
J. Electrical Systems 20-10s (2024):3212-3224

3212

1 Srujana Inturi *

2 M. Swamy Das

Review of Automatic Computer

Program Evaluation and

Assessment Tools and Methods

Abstract: - Understanding the computer language is more important in today’s world. All Computer Science students must have practical

and proficient programming skills, which can be obtained through intensive exercise practices. Due to the regular rise in the number in a

class, the evaluation of programming exercises imposes a heavy toll on the teacher or instructor, mainly if it must be performed manually.

Manual grading for programming assignments might be time-consuming and error-inclined. Already available tools generate remarks with

failing test instances. This research includes a thorough literature on the evolution of the recent (2004–2022) development of automatic

programming assignment grading systems. From both a pedagogical and a technical viewpoint, the primary aspects supported by the tools

and their diverse techniques were examined. In conclusion, several new systems are being built while also acknowledging the underlying

causes of this situation. Building open-source systems and collaborating on their expansion is recommended as one solution. This paper

concludes with suggestions for future research paths and possible enhancements to automatic code evaluation.

Keywords: Computer Science, Automated programming assessment, Grading tools, Education, Learning programming.

I. INTRODUCTION

Education in Computer Science is among the most popular academic fields worldwide. If you're passionate about

computer hardware and software, you probably already know that earning a Bachelor's or Master's degree in CSE/IT

can help you land a lucrative job. Most industries in the current digital era rely on data and software solutions.

Everything is impacted by computer science and IT, including Scientific research, the advancement of healthcare,

transportation, banking, communications, you name it. Now, even everyday items like refrigerators, microwaves,

and door locks are wired to our Wi-Fi networks and personal assistants.

With a degree in Computer Science, you can gain the knowledge and abilities necessary to solve problems and

create the next wave of devices or software that will enhance the lives of millions of people. Even people who do

not work in the information and communication technologies field or do not aspire to work in that field should have

some programming knowledge. Teaching a programming subject is more complicated than any theory subject

because it involves a distinct procedure to assess and evaluate student-written code. In any educational system,

assessment and evaluation is an essential component as it helps assess and evaluate the student's understanding, get

feedback, and finally grade a student. The current manual system is time-consuming and tedious to evaluate the

student's written code. However, teachers are free to assign grades however they see proper. On the other hand,

there are exams when the questions and the answers could be slightly unclear and open-ended while still being

accurate.

To reduce the teacher's time and maintain uniformity in the assessment and evaluation, several automatic tools have

been built for the last few decades [1]. However, the pandemic has given rise to automatic grading tools at

universities that offer traditional or distance learning [2,3]. Technological advances and communication systems

have made education more accessible through Information and Communication Systems (ICT). The utilization of

automatic grading tools has accelerated during the COVID-19 pandemic.

The benefits of Automatic Computer Program Evaluation are;

• It saves time and effort for the graders, cuts down on the number of issues presented to a student, and

eliminates the need to restrict the number of applicants being evaluated based on the number of available graders.

1 Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Gandipet-75, Hyderabad, India.
isrujana_cse@cbit.ac.in

2 Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Gandipet-75, Hyderabad, India.
msdas_cse@cbit.ac.in

* Corresponding Author Email: isrujana_cse@cbit.ac.in

Copyright © JES 2024 on-line : journal.esrgroups.org

J. Electrical Systems 20-10s (2024):3212-3224

3213

• It can deliver feedback in real-time. Students would not need to wait for faculty members to obtain

information about the quality of their program to better themselves and their chances of being accepted.

• It can deliver feedback in real-time. Students would not need to wait for faculty members to obtain

information about the quality of their program to better themselves and their chances of being accepted.

The remaining sections of this work are organized into the six major categories discovered in the reviewed review

and survey publications. Sections 3-4 discuss the six issues and provide details on the findings from more

specialized research publications that address them. The review offered in this work includes answers to the three

research topics raised, which are then covered in Section 5. It also offers guidance for further research and

advancement in this area. The final section summarizes the article and future directions in the related area.

II. RELATED WORK

From the literature review, a lot of works and automatic tools that can be used in education are seen. This paper

covers various topics related to methods and tools for automatically evaluating codes published between 2004 and

2022. The analysis of these studies allowed us to identify six critical issues with the growth of automated code

assessment systems

Table 1. General Classification of Methods

Assessment Type
Manual Assessment

Automatic Assessment Semi-automatic Assessment

Method

Static Method

Dynamic Method

Hybrid Method

Artificial Intelligence

Representation

Text-Based

Token Based

Abstract Syntax Tree-Based Program Dependency Graph

2.1. Coding / Program aspects

To minimize instructors' workload while assisting students to learn, automated assessment methods were first

developed in 1960 [4]. With automatic tools, it is possible to spot undesirable code errors by automatically

evaluating them. The review and research studies demonstrate that interest is focused on three functional

components like different types of errors: syntax, runtime, and logical errors [5,6&7]. Non-functional components

are another focus of various assessments of code accuracy [8], style-related issues [5,7,9], metrics-based code

quality [5,7,10 &11], efficiency [5,11], and GUI [9]. Plagiarism is another issue that can be resolved through

similarity analysis [7]. Most reviews concentrate on programming rather than other computer science-related

abilities. However, several of them make mention of methods for evaluating students' testing abilities [5,9,11].

