud computing called MMST. To solve the two main problems of the traditional Max-Min method (Atashpaz-

Gargari and Lucas 2007), i.e long waiting times for smaller tasks and using more resources when tasks are low, a 

new parameter called maximum waiting time is used. 

In Ge and Wei (2010), tasks scheduling based on the genetic algorithm was invented for the cloud computing 

system, which used the genetic algorithm (Vijindra and Shenai 2012) to minimize the time of completing tasks in 

the cloud computing environment. The matrix that the predicted time to perform each task is on each resource is 

used to calculate the completion time. Also, a parameter called ready [i] is used, which indicates when the 

computing i completes the previous task allocated in the previous scheduling, which will also affect the source 

load in finding the optimal sequence. This means that the work loading of resources will be directly affected at 

the time of completion. 

In Xu et al. (2011), the tasks scheduling algorithm was designed based on the burger model in the cloud 

environment, which for the first time, the problem of scheduling in cloud with a model based on the distribution 

of social wealth called the burger model was investigated. In this method, two parameters of service quality called 

completion time and bandwidth are considered. For all tasks, a set of candidate virtual machines can be selected 

that can perform that task. For each candidate virtual machine, the Euclidean distance is measured by the current 

efficiency from the expected performance (the efficiency characteristics of each task are initially given by the 

user) and then the virtual machine with the lowest Euclidean distance performs that task. 

In Chang et al. (2009) an ant algorithm for symmetrical tasks scheduling in the tour was presented. The goal is to 

allocate the optimal resource to each task according to the characteristics of the resource and the task. Each work 

is considered as an ant and the weight of the resources as a pheromone. In other words, the more the source weight 

is heavier, the pheromone is more. First, the pheromone matrix is formed for the tasks and resources, and then the 
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maximum pheromone is selected at each stage, and the corresponding task with that pheromone is assigned to its 

corresponding source. Of course, there are two types of local and global updates for pheromones. The results 

indicate the optimal amount of completion and balance time. 

In Wang and Ai (2013), the task scheduling was described based on the ant colony optimization in the cloud 

computing environment, which used the ant colony algorithm to optimize the task scheduling in the cloud 

computing environment (Mouradian et al. 2018; Kalra and Singh 2015). This algorithm can bring the makepan 

close to the optimal value in the tasks sent to the cloud environment. The initial value of the pheromone is 

proportional to the ability of the virtual machines, and each ant first randomly assigns a virtual machine to each 

task. 

In Wang et al. (2013) the resource scheduling model is designed based on particle swarm optimization algorithm, 

according to the characteristics of cloud computing resources, time constraints, cost and user needs. 

According to the study, the division of computing tasks and resources, both in cloud systems and in multi-core 

computing, seems to have been analyzed using meta-heuristic algorithms. According to this issue, in the present 

study, the combination of two colonial algorithms of bee and fire fly has been used to solve this problem. 

 

III. RESEARCH THEORY 

Cloud computing is multi-part systems consisting of a network module, operating system image module, cost 

module, verification module and the like, and a cloud computing resource management system manages how to 

distribute the input tasks between these parts. Tasks entered by users are located in the DC's data center. Each 

data center divides the user's work into several "subsets" and makes them available to the computing resources 

(PE). The scheduling module will provide assigning the right task to the right source at the right time, within the 

cloud. In Figure 1, 'DC' represents a data center and 'PE' represents the CPU elements. 

 

Figure 1- Management structure of a cloud computing 
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In this model, a new task is considered as a set of user tasks, the complex calculations of which are performed 

using cloud resources. Suppose UserJob= (U1, U2, ..., UN) is a set of user programs that enter (execute-demand) 

at a given time. Each UserJob (Ui) is shown with a double <ai, di>, which ai indicates the time of entry and di 

indicates the time period of the UserJob. If a task is not completed on time, it is considered an incomplete and 

failed task and must be re-entered into a new line of scheduling. In the scheduling process, the user's tasks are 

assigned to the available data centers (D1, D2, …, DM) where M≤N, the number of data centers may be less than 

the number of tasks required. Each data center (Di) is represented by a double <Ci, mi>. In this dual Ci, the cost 

of running tasks in the data center per unit of time and mi is the number of PEs available to perform user tasks. 

Each data center has a number of processing elements {PE1, PE2, …, PEk to execute user task. Each computing 

element with PES characteristic means computing speed. 

These tasks are located in one of the existing data synthesis called D, which has a certain number of PE computing 

units, and now these tasks must be distributed among these computing units. 

Each U has a required computing volume, P, and an allowable time, T. Each PE also has a PEj computing speed 

and a computing cost. 

If the execution time of Tk in PEj is shown with tk, then the end time can be expressed as follows: this computing 

time is proportional to the difference in the computing volume required by Pk in PEj. 

