
J. Electrical Systems 20-10s (2024):3177-3188 

3177 

1Hamad Alharkan 

 

Robust H-Infinity Speed 

Controller based Optimization 

Technique for Doubly Salient 

Singly Excited Motor Drive 
  

Abstract: - This research presents a novel robust 𝐻∞ controller for Doubly Salient Singly Excited motor (DSSEM) speed controlling. 

This algorithm aims to minimize the influence of disturbances that affect motor function and offer the best duty cycles possible to 

accomplish tracking performance. The H-infinity (𝐻∞) tracking control approach can optimally solve the tracking game algebraic 

Riccati equation online by using reinforcement learning. This method enhances the Doubly Salient Singly Excited Motor (DSSEM) 

system model with the reference current model to produce a quadratic value function. The quadratic value function facilitates the 

implementation of a linear quadratic tracker, similar to 𝐻∞ control. By partitioning and organizing the nonlinear domain of the DSSEM 

into a table of 𝐻∞ nodes, the system can manage complex nonlinearities efficiently. Each 𝐻∞ node in the table represents a specific 

region of the control space, allowing for precise and robust tracking of desired reference signals. This structure ensures that the DSSEM 

achieves optimal performance and stability, adapting dynamically to operational changes. Furthermore, the 𝐻∞ tracking control is 

outfitted with a linear interpolation method to facilitate a seamless transition between 𝐻∞ matrices in the table. Finally, this paper 

presents simulation results to validate the proposed control algorithm. 

Keywords: Doubly Salient Singly Excited motor (DSSEM), Speed control, Reinforcement learning (RL), Optimization 

problems, Machine learning method. 

 

 

I.  INTRODUCTION 

Recently, Doubly Salient Singly Excited motors, or DSSEMs, have drawn much interest for their high-

performance uses in electric cars and airplanes, among other high-performance applications. [1]–[5]. The reported 

rise in DSSEM use in commercial and industrial applications is dependent on various factors, including fault-

tolerant capability, a fault-tolerant design that eliminates the need for a magnet or rotor winding, low cost as a 

result of the decline in semiconductor switch prices, and high speed and high-efficiency capabilities [6], [7]. 

Additionally, the rising usage of DSSEM in various applications has been spurred by the global trend to limit the 

use of magnets, advanced technology in electronic devices, and capacitors to regulate pulse-type current motors. 

On the other hand, the high nonlinearity of DSSEM presents a significant problem in many applications, leading 

to a large ripple in the generated torque. A significant electromechanical variation based on the phase current 

fluctuation and the rotor movement is exhibited by DSSEMs because of their prominent structure and enormous 

saturation. This may cause vibration, noise, and harness during machine operations. Consequently, the undesired 

torque ripple must be removed to improve the machine's performance.  

Optimizing the machine's dynamic performance mostly depends on the DSSEM drive's present controller. A 

major responsibility of the machine's speed controller is to provide an accurate current pulse and high bandwidth 

that the controller may utilize to track the correct current trajectory [8]. However, internal motor disturbances, such 

as the reverse electromotive force (EMF) produced by flowing an erratic current through the stator winding, affect 

how well the current schemes work. In order to solve this problem, the motor should be given a comparatively high 

DC voltage injection, which will cause the current to rise and fall very quickly. It is imperative to employ a highly 

dependable current controller with extensive modulation and control frequency handling to achieve this 

performance level. A thorough investigation into existing control has been conducted to enhance DSSEM 

performance [9]–[22]. Delta modulation, which has an upper cap for the switching frequency and hence a 

significant torque ripple, is a popular technique for modulating the current in the DSSEM drive [10], [11]. DSSEM 

has made use of the Proportional-Integral (PI) current controller [9], [12]. Due to its slowness and inability to pick 

controller parameters that can handle all operating situations, the PI dynamic, in this instance, is unsuitable to 

generate the intended current pulse. To regulate the speed while lessen current ripples, researchers have looked into 

cutting-edge intelligent strategies like artificial neural networks, model predictive control (MPC), and neuro-fuzzy 

controllers (NFC) [16]–[20]. As an adaptive dynamic programming technique that can handle both tracking control 

and adaptation at the same time, [21], [22] presented a Q-learning scheduling controller in contrast to previous 
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approaches that call for a separate approximator to approximate the value of inductance with respect to current and 