When it comes to the techniques and methods utilized for automated code assessment [5,10-14], they are classified

as static and dynamic. On the techniques employed in software engineering, particularly in the disciplines of

software [6,20] and software quality [6], more sophisticated techniques are used. Good test data are crucial when

working with test-based evaluations, especially if created automatically [16]. The depth of the analysis is an

essential piece of information. For instance, they may be completed on a tree, graph, or bytecode as an intermediate

form [17]. Finally, another set of approaches relies on their being a single, correct solution that students may use as

a reference for their work [6].

2.2. Feedback

An essential part of autonomous assessment technologies in education is the capacity to retrieve a measure that

evaluates assigned programs to respond to something like the teaching objectives [5]. To explain this metric to both

teachers and students, feedback received from the evaluations is necessary. Quality feedback, particularly

constructive input, is essential for technology use in educational settings. More precisely, effective feedback should

outline for students how to address any outstanding issues and move forward with their work [18]. The level of

feedback given to students should be improved due to developed mechanisms. Automating feedback generation

can improve learning because feedback is a constant motivator [13].

J. Electrical Systems 20-10s (2024):3212-3224

3214

2.3. Supported Tools

The tools created to facilitate automatic code assessment have been the subject of several assessments [13,14,19],

as shown in Figure 4. They primarily draw attention to the vast array of unique qualities that could exist on the one

hand and the difficulties in developing them on the other. Assistance in evaluating, grading, and managing

programming assignments is a commonly cited capability. Fundamental analyses with short results depend on

graders were the emphasis of early systems; tool-oriented systems designed on test engines and other tools like style

checkers came next; and ultimately, web-oriented tools rounded out the range [5,7]. These three prior generations

of tools are reviewed. Such platforms must be developed while considering various tangible factors, including

architecture selections, programming languages, applied technologies, etc [19]. It is also crucial to choose the type

of tool, which is typically a library, standalone program, or plugin for learning management systems [15,17,21].

2.4. Integration with Learning System

Due to the significant increase in students enrolling in programming courses in traditional and online learning

environments, the need for automatic evaluation tools to assist teachers is mentioned in every review [10,13,18].

Regarding their application in education, these systems are learning engines that improve students' motivation,

development, self-evaluation, and computer science-oriented skills. These platforms are intended to evaluate the

achievement of teachers' learning objectives [20]. They may focus on teachers who must assign grades or students

who need to enhance their abilities [13,21]. Formative or summative testing can be performed using automated

code assessment tools in a fully or semi-automated environment or even manually [6,13,20,21]. Formative

assessment offers the chance to provide learners with challenging activities to train and transition to continuous

evaluation for a course [18,20]. The resubmission policy is under consideration in both cases, with proposals for

limitless submissions for formative reviews. They are compatible with various educational methodologies,

including competency-based, MOOCs, and distance learning [9,18].

2.5. Efficiency

Finally, more study and research need to be done, especially on the level of the assessments that have been produced.

However, all the reviews agreed that the assessment and accompanying feedback needed to help the learning

process [5].

III. METHODS OR APPROACHES FOR ASSESSMENT

As noted earlier, a systematic literature analysis was carried out and found thirty different assessment tools for

grading programs. The tools are listed in Table II. Further, three tool classification methods are suggested, as

indicated in Table 1.

Figure 1. The year-by-year breakdown of the number of tools that employ a given approach.

J. Electrical Systems 20-10s (2024):3212-3224

3215

3.1. Assessment Type

There are three assessment techniques based on the assessment process conducted;

1. Manual Assessment: The instructor manually assesses the programming assignment with the tool's aid [5].

When the student code is submitted, it is compiled and executed by the tool. This is done in the local student's PC

under the instructor's guidance. A log with all the details like compilation, source program, execution, and

documentation is provided to a section of the professor's server after the program has completed its execution.

Table 2: Advantages and disadvantages of different assessment methods

Method Advantages Disadvantages

Manual Assessment

Programs written by students are not

required to stick to a precise input-output

format. There is complete assistance for

the instructor's careful inspection.

There needs to be a systematic

approach to the assessment.

The instructor's time and effort

are not significantly cut down.

Automatic Assessment

There is a systematic approach where

students can be assessed based on

syntax, semantics and program quality.

The instructor's time and effort can be

strongly reduced.

Students must follow the input

and output format. There is no

assistance for the instructor's

inspection.

Semi-Automatic Assessment

The assessment is partially systematic.

Instructor involvement is partially

supported.

The instructor's time and effort

can be partially reduced.

2. Automatic Assessment: The tool evaluates a programming assignment automatically. However, before

the assessment procedure, the instructor must specify the criteria for evaluating the computer code [5,21]. Therefore,

the evaluation criteria should be established before the evaluation procedure. For example, when utilizing eGrader

[23], the instructor must give grading rubrics explaining how the assessment is done. EGrader evaluates each

student's program using the grading schema's evaluation criteria.

3. Semi-Automatic Assessment: This tool administers the evaluations automatically, but the instructor must

manually review the source code [5]. One key task of the tools listed by [24] is to automatically verify whether

students' programmes provide the correct output given a set of input data. When one of the other programmes

provides a different result than expected, the tool prompts the teacher to physically compare the discrepancies

between the programme outcome and the intended output.