       Pkremaining = PKinitial − τk ∗ PEj              <= τk =
Pk

PEj
                                   (1) 

This means that if PK> PEj, then even though the Tk that has been used to the Uk task computing is reduced from 

the required computing value, some computing remains. 

Naturally, we want this computing time to be less than the allowable time for the entire Usertask task, TiM. 

Assuming the parallel distribution of Uk tasks among PEj computing, the completion time of the U task is equal 

to the time of completion of the longest tasks. 

Makespan = max{Finish (τk)}                                                                          (2) 

If we consider the unit computing cost per PC to be equal to PCj, then the energy consumed to perform the entire 

U task is equal to: 

E_U = ∑_ (k = 1) ^ n▒ 〖(τ_k * PC_j)〗                                                         (3) 

That is equal to the cost spent for UserJob's task on the D-data synthesis. 

EU = ∑ (τk ∗ PCj)
n
k=1                                                                                          (4) 

Here, a new relationship must be established to determine the productivity of the task distribution algorithm. This 

productivity can be obtained by comparing the amount of computing that D could do with U at the total time with 

the amount of computing that has actually done. That's mean: 

eff =
∑ (τk∗PEjk)n

k=1

Makespan∗∑ PEj
J
j=1

−1

                                                                                   (5) 

This equation is equal to the adverse sum of the time that each computing unit has been dealing with a particular 

task divided by total time of task U multiplied by the total computing power. Therefore, the more the total task 

time is less and the computing power is distributed among the tasks more optimal, the efficiency of the algorithm 

increase. 

The SLR parameter is also obtained from this equation: 

SLR =
max{Finish (τk)} 

min{Finish (τk)} 
                                                                             (6) 

Now suppose that each task U corresponds to the subtasks of T and has a bee with greedy choice. In other words, 

in each m period of the performance of the computing resource allocation algorithm, we have a number of residual 

Pk from different Uk, each of which has a bee with greedy choice. To continue, we must define a selection power 

for each of the available PKs, which are the capacity of the bee allocated to it, and we consider it equal to the 

amount of computing left from the Uk task. In short, each remaining or new task in each period, according to its 
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chosen power, selects the strongest of the available computing resources, and this process will continue until all 

tasks are completed. 

Fire Fly Algorithm is an algorithm based on the population of the members of the set. In the fire fly community, 

communication is done through light production patterns, studies show (Yang 2009) that three laws are governed 

on this communication method: 

A. More light means more gravity, and the lighter member will move toward the brighter member. 

B. The amount of gravity also has an inverse relationship with the distance between the two fire flies. 

C- Members who are not attracted to other members will have a random movement around to be exposed to each 

other's light again. 

To use this algorithm, the amount of light intensity can be considered equal to the value of the target function at 

this point. The attraction between the two members can be modeled by the following formula: If d is the Euclidean 

distance, α is a random coefficient, B0 is the maximum gravity and 2 is the adsorption coefficient, for the gravity 

between the two members: 

𝐵 = 𝐵0𝑒𝛾𝑑2
+ 𝛼                                                                                (7) 

According to the theory presented in the reference (Gholizadeh 2014), the obtained path using this law of 

absorbtion will always be a member of the Pareto front and will be close to the best solution in the acceptable 

range. Each cloud computing can be considered as a fire fly, and outlooker bees representing input tasks at each 

stage of the algorithm repetition must choose a path between all other fire flies (computing) so that all computing 

and the tasks in them are checked and the computing that best fits the amount of computing left over from the 

current task and the previous task in which it is less fit to be selected. In equation 6, the value of absorption 

coefficient and random coefficient are equal to 1, and B0 is equal to the computing power of the cloud computing 

or PEj, and d is the difference between the computing power of the computing, i.e, PEj and the remaining 

computing value of Tk task is the equation (1). If we show the periods of assigning tasks with m, the selection 

power of each bee for each cloud computing is equal to: 

POWk=𝑃𝐸𝑗𝑒(Pkinitial−∑ τk(m)M
m=1 ∗PEj(m))                                           (8) 

That is, the selection power of each bee for its own task is proportional to the initial amount of computing required 

for that task minus the computing power allocated to that task at different times. However, each repetition of the 

resource allocation algorithm that has the highest Uk selection power allocates the highest PEj. 

However, the energy consumption ratio is also rewritten as follows: 

EU = ∑ ∑ (τkm ∗ PCjm)n
k=1

M
m=1                                                        (9) 

And the efficiency of the algorithm is equal to: 

eff =
∑ ∑ (τk∗PEjm)n

k=1
M
m=1

Makespan∗∑ PEj
J
j=1

−1

                                                           (10) 

Input passive include the number of tasks available and the computing volume of each, the number of computing 

and computing power, and the computing cost of each and the output of the problem of the total time of computing, 

total energy consumed and the efficiency of the algorithm that compared in both cases of distribution with fire fly 

and bee algorithm with the greedy choice and the constant random distribution. In a fixed random distribution at 

the beginning of the task, each of the tasks is randomly assigned a computing source and this allocation no longer 

changes. 