rotor angle. In [22], the tracking problem is solved using the optimal algorithm, which is based on the reinforcement 

learning technique. In order to create a controller that can track the reference path, the Q-learning algorithm 

produced the cost function of the infinite-horizon linear quadratic tracker (LQT). The algorithm's synthesis relies 

on linear modeling and is limited to local applications inside the nonlinear domain, such as DSSEM. By scheduling 

linear Q-controllers across the nonlinear DSSEM surface, a linear parameters variable gain scheduling approach 

has been introduced to ensure the execution of nonlinear control, substantially extending the linear model to match 

the nonlinear system. In order to achieve this goal, [22] suggested a collection of Q-cores mounted on the DSSEM 

inductance profile. Each Q-core is positioned at a locally linearized region where the Q-learning algorithm can be 

run. In order to apply the scheduling mechanism, data gathered during machine operation was used to train a 

readout table of Q matrices, which is used in this paper to construct 𝐻∞ matrices instead of Q matrices. The primary 

problem with the Q-learning controller, despite the algorithm's good tracking performance, is that the control 

scheme does not consider the disturbances as being minimized under operation conditions. 

In this study, a robust switching 𝐻∞ control was added to control the speed by solving the tracking game 

algebraic Riccati equation (GARE), and then, to solve the two-player zero-sum issue [23]. Phase voltage is one 

player in this game, which aims to minimize the value function. On the other hand, the disturbance input, which 

aims to maximize the value function, is the other player. Based on the linear model, the 𝐻∞  method is also 

generated; DSSEM has a large amount of fluctuation in inductances depending on stator current and rotor position. 

Therefore, to smoothly switch between the learned 𝐻∞ matrices positioned on the trajectory of the system's states 

when the speed is changed, a trilinear interpolation approach based on a grid of 𝐻∞ controllers for a selective local 

point has been presented. This work introduces a robust nonlinear speed controller for DSSEM drives that 

minimizes torque ripples while achieving optimal and adaptive performance. 

This paper's primary contributions include: i) introducing 𝐻∞ tracking control for DSSEM, ii) presenting a 

matrices of 𝐻∞ nodes that characterize DSSEM's nonlinearity, and iii) suggesting a trilinear interpolation method 

for a precise transition between 𝐻∞ nodes in the system's state. 

II.  𝐻∞ CONTROL FOR ZERO-SUM GAME PROBLEM OF DSSEM 

Linear quadratic tracker (LQT) has become an increasingly vital design tool for tracking controls. Obtaining 

the optimal LQT solution enables tracking a predetermined reference signal by minimizing the cost function and 

the difference between the reference and output currents [19]. Typically, LQT solutions were derived by 

independently acquiring the solutions for the feedforward and feedback sections. The primary disadvantage of the 

solution is that it was computed offline in conjunction with the model's parameters [19]. In this context, the 

Reinforcement Q-learning technique, which is a type of adaptive dynamic programming, provides an online 

solution to LQT problems without using DSSEM model information. This section presents the derivation of the 

LQT-augmented system. Additionally, the optimal solutions for LQT utilizing the Bellman equation and Q-

learning are included.  

𝐻∞ is a robust controller that can be incorporated with adaptive tracking control to minimize the impact of 

disturbances of DSSEM and to verify if the output current follows the reference current. Traditionally, the 𝐻∞ 

tracking control problem has been solved using the linear matrix inequality (LMI) approach [24], [25]. Due to the 

difficulty of processing LMI, this method requires a significant computational load to tackle the issue, which is 

impractical for some industrial applications. The primary benefit of 𝐻∞ tracking control for DSSEM applications 

is its application in zero-sum game problems and its execution through RL techniques. In this game, disruption 

maximizes the cost function while the controller minimizes it. A unique solution where the saddle point of the 

control input and disturbance can be reached using the 𝐻∞ tracking control. [26], [27]. This procedure can be 

implemented by determining the GARE's optimal solution [28]. The optimal control problem can be resolved using 

adaptive dynamic programming, which incorporates reinforcement learning algorithms, dynamic programming 

techniques, and adaptive cretic [29]–[31].  In this study, a subfield of machine learning theory called reinforcement 

learning used machine feedback data to enhance system behavior. In order to complete this process, the augmented 

model of the machine used the RL methods' predefined reference of the periodic waveform model to build a 

discounted quadratic value function for the 𝐻∞ tracking problem [32]. When the value function was quadratic, the 

zero-game problem was resolved by developing the Bellman equation. GARE was derived and applied to the 𝐻∞ 

tracking problem using the DSSEM augmented model. Then, the GARE was solved to allow the controller's 

feedforward and feedback terms to find optimal solutions simultaneously [26].  
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   This study aimed to resolve the 𝐻∞ tracking issue by designing the Bellman equation applying the policy 

iteration approach. This section introduces the formulation of the 𝐻∞ tracking control, the generation of the zero-

sum games issue, and the use of the RL approach to design the tracking control of DSSEM. 