3.2. Methods

Automated Program evaluation systems are categorized according to the program evaluation approach. The

distinction is made between static and dynamic analysis.

a. Static Analysis: Analyzing a program statically involves reviewing its source code without executing it.

This technique examines the program's structure and content to acquire the required data, as shown in Figure 2

• Programming style analysis: This approach measures a program's quality by considering its readability.

The requirements for a highly legible program are to understand variable names, the usage of constants, appropriate

line spacing, etc., [25].

• Semantic error detection: A semantic mistake is found when a statement is syntactically valid yet results

in an error when the program is executed.

J. Electrical Systems 20-10s (2024):3212-3224

3216

Figure 2. Static Analysis Method

Beginner programmers commonly make semantic errors like division by zero and never-ending loops. Some

semantic mistakes might cause significant issues, such as system failure. Because of this, even some systems that

are intended to evaluate programs dynamically use this strategy to prevent mistakes of this kind [26]

• Software metric analysis: The complexity and dependability of source code can be determined by

assessing specific program features. Metrics comprise the dimensions of size, code quality and time complexity

that may be assessed over the source program, as well as the frequency of comments, the average size of statements

given by several operands and operators, the statement number between the beginning and end etc., [27,28,29].

• Keyword Analysis: The challenge with that approach is locating the evaluator-defined important keywords

that must be located in the evaluated assignment’s source code [30,31].

• Structural and non-structural similarity analysis: It involves comparing the assessed program to a

collection of program solutions offered by the teacher to find similarities as part of the static analysis technique.

The grade for the student's response will be the highest score from the comparison [27,31-34].

b. Dynamic Analysis: Dynamic methods collect techniques that require the execution of code. In most cases,

they are done by analyzing the output generated by code execution and comparing the findings to those of a

reference solution, as shown in Figure 3.

Figure 3. Dynamic Analysis Method

Different approaches to evaluating a program are distinguished within dynamic analysis:

• The black-boxing method views the software as one entity. Consequently, the code output is examined,

and the only possible verdict is correct or incorrect [27,35,36].

J. Electrical Systems 20-10s (2024):3212-3224

3217

• In grey-boxing, each programming function is evaluated independently. Therefore, the grade of the

executed code is the aggregation of the partial grades of each module based on weighted percentages. It is helpful

because a source program may be marked even with an invalid function [37-39].

c. Hybrid Approach: Combining static and dynamic analysis, hybrid approaches enable a code evaluation

for a particular aspect. Typically, similar techniques are employed when assessing programs whose output is code.

Hull et al. [40] showed the execution of provided algorithms produces SVG charts. They are then examined using

a static technique to extract the data necessary to assess the contribution. In a study by Sztipanovits et al. [41], the

authors suggest evaluating web apps by ensuring they have the desired component. Static analyses are used to

investigate the HTML code of created web pages. Combining dynamic and static analysis, hybrid techniques enable

grading code submissions with syntax faults or provide no output [34]. This is particularly relevant for courses

designed for beginning programmers.

d. Artificial Intelligence: Moreover, artificial intelligence processes and analyses a computer program's many

aspects. In a few studies [42,43]. Naive Bayes machine learning algorithms are used to evaluate source programs

based on a grammar of features collecting principal aspects that human instructors consider when evaluating a piece

of code. In a study by Simanjuntak [26], deep learning is also used to check if ER diagrams are close to the

anticipated answer. Using a convolutional neural network architecture, Gradjanin et al. [44] evaluated the resilience

of a web or html page by finding similar screenshots of the website before and after adding new information. The

multi-layer neural network's output is combined with other measures to give a perfect score. Clustering techniques

automate style grading [45] by finding frequent errors. The author hypothesizes there may be a finite number of

solutions to a given question.

3.3. Representation

Several studies have been performed on automatic grading systems. Although there are numerous automatic grading

procedures, their operations are identical. The distinction between them is their data representation.

• Text-based: This is the most accessible and efficient of all the other techniques. In this technique, programs

are viewed as a string. Comparing two strings typically involves calculating the appropriate edit distance [46].

Before comparing code fragments, the raw source program is used directly or with minimum processing or

standardization implemented.

• Token-based: This method uses a lexical analyzer to transform source code into tokens. Typically, token-

based methods are more resistant to program modifications such as formatting and spacing. Substring or suffix tree

matching algorithms are used to compare sequences of tokens.

• Abstract Syntax Tree Based: This method uses parsers to build a syntax representation of the source

program in the structure of an Abstract Syntax Tree (AST) or parse tree. Then, sub-tree matching methods are

utilized to determine the degree of similarity between programs.

• Program Dependency Graph: In this method, the source program is converted into an intermediate

representation Program Dependency Graph (PDG), representing the control and data similarities between programs.

Using isomorphic sub-graph matching methods, comparable functional programs are compared. This method is

ideal for locating the reordered, newly added or removed statements, complicated statements, and noncontagious

programs.

IV. TOOLS REVIEW

The primary motivation for creating or using these tools is to help students, especially those just starting in the field

of computer science, sharpen their coding skills. The abilities will be enhanced by completing several programming

activities. Students may work on the challenges as soon as they get helpful comments. It would help them see their

errors and enhance their abilities. In addition, students get a tangible advantage in the form of a grade that is not

influenced by the personal preferences of the faculty [47].