A remained point is that according to the wide range of servers and computing resources in cloud systems, the 

probability that the number of tasks assigned is greater than the number of computing is very small, which is 

usually J>= K. 

IV. SIMULATION AND RESULTS 

After introducing the generalities of the subject, examining the technical terms and reviewing similar works, we 

were able to present a new theory for the distribution of cloud computing resources among the existing tasks. It's 

time to look at the results and judge how accurate they are and how effective the technique is. 
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We perform the simulation by considering a 12-subtask computing on a cloud computing with 20 hardware 

resources. Naturally, a virtual machine is defined simultaneously to perform each task, but how having each virtual 

machine from hardware resources is set by the algorithm provided. 

The first step is to determine the number of hardware resources with different computing power. The reason for 

the random selection is that due to the use of cloud servers from discrete computing resources in a very large area 

of the Internet and the disconnection and connection of many of these resources, the existing computing power 

cannot always be assured. 

The required computing values in each sub-task are also unknown and are randomly assigned to a reasonable 

range. 

Also, the cost of computing does not only depend on the computing power and also depends on other parameters 

such as the distance and the position of the computing, etc., so this issue must be determined randomly. 

After determining the tasks and hardware resources available for each cloud processor, a characteristic of fire fly 

is selected and a bee is determined for each task and their performance is such that the location of each sub-task 

may depend on the selection power of the relevant bee that it may change during program execution that the next 

table shows this issue (Table. 2). 

Performing the whole task with the current method to divide the computing resources and tasks in this example 

took 48 hours, i.e, the 12 parallel automation was changed 48 times. 

As we have said, the computing of all tasks by existing cloud resources is once introduced by the method and 

once by the allocation of random computing resources. Now let's compare the output parameters between these 

two modes (Table 1). 

Table 1. System performance parameters in the first simulation. 

Sources 

management 

method 

Parameter of 

system 
Computing time 

Values of energy 

consumption 

Efficiency of 

computing 
SLR 

Proposed method 8 periods 450 Mega Jouls 20 45 

random distribution of sources 220 periods 3.6 Giga Jouls 18 220 

 

As it can be seen, the use of the proposed algorithm in this study has reduced the computing time by more than 4 

times, the use of the proposed method compared to the random allocation method has reduced the energy 

consumption by 8 times, improving all operating system parameters in the use of fire fly algorithm with the greedy 

bee selector is very impressive and clear compared to the random allocation of resources. It seems that the 

proposed method can have a significant impact on improving cloud computing services. 

In order to evaluate the performance of the algorithm in different conditions, we repeat the simulation once again 

in the 45 sub-task mode with a maximum load of 4000 computing units and distributed among 65 hardware 

resources with a computing capacity of 1000 units and computing cost of 10,000 repeating units. The results are 

as follows (Table 2). 

Table 2. System performance parameters in the second example. 

Sources 

management 

method 

Parameter 

of system 
Computing time 

Values of energy 

consumption 

Efficiency of 

computing 
SLR 

Proposed method 8 periods 6 Mega Jouls 25 6 

random distribution of 

sources 
1400 periods 18 Giga Jouls 40 1350 
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It seems that in the case of random distribution, some computing sources have been working much longer than 

other computing sources. This issue has also been effective in the following diagram. 

The remained point is the time allowed for computing that due to the speed limit and the number computing, this 

time limit cannot be considered, while from the users' point of view, prolonging the time of performing tasks is 

undesirable, but at the same time, the user cannot expect that any task that is expected from the cloud system must 

be performed in the time set by the user, in any case, the allowable computing time is an independent parameter 

and it can be assumed to be any value and it cannot be expected from the computing distribution system to 

performed a very large task using small computing in a short time. 

In this project, the problem of distribution of computing resources between existing tasks was investigated using 

the greedy technique of computing location of each task in general. Here are some suggestions for next studies: 

- Applying input tasks in specific modes, it can consider infinitely different modes for the sequence of computing 

tasks and the performance of the system in this mode can be examined. 

- Considering two parallel Usertask to make the computing busy that are idle before completing all under-tasks. 

- Comparison of other techniques other than random distribution of tasks to be compared with this method. 

- Considering unforeseen factors such as unavailability of some computing resources. 

The current method has many advantages compared to the random distribution method, but to complement the 

other topics, researchers can offer other tactics of distribution of computing resources simultaneously with the 

method proposed in this study and compare their performance with the implementation of both simulations. 
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