A.  Formulating the DSSEM Model for 𝐻∞Tracking Control 

The assumption used for many DSSEM structures in the literature serves as the basis for generating the DSSEM 

model. The mutual inductances between neighboring coils in the stator were ignored. Considering this assumption 

and the presence of the disturbance, the discrete-time domain of the DSSEM model based on the forward technique 

were characterized as follows:  

𝑥𝑘+1 = (1 − 𝑇𝑅 𝐿𝑘⁄ )𝑥𝑘 + (𝑇 𝐿𝑘)𝑢𝑘 + 𝐷𝑤𝑘⁄  (1) 

The phase current was denoted by 𝑥𝑘, the applied DC voltage by 𝑢𝑘, the phase resistance by 𝑅, the disturbance 

input by 𝑤𝑘, and the dynamic disturbance matrix by 𝐷. 𝐿𝑘 was the nonlinear phase inductance with respect to the 

rotor angle and phase current, while 𝑇 was the sample time. Developing an algorithm to confirm that the phase 

current 𝑥𝑘 of DSSEM can optimally trace the reference current 𝑟𝑘, was the primary goal of 𝐻∞ tracking control. 

Therefore, it became possible to ascertain the tracking error of the issue as 𝑒𝑘 = 𝑥𝑘 − 𝑟𝑘. Next, the tracking error 

and phase voltage were used to determine the performance index, which can then be given as: 

‖𝑠𝑘‖
2 = (𝑥𝑘 − 𝑟𝑘)

𝑇𝑄(𝑥𝑘 − 𝑟𝑘) + 𝑢𝑘
𝑇𝑅𝑢𝑘  (2) 

where 𝑄 and 𝑅 represented the operator-predefined positive weight matrices for the phase voltage and tracking 

error, respectively. The DSSEM model (1) was linearized to obtain the L2-gain condition needed to create a 𝐻∞ 

tracking control. L2-gain has to be equivalent to or less than γ if:  

∑‖𝑠𝑘‖
2

∞

𝑘=0

≤ 𝛾2 ∑‖𝑤𝑘‖
2

∞

𝑘=0

 (3) 

For all 𝑤𝑘 ∈ 𝐿2[0,∞), where γ ≥ 0 was the disturbance attenuation preset value. The disturbance attenuation 

condition, or equation (3), lessened the effects of the disturbance input to the machine by the value of γ. Therefore, 

the 𝐻∞ tracking algorithm aimed to provide a phase voltage that satisfied equation (3) and maintained system 

stability when the disturbance input dropped to zero. The infinite-horizon 𝐻∞ tracking control's performance index 

function was expressed as follows based on equation (3):  

𝐽(𝑥𝑘 , 𝑟𝑘 , 𝑢𝑘 , 𝑤𝑘) = ∑𝑈𝑖

∞

𝑖=𝑘

= ∑[(𝑥𝑖 − 𝑟𝑖)
𝑇𝑄(𝑥𝑖 − 𝑟𝑖) + 𝑢𝑖

𝑇𝑅𝑢𝑖 − 𝛾2𝑤𝑖
𝑇𝑤𝑖]

∞

𝑖=𝑘

 (4) 

where the utility function was represented by 𝑈. It should be noted that the tracking error and the DSSEM 

model's phase voltage signals was penalized by using the matrices of 𝑄 and 𝑅 as design parameters. Utilizing the 

value function based on the DSSEM augmented model given acceptable control and disturbance input was 

formulated as follows:  

𝑉(𝑥𝑘 , 𝑟𝑘) = 𝐽(𝑥𝑘 , 𝑟𝑘 , 𝑢𝑘 , 𝑤𝑘) (5) 