J. Electrical Systems 20-10s (2024):3212-3224

3218

Figure 4. Number of tools by publication year

Manual grading is impractical due to the number of students and their programming assignments in a regular

engineering course. Another objective is maximizing their available time to keep the academic staff manageable.

The time saved can be utilized for other productive tasks, such as course planning and development, or to provide

more individualized attention to students.

4.1. Analysed Key Features

Four key characteristics of automated code evaluation systems are noted in [33]: Programming languages supported

and used, deployment architecture, submission receipt and storage, Metrics for evaluating performance, support for

automatic or semi-automatic assessment, and feedback provision.

• Support for Programming languages - It is essential when a quick implementation is sought. It could decide

if a tool is practical or not.

• Architecture of deployment- It indicates the condition of the hardware with which the tool interacts.

Determining if the current environment supports the introduction of technology is beneficial. It will identify the

necessary resources and help calculate the implementation cost in the worst-case situation.

• Work mode- Determines whether the tool can operate alone, for precise implementations, or as a plugin

when used with another system, such as an LMS.

• Grading Metric- It demonstrates how the tool can determine a grade. It evaluates which metrics are

considered during the grading procedure, including how the grade is calculated.

Table 3 summarises the tools examined in this paper's research. It includes the tool's name, references, year,

methodologies and techniques, available programming languages, and assessment type for each.

Table 3.: Several characteristics of automated code assessment tools

Tool/Reference Year
Methods and

approach
Assessment Type

Programming

Languages

LUD

Tool by Thamviset [48]

Tools by Messer [49]

Tool by Gaona [50]

Apollo [51]

CodeOcean [52]

CAC++ [53]

CodeMaster [54]

GitGrade [55]

Gradeer [56]

SPT [57]

Artemis [58]

Style++ [33]

2022

2022

2022

2022

2021

2021

2020

2020

2020 2021

2020

2018

2018

Static Analysis

Static Method

Artificial

Intelligence

Artificial

Intelligence

Static Method

Dynamic Method

Static Method

Static Method

Hybrid Approach

Hybrid Approach

Hybrid Approach

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Semi-Automatic

Automatic

Manual Assessment

Semi-Automatic

Multi-language

C++

Multi-language

Multi-language

Processing

Agnostic

C, C++

App Inventor and

Snap Projects

Agnostic

Java

JAVA

J. Electrical Systems 20-10s (2024):3212-3224

3219

GradeIT [59]

AutoStyle [60]

STAGE [61]

FrenchPress [32]

Pythia [67]

ACCE [45]

SCAGrader [29]

Pitchfork [18]

E-Lab [68]

AutoGrader [35]

eGrader [23]

AutoLEP [34]

AWAT [41]

Web-CAT [2]

GUIGrader [38]

WebBot [62]

BOSS [63]

WBGP [64]

GAME [65]

Quiver

Coursemaker

PSGE

Scheme-Robo

2017

2015

2008

2015

2015 2014

2014

2013

2012

2007

2011

2011

2008

2006

2006

2006

2005

2005

2004

2004

2001

2001

2001

Dynamic Method

Static Method

Static Method

Static Method

Static Method

Static Method

Static Method

Artificial

Intelligence

Hybrid Approach

Dynamic Method

Dynamic Method

Dynamic Method

Hybrid Approach

Hybrid Approach

Hybrid Approach

Hybrid Approach

Dynamic Method

Dynamic Method

Dynamic Method

Dynamic Method

Static Method

Dynamic Method

Hybrid Approach

Dynamic Method

Hybrid Approach

Automatic

Semi-Automatic

Automatic

Semi-Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Automatic

Semi-Automatic

Automatic

Automatic

Semi-Automatic

Semi-Automatic

Automatic

Automatic

Automatic

Semi-Automatic

Semi-Automatic

All programming

Languages

C++

C

C++

JAVA

JAVA

Agnostic

Python

C, JAVA and PHP

Agnostic

C, C++ and JAVA

JAVA

JAVA

Agnostic

Agnostic

Agnostic

JAVA

Multi-language

Mainly JAVA

Agnostic

JAVA, C and C++

C++, JAVA and

MIPS

JAVA and C++

Agnostic

Scheme

Most created tools are web-based platforms that analyze given code, including syntax checking, plagiarism

detection, test case execution, and code quality evaluation. CodeMaster evaluates block-based programming for

mobile applications by calculating their computational understanding of dimension-based complexity [66]. The j-

assess is a client-side web application that evaluates JavaScript scripts via various industry-standard techniques

[30]. Specific to Java programs, ProgEdu focuses on violations of code style [33]. TCL/TK, a web-based

application, is used by WBGP, allowing structured comments to be added to uploaded source code [64]. An

application and a web-based client are found in the BOSS system. It allows for both summative and formative

evaluations since students can take exams before the last submission, and instructors can create their exams for final

grading [63]. The E-Lab software program builds test cases automatically from a teacher-provided reference

solution and then runs them against student-submitted code.

Several existing technologies consist of a client application. The autoStyle auto-grading system is a graphical user

interface (GUI) tool that instructors and students may use to evaluate program style. It gives three types of hints

approach, syntax, and program skeletons [60]. The tool Scheme-robot is much more straightforward, as students

submit their program by sending a message to a specified email address. The recipient receives an output with a

clone of their sub-mission and a list of points with comments [31]. The GAME application is a graphical user

interface (GUI) program that marks Java, C, and C++ projects according to an instructor-defined marking schema

and technique [65]. Apollo is a tool for detecting whether or not students have mastered learning objectives by

J. Electrical Systems 20-10s (2024):3212-3224

3220

extracting features from submitted codes for assignments that have been separately constructed for each learning

objective. Metrics computed with PMD [51] provide the evidence. AutoGrader executes input codes symbolically

and compares them to standard output. This method reduces the need to produce or design test cases while keeping

the capacity to give students counterexamples when their submissions are erroneous. Web CAT is recognized for

measuring how well students have evaluated a code and is utilized in various courses developed to motivate students

to submit assessments [2]. The Gradeer tool is a command-line interface (CLI) application that performs a function

in reverse, in the sense that it is designed to assist in human evaluation [56].

V. FUTURE DIRECTIONS

The trends and advancements in the automatic evaluation of programming assignments have yet to be regularly

collected and discussed for the last five years. Therefore, the following research concerns are discussed in this

section:

• Programming Languages: Most automatic grading systems are designed exclusively for Agnostic or Java.

This is consistent with Java's standing as an extensively used programming language for beginners. C, C++, Java,

and Python are popular languages the system supports. Support for multiple languages (Agnostic) was utilized

extensively on most competitive platforms. Some of the tools are language-independent. Once the system has been

created to create and execute solutions in that language, any language run on the same environment can be

automatically evaluated. This is especially true if the evaluation is based on comparing outputs. There is currently

a high demand for Language-agnostic programming or scripting (also known as language-independent, language-

neutral, or cross-language), which is a software development paradigm in which a specific language is chosen based

on its suitability for a specific task (considering all factors such as ecosystem, performance, developer skill-sets,

and so on), rather than solely on the development team's skill-set. It is observed that the latest systems support all

programming languages.

• Learning Management Systems (LMS): Developing existing learning management systems (LMS) like

Moodle to better accommodate the unique requirements of Computer Science education is attracting significant

interest. One justification for LMS integration with automatic grading systems is to use all course management

elements. A learning management system (LMS) that contains many courses (other than programming) has more

users, which makes it an attractive target for hackers. When conducted in such an atmosphere, the execution of

malicious programs is always a significant risk. Therefore, safeguarding automatic grading systems is essential.

LMSS must be interconnected. Although there are a more significant number of positives than negatives when it

comes to difficulties, this strategy, and the fact that there is a growing demand for it, brings automatically graded

exercises into learning management systems.

• The following AA LMS extensions have been identified: CTPracTo add VHDL and Matlab questions to

LMS Moodle, Automatic Grader [49] to grade Java assignments for students alterations in Sakai and Auto Grader

to allow JAVA assign- Cascade6, Webwork and JAG [2,13] automated evaluation of JAVA questions in

WeBWorK7, SISA- EMU) will assign Assembler programming tasks. Through Moodle, then VERKKOKE [59]

to deliver socket coding and routing within any LMS

• GradingMetrics: The absence of a standard grading scheme is still a severe issue. First, every institution and

even Every instructor has criteria for grading assignments. A computer program cannot determine a comment's

originality or good judgment. Despite these facts and considering the significance of creating a collection of metrics,

a definition of metrics is shown in Figure 2. Every metric could have a corresponding evaluation tool. A language

interpreter for functionality, a language compiler for execution, and a test case-based program (JUnit in Java, for

example) are used for compilation. For specific requirements, a specific program for style, design, complexity, and

an external program (Checkstyle for style in Java, for example).

• Interoperability: Institutions typically design a platform to suit their particular needs related to the

programming languages taught to students or course-specific requirements. A probable additional cause is the

absence of standard models for grading assignments and the vast range of available assignments [62]. Nonetheless,

several existing platforms rely significantly on industrial tools to do the studies [41], which may be a part of the

answer toward greater collaboration and cooperation. In addition, three generations of automatic program grading

systems are discussed in the review published in [5]. A potential hypothetical fourth one may be tools delivered in

cloud services, application programming interfaces (APIs), or a Learning Tools Interoperability (LTI) interface.

This would simplify including them in learning management systems [64].

J. Electrical Systems 20-10s (2024):3212-3224

3221

Table 4. Grading Metrics

 Unsatisfactory Satisfactory Good Excellent Weight Score

Specific

Requirements
 x 30% 70%

Coding Standards x 30% 85%

Documentation x 10% 100%

Execution x 20% 85%

Efficiency x 10% 0%

 0% 70% 85% 100% Grade: 74%

VI. CONCLUSION

This paper examined the most recent advancements in automatic evaluation tools for programming assignments.