The augmented model for the 𝐻∞ tracking controller was then designed by assuming that the reference current 

of DSSEM was produced by the reference current model, which offered a variety of current trajectories [32]. The 

following equation provided the waveform of the reference current: 

𝑟𝑘+1 = 𝐹𝑟𝑘 (6) 

where 𝐹 ∈ ℝ𝑛 is the reward of generating a certain current path. Currently, the reference current model (6) and 

the DSSEM model (1) was used to provide the augmented model as: 

𝑋𝑘+1 = 𝐴𝑎𝑋𝑘 + 𝐵𝑏𝑢𝑘 + 𝐷𝑑𝑤𝑘 (7) 

where 𝐴𝑎 = [
1 − 𝑇𝑅 𝐿𝑘⁄ 0

0 𝐹
] , 𝐵𝑏 = [

(𝑇 𝐿𝑘)⁄

0
],  and  𝐷𝑑 = [

𝐷
0
] . The augmented state, which included the 

output current and the reference current trajectory, was generated as 𝑋𝑘 = [𝑥𝑘
𝑇 𝑟𝑘

𝑇]𝑇  based on the augmented 

model (7). It is important to note that the value function (5) was only implemented if 𝐹 is Hurwitz with respect to 

the reference current model (6). In order to resolve this problem, the discounted value function of the 

𝐻∞ tracking control based on the DSSEM (7) augmented model was introduced as:  
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𝑉(𝑋𝑘) = ∑𝜆𝑖−𝑘

∞

𝑖=𝑘

[𝑋𝑖
𝑇𝑄𝑞𝑋𝑖 + 𝑢𝑖

𝑇𝑅𝑢𝑖 − 𝛾2𝑤𝑖
𝑇𝑤𝑖] (8) 

where 𝑄𝑞 = [𝐼 −𝐼]𝑇𝑄[𝐼 −𝐼], and 0 < 𝜆 ≤ 1 is a discount factor. Therefore, the condition of disturbance 

attenuation was created as: 

∑𝜆𝑖

∞

𝑖=0

[𝑋𝑖
𝑇𝑄𝑞𝑋𝑖 + 𝑢𝑖

𝑇𝑅𝑢𝑖] ≤ 𝛾2 ∑𝜆𝑖

∞

𝑖=0

𝑤𝑖
𝑇𝑤𝑖  (9) 

 

B. Designing Tracking Control for formulating the Zero-Sum Game equation 

The 𝐻∞ tracking problem based on two-player zero-sum (ZS) games is described in this section. Phase voltage 

was one player in this game, which aimed to minimize the value function. The disturbance input, on the other hand, 

was the other player and aimed to maximize the value function. The goal of the ZS games problem was to find the 

only solution that satisfied the feedback optimal solutions for the disturbance input and the control input, as 

expressed in the equation below: 

𝑉∗(𝑋𝑘) = min
𝑢𝑘

max
𝑤𝑘

∑𝜆𝑖−𝑘

∞

𝑖=𝑘

[𝑋𝑖
𝑇𝑄𝑞𝑋𝑖 + 𝑢𝑖

𝑇𝑅𝑢𝑖 − 𝛾2𝑤𝑖
𝑇𝑤𝑖] (10) 

The Bellman equation was produced using the Bellman optimization approach for the value function. 

𝑉(𝑋𝑘) = 𝑋𝑘
𝑇𝑄𝑞𝑋𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘 − 𝛾2𝑤𝑘
𝑇𝑤𝑘 + 𝜆𝑉(𝑋𝑘+1) (11) 

The value function's quadratic version, 𝑉(𝑋𝑘) = 𝑋𝑘
𝑇𝐻𝑋𝑘 , was validated [32]. Thus, it became possible to 

rewrite the value function as:  

𝑋𝑘
𝑇𝐻𝑋𝑘 = 𝑋𝑘

𝑇𝑄𝑞𝑋𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘 − 𝛾2𝑤𝑘

𝑇𝑤𝑘 + 𝜆𝑋𝑘+1
𝑇 𝐻𝑋𝑘+1 (12) 

The tracking problem's Hamiltonian function was generated as follows in order to define the saddle points for 

the phase voltage and the disturbance policy: 

(𝑋𝑘, 𝑢𝑘, 𝑤𝑘) = 𝑋𝑘
𝑇𝑄𝑞𝑋𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘 − 𝛾2𝑤𝑘
𝑇𝑤𝑘 + 𝜆𝑋𝑘+1

𝑇 𝐻𝑋𝑘+1 − 𝑋𝑘
𝑇𝐻𝑋𝑘 (13) 

The ideal phase voltage 𝑢𝑖
∗  stationary state and the worst-case disturbance input 𝑤𝑖

∗  was attained as 

𝜕ℎ(𝑋𝑘, 𝑢𝑘, 𝑤𝑘) 𝜕𝑢𝑘 = 0⁄  and 𝜕ℎ(𝑋𝑘 , 𝑢𝑘, 𝑤𝑘) 𝜕𝑤𝑘 = 0⁄ , respectively [26]. Hence, the following equations were 

generated: 

𝑢𝑘
∗ = −𝐾∗𝑋𝑘 (14) 

𝑤𝑘
∗ = −𝑆∗𝑋𝑘 (15) 

Where 

𝐾∗ = [𝑅 + 𝜆𝐵𝑏
𝑇𝐻𝐵𝑏 + 𝜆2𝐵𝑏

𝑇𝐻𝐷𝑑(𝛾2𝐼 − 𝜆𝐷𝑑
𝑇𝐻𝐷𝑑)−1𝐷𝑑

𝑇𝐻𝐵𝑏]
−1 × [ 𝜆𝐵𝑏

𝑇𝐻𝐴𝑎

+ 𝜆2𝐵𝑏
𝑇𝐻𝐷𝑑(𝛾2𝐼 − 𝜆𝐷𝑑

𝑇𝐻𝐷𝑑)−1𝐷𝑑
𝑇𝐻𝐴𝑎] 

(16) 

𝑆∗ = [𝜆𝐷𝑑
𝑇𝐻𝐷𝑑 − 𝛾2𝐼 − 𝜆2𝐷𝑑

𝑇𝐻𝐵𝑏(𝑅 + 𝜆𝐵𝑏
𝑇𝐻𝐵𝑏)

−1𝐵𝑏
𝑇𝐻𝐷𝑑]−1 × [𝜆𝐷𝑑

𝑇𝐻𝐴𝑎

+ 𝜆2𝐷𝑑
𝑇𝐻𝐵𝑏(𝑅 + 𝜆𝐵𝑏

𝑇𝐻𝐵𝑏)
−1𝐵𝑏

𝑇𝐻𝐴𝑎] 
(17) 

After substituting (16) and (17) into (13) and rearranging a few times, the parameters of the H matrix were 

obtained, leading to the optimal GAME solution for the 𝐻∞ tracking issue. 

𝐻 = 𝑄𝑞 + 𝜆𝐴𝑎
𝑇𝑃𝐴𝑎

− 𝜆2[𝐴𝑎
𝑇𝑃𝐵𝑏 𝐴𝑎

𝑇𝑃𝐷𝑑]

× [
𝑅 + 𝜆𝐵𝑏

𝑇𝐻𝐵𝑏 𝜆𝐵𝑏
𝑇𝐻𝐷𝑑

𝜆𝐷𝑑
𝑇𝐻𝐵𝑏 𝜆𝐷𝑑

𝑇𝐻𝐷𝑑 − 𝛾2𝐼
]

−1

[
𝐵𝑏

𝑇𝐻𝐴𝑎

𝐷𝑑
𝑇𝐻𝐴𝑎

] 

(18) 

Therefore, the SZ game issue given in (10) was solved by the equations (14) to (18), which also guaranteed the 

achievement of the disturbance attenuation condition given in (9) [26]. 

 

C. Adopting the Reinforcement Learning Algorithm for Solving Tracking Problem on-line 

This section describes the development and application of the RL-based policy iteration (PI) algorithm to 

determine the best way to track GARE online [33]. Recursively using data packets collected during machine 

operation, the value function, control law, and disturbance policy were changed. The Bellman equation was utilized 
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to solve the problem, and the results obtained were the two model-based PI methods. Zero sum game problem 

based reinforcement learning Algorithm which can solve the online tracking problem is illustrated in Fig 2. 

 
Fig 2. Flowchart of zero-sum game reinforcement learning. 