This was accomplished by methodically gathering relevant publications published between 2001 and 2022 to

determine what has transpired in the field since the last literature review on the subject was undertaken. Based on

the data gathered, the recommendations can be given, indicating that new automatic assessment systems could be

deployed more broadly. First, authors describing novel systems offer additional examples and a more

comprehensive explanation of the system's operation. Additionally, more attention should be paid to the security of

the evaluation systems. Support using a suitable sandbox on an application based on existing security solutions. In

the end, security must be supplied to facilitate system installation without sacrificing security. However,

constructing a sandbox may be challenging. The first configuration of the security system should be independent

of the instructors' skills. The lack of open-source systems may be one of the factors contributing to the continued

Innovation of new tools that are likely to stay internal. It can be understood that people only want to upload complete

work, making it more difficult for others to share creative ideas. As a result, existing technologies would be more

readily adopted by others if they were open-sourced on a well-known online version control repository such as

Google Code, SourceForge or GitHub. The developers of automatic evaluation systems need to make their software

accessible to the public and release it under an open-source licence so that others may find it simpler to contribute

to the project. This will help promote the use of existing systems and prevent the needless reinvention of the wheel.

REFERENCES

[1] Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of programming: A review. Journal on

Educational Resources in Computing (JERIC), 5(3), 4-es.

[2] Edwards, S. H., & Perez-Quinones, M. A. (2008, June). Web-CAT: automatically grading programming assignments. In

Proceedings of the 13th annual Conference on Innovation and Technology in Computer Science Education (pp. 328-328).

[3] Matthíasdóttir, Á., & Arnalds, H. (2016, June). E-assessment: students' point of view. In Proceedings of the 17th

International Conference on Computer Systems and Technologies 2016 (pp. 369-374).

[4] Hollingsworth, J. (1960). Automatic graders for programming classes. Communications of the ACM, 3(10), 528-529.

[5] Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming assignments. Computer science

education, 15(2), 83-102.

[6] Aldriye, H., Alkhalaf, A., & Alkhalaf, M. (2019). Automated grading systems for programming assignments: A literature

review. International Journal of Advanced Computer Science and Applications, 10(3).

[7] Rahman, K. A., & Nordin, M. J. (2007). A review of the static analysis approach in the automated programming

assessment systems.

[8] Caiza, J. C., & Del Alamo, J. M. (2013). Programming assignments automatic grading: a review of tools and

implementations. INTED2013 Proceedings, 5691-5700.

[9] Staubitz, T., Klement, H., Renz, J., Teusner, R., & Meinel, C. (2015, December). Towards practical programming

exercises and automated assessment in Massive Open Online Courses. In 2015 IEEE International Conference on

Teaching, Assessment, and Learning for Engineering (TALE) (pp. 23-30). IEEE.

[10] Lajis, A., Baharudin, S. A., Ab Kadir, D., Ralim, N. M., Nasir, H. M., & Aziz, N. A. (2018). A review of techniques in

automatic programming assessment for practical skill test. Journal of Telecommunication, Electronic and Computer

Engineering (JTEC), 10(2-5), 109-113.

[11] Liang, Y., Liu, Q., Xu, J., & Wang, D. (2009, December). The recent development of automated programming assessment.

In 2009 International Conference on Computational Intelligence and Software Engineering (pp. 1-5). IEEE.

J. Electrical Systems 20-10s (2024):3212-3224

3222

[12] Arifi, S. M., Abdellah, I. N., Zahi, A., & Benabbou, R. (2015, November). Automatic program assessment using static

and dynamic analysis. In 2015 Third World Conference on Complex Systems (WCCS) (pp. 1-6). IEEE.

[13] Gupta, S., & Gupta, A. (2017). E-Assessment Tools for Programming Languages: A Review. ICITKM, 65-70.

[14] Ismail, M. H., & Lakulu, M. M. (2021). A Critical Review on Recent Proposed Automated Programming Assessment

Tool. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(3), 884-894.

[15] Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010, October). Review of recent systems for automatic

assessment of programming assignments. In Proceedings of the 10th Koli calling an international conference on computing

education research (pp. 86-93).

[16] Romli, R., Sulaiman, S., & Zamli, K. Z. (2010, June). Automatic programming assessment and test data generation: a

review on its approaches. In 2010 International Symposium on Information Technology (Vol. 3, pp. 1186-1192). IEEE.

[17] Striewe, M., & Goedicke, M. (2014, June). A review of static analysis approaches for programming exercises. In

International Computer Assisted Assessment Conference (pp. 100-113). Cham: Springer International Publishing.

[18] Pieterse, V. (2013). Automated Assessment of Programming Assignments. CSERC, 13, 4-5.

[19] Caiza, J. C., & Del Alamo, J. M. (2013). Programming assignments automatic grading: a review of tools and

implementations. INTED2013 Proceedings, 5691-5700.

[20] Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010, October). Review of recent systems for automatic

assessment of programming assignments. In Proceedings of the 10th Koli calling an international conference on computing

education research (pp. 86-93).

[21] Souza, D. M., Felizardo, K. R., & Barbosa, E. F. (2016, April). A systematic literature review of assessment tools for

programming assignments. In 2016 IEEE 29th International Conference on Software Engineering Education and Training

(CSEET) (pp. 147-156). IEEE.

[22] Striewe, M., & Goedicke, M. (2014, June). A review of static analysis approaches for programming exercises. In

International Computer Assisted Assessment Conference (pp. 100-113). Cham: Springer International Publishing.

[23] AlShamsi, F., & Elnagar, A. (2011, April). An automated assessment and reporting tool for introductory Java programs.

In 2011 International Conference on Innovations in Information Technology (pp. 324-329). IEEE.

[24] Jackson, D. (2000). A semi-automated approach to online assessment. ACM SIGCSE Bulletin, 32(3), 164-167.

[25] Hegarty-Kelly, E., & Mooney, D. A. (2021, January). Analysis of an automatic grading system within first-year computer

science programming modules. In Proceedings of 5th Conference on Computing Education Practice (pp. 17-20).

[26] Simanjuntak, H. (2015, October). Proposed framework for automatic grading system of ER diagram. In 2015 7th

International Conference on Information Technology and Electrical Engineering (ICITEE) (pp. 141-146). IEEE.

[27] Karavirta, V., & Ihantola, P. (2010). Automatic assessment of javascript exercises. Proceedings of the 1st Educators’ Day

on Web Engineering Curricula, Vienna, Austria, 5-9.

[28] Pape, S., Flake, J., Beckmann, A., & Jürjens, J. (2016, May). STAGE: A software tool for automatic grading of testing

exercises: Case study paper. In Proceedings of the 38th International Conference on Software Engineering Companion

(pp. 491-500).

[29] Yulianto, S. V., & Liem, I. (2014, November). Automatic grader for programming assignments using source code

analyzer. In 2014 International Conference on Data and Software Engineering (ICODSE) (pp. 1-4). IEEE.

[30] Lingling, M., Xiaojie, Q., Zhihong, Z., Gang, Z., & Ying, X. (2008, December). An assessment tool for assembly language

programming. In 2008 International Conference on Computer Science and Software Engineering (Vol. 5, pp. 882-884).

IEEE.

[31] Saikkonen, R., Malmi, L., & Korhonen, A. (2001, June). Fully automatic assessment of programming exercises. In

Proceedings of the 6th annual Conference on Innovation and Technology in Computer Science Education (pp. 133-136).

[32] Blau, H., & Moss, J. E. B. (2015, June). French Press gives students automated feedback on Java program flaws. In

Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Science Education (pp. 15-20).

[33] Chen, H. M., Chen, W. H., & Lee, C. C. (2018). An Automated Assessment System for Analysis of Coding Convention

Violations in Java Programming Assignments. J. Inf. Sci. Eng., 34(5), 1203-1221.

[34] Wang, T., Su, X., Ma, P., Wang, Y., & Wang, K. (2011). Ability-training-oriented automated assessment in an

introductory programming course. Computers & Education, 56(1), 220-226.

[35] Helmick, M. T. (2007, June). Interface-based programming assignments and automatic grading of Java programs. In

Proceedings of the 12th annual SIGCSE conference on Innovation and Technology in Computer Science education (pp.

63-67).

[36] Insa, D., & Silva, J. (2018). Automatic assessment of Java code. Computer Languages, Systems & Structures, 53, 59-72.

[37] Cheang, B., Kurnia, A., Lim, A., & Oon, W. C. (2003). On automated grading of programming assignments in an academic

institution. Computers & Education, 41(2), 121-131.

[38] Feng, M. Y., & McAllister, A. (2006, October). A tool for automated GUI program grading. In Proceedings. Frontiers in

Education. 36th Annual Conference (pp. 7-12). IEEE.

[39] Fu, X., Peltsverger, B., Qian, K., Tao, L., & Liu, J. (2008). APOGEE: automated project grading and instant feedback

system for web-based computing. ACM SIGCSE Bulletin, 40(1), 77-81.

J. Electrical Systems 20-10s (2024):3212-3224

3223

[40] Hull, M., Guerin, C., Chen, J., Routray, S., & Chau, D. H. (2021). Towards Automatic Grading of D3. Js Visualizations.

arXiv preprint arXiv:2110.11227.

[41] Sztipanovits, M., Qian, K., & Fu, X. (2008, March). The automated web application testing (AWAT) system. In

Proceedings of the 46th Annual Southeast Regional Conference on XX (pp. 88-93).

[42] Srikant, S., & Aggarwal, V. (2013, December). Automatic grading of computer programs: A machine learning approach.

In 2013 12th International Conference on Machine Learning and Applications (Vol. 1, pp. 85-92). IEEE.

[43] Srikant, S., & Aggarwal, V. (2014, August). A system to grade computer programming skills using machine learning. In

Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1887-

1896).

[44] Gradjanin, E., Prazina, I., & Okanovic, V. (2021, September). Automatic Web Page Robustness Grading. In 2021 44th

International Convention on Information, Communication and Electronic Technology (MIPRO) (pp. 177-180). IEEE.

[45] Rogers, S., Tang, S., & Canny, J. (2014, March). ACCE: automatic coding composition evaluator. In Proceedings of the

first ACM conference on Learning@ scale conference (pp. 191-192).

[46] Johnson, J. H. (1994, September). Substring Matching for Clone Detection and Change Tracking. In ICSM (Vol. 94, pp.

120-126).

[47] Higgins, C. A., Gray, G., Symeonidis, P., & Tsintsifas, A. (2005). Automated assessment and experiences of teaching

programming. Journal on Educational Resources in Computing (JERIC), 5(3), 5-es.

[48] Hahn, M. G., Navarro, S. M. B., & de-La-Fuente-Valentín, L. (2022, July). LUD: An Automatic Scoring and Feedback

System for Programming Assignments. In 2022 International Conference on Advanced Learning Technologies (ICALT)

(pp. 384-386). IEEE.