III. A TRILINEAR ESTIMATION ALGORITHM FOR CONTROLLING THE SPEED OF DSSEM 

Doubly Salient Singly Excited motors (DSSEMs) are a unique class of electric machines characterized by a 

distinct construction where the stator and rotor have varying numbers of poles. This design leads to an intriguing 

dynamic where the movement of the rotor induces fluctuations in the reluctance of the magnetic flux within the 

motor. When the stator and rotor are perfectly aligned, the reluctance of the magnetic circuit is minimized, resulting 

in maximum inductance in the motor's inductance-profile. This configuration is ideal for efficient energy 

conversion. Conversely, when the alignment between the stator and rotor is completely misaligned, the reluctance 

of the magnetic circuit is maximized, leading to minimal inductance. Achieving effective electromechanical energy 

conversion in DSSEMs requires designing them to operate under high levels of magnetic saturation. This 

characteristic enables the motor to efficiently handle varying loads and operating conditions. The inductance per 

phase in an DSSEM can vary with the current flowing through it. This variation is primarily attributed to the 

changing magnetic properties resulting from the different alignments of the stator and rotor. When the stator and 

rotor are aligned, the inductance experiences significant changes with varying current levels, mainly due to the 

narrow air gap between them. On the other hand, when the stator and rotor are misaligned, the larger air gap results 

in only slight variations in inductance. In theory, the inductance profile of an DSSEM exhibits trapezoidal 

waveforms due to the idealized behavior of the magnetic circuit. However, in practical applications, factors such 
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as magnetic saturation lead to rounded corners in the waveform, resulting in sinusoidal shapes with slightly varying 

frequencies. The inductance profile of an actual DSSEM, such as a 12/8 configuration, depends on both the current 

flowing through it and the position of the rotor. This dependence is illustrated in Fig 1, where the inductance varies 

with different current levels and rotor positions, providing insight into the motor's performance characteristics 

under various operating conditions. Traditional controllers for managing the speed of Doubly Salient Singly 

Excited motor (DSSEM) drives, like the hysteresis controller, offer a unique advantage by isolating motor speed 

from the primary model. With these controllers, motor speed becomes accessible and seamlessly integrated into 

the system. As a result, the control system for DSSEM drives utilizing such controllers typically includes both 

current and speed controllers. In this setup, the speed controller facilitates the injection of desired current into the 

current controller. It accomplishes this by monitoring the actual motor speed and calculating the variance between 

it and the reference speed. Detection of rotational speed commonly involves sensing the rotor position and 

converting it into speed (ω=dθ/dt). Importantly, the current controller operates independently of the model and 

does not necessitate speed information for its functioning. This characteristic enhances the robustness and 

adaptability of the DSSEM drive control system. 

The preceding section presented the robust 𝐻∞ tracking controller with the PI approach to address the tracking 

GARE and guarantee that the DSSEM drive's output speed can response to any speed changing without tuning 

process. For DSSEM, the suggested controller was only useful if the inductance profile was linear. Nonetheless, 

there was a significant nonlinearity in the DSSEM's inductance curve concerning rotor angle and current. The 

reluctances of DSSEMs varied in response to variations in the magnetic flux as the rotor rotated. The inductance 

profile for each phase reflected these modifications. Controlling DSSEM thus required both an adaptive estimation 

strategy for dynamic model parameters and an approach to characterize these fluctuations. A local linearization-

based gain scheduling strategy was integrated with the 𝐻∞ algorithm to enable the training in a locally linearized 

region via the 𝐻∞ matrix, hence enabling the implementation of the 𝐻∞ tracking algorithm for DSSEM and its 

nonlinear inductance profile. Benefits of gain scheduling included quick switching of 𝐻∞  controllers through 

operating conditions, and less computing power requirement than other nonlinear adaptive dynamic control 

techniques like neural networks, which require highly sophisticated operations for real-world implementation. 

Availability of enough memory was necessary to register the learned 𝐻∞ matrices in the lookup table entities, 

which was crucial for employing gain scheduling. The online training approach for the local 𝐻∞ matrix and the 

structure of the 𝐻∞ lookup table method is described in the following subsections. In the pursuit of expedited 

response times while mitigating the necessity for extensive training procedures, this methodology underscores the 

imperative inclusion of speed as an intrinsic component within the nonlinear system framework. Despite the 

ostensibly linear nature of the model with regard to speed, it is paramount to acknowledge the inherent involvement 

of speed within the system's structural framework. Consequently, the utilization of a two-dimensional H-array 

necessitates