[49] Messer, M. (2022, July). Automated Grading and Feedback of Programming Assignments. In Proceedings of the 27th

ACM Conference on Innovation and Technology in Computer Science Education Vol. 2 (pp. 638-639).

[50] Gaona, E. F., Camacho, C. E. P., Castro, W. M., Castro, J. C. M., Rodríguez, A. D. S., & Avila-Garcia, M. S. (2021,

October). Automatic grading of programming assignments in Moodle. In 2021 9th International Conference in Software

Engineering Research and Innovation (CONISOFT) (pp. 161-167). IEEE.

[51] Rump, A., Fehnker, A., & Mader, A. (2021). Automated Assessment of Learning Objectives in Programming

Assignments. In A. I. Cristea, & C. Troussas (Eds.), Intelligent Tutoring Systems: 17th International Conference, ITS

2021, Virtual Event, June 7–11, 2021, Proceedings (pp. 299-309). (Lecture Notes in Computer Science; Vol. 12677).

Springer. https://doi.org/10.1007/978-3-030-80421-3_33.

[52] Serth, S., Staubitz, T., Teusner, R., & Meinel, C. (2021, March). CodeOcean and CodeHarbor: Auto-Grader and Code

Repository. In SPLICE 2021 Workshop CS Education Infrastructure for All III: From Ideas to Practice. Virtual Event (p.

5).

[53] Delgado‐Pérez, P., & Medina‐Bulo, I. (2020). Customizable and scalable automated assessment of C/C++ programming

assignments. Computer applications in engineering education, 28(6), 1449-1466.

[54] Solecki, I., Porto, J., Alves, N. D. C., Gresse von Wangenheim, C., Hauck, J., & Borgatto, A. F. (2020, February).

Automated assessment of the visual design of Android apps developed with the app inventor. In Proceedings of the 51st

ACM Technical Symposium on computer science education (pp. 51-57).

[55] Zhang, J. K., Lin, C. H., Hovik, M., & Bricker, L. J. (2020, March). GitGrade: A Scalable Platform Improving Grading

Experiences. In SIGCSE (p. 1284).

[56] Clegg, B., Villa-Uriol, M. C., McMinn, P., & Fraser, G. (2021, May). Gradeer: an open-source modular hybrid grader. In

2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering Education and Training

(ICSE-SEET) (pp. 60-65). IEEE.

[57] Ardimento, P., Bernardi, M. L., & Cimitile, M. (2020, June). Towards automatic assessment of object-oriented programs.

In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings (pp.

276-277).

[58] Krusche, S., & Seitz, A. (2018, February). Artemis: An automatic assessment management system for interactive learning.

In Proceedings of the 49th ACM Technical Symposium on Computer Science education (pp. 284-289).

[59] Parihar, S., Dadachanji, Z., Singh, P. K., Das, R., Karkare, A., & Bhattacharya, A. (2017, June). Automatic grading and

feedback using program repair for introductory programming courses. In Proceedings of the 2017 ACM Conference on

Innovation and Technology in Computer Science Education (pp. 92-97).

[60] Moghadam, J. B., Choudhury, R. R., Yin, H., & Fox, A. (2015, March). AutoStyle: Toward coding style feedback at scale.

In Proceedings of the Second (2015) ACM Conference on Learning@ Scale (pp. 261-266).

[61] Kaila, E., Rajala, T., Laakso, M. J., & Salakoski, T. (2008, November). Automatic assessment of program visualization

exercises. In Proceedings of the 8th International Conference on Computing Education Research (pp. 101-104).

[62] Colton, D., Fife, L., & Thompson, A. (2006). A web-based automatic program grader. Director, 07.

[63] Joy, M., Griffiths, N., & Boyatt, R. (2005). The boss's online submission and assessment system. Journal on Educational

Resources in Computing (JERIC), 5(3), 2-es.

J. Electrical Systems 20-10s (2024):3212-3224

3224

[64] Juedes, D. W. (2005, October). Web-based grading: Further experiences and student attitudes. In Proceedings Frontiers in

Education 35th Annual Conference (pp. F4E-18). IEEE.

[65] Blumenstein, M., Green, S., Nguyen, A., & Muthukkumarasamy, V. (2004, April). GAME: A generic automated marking

environment for programming assessment. In International Conference on Information Technology: Coding and

Computing, 2004. Proceedings. ITCC 2004. (Vol. 1, pp. 212-216). IEEE.

[66] Von Wangenheim, C. G., Hauck, J. C., Demetrio, M. F., Pelle, R., da Cruz Alves, N., Barbosa, H., & Azevedo, L. F.

(2018). CodeMaster--Automatic Assessment and Grading of App Inventor and Snap! Programs. Informatics in Education,

17(1), 117-150.

[67] Combéfis, S., & Paques, A. (2015, July). Pythia reloaded: An intelligent unit testing-based code grader for education. In

Proceedings of the 1st International Workshop on Code Hunt Workshop on Educational Software Engineering (pp. 5-8).

[68] Delev, T., & Gjorgjevikj, D. (2012). E-Lab: Web-based system for automatic assessment of programming problems. Web

proceedings ICT-Innovations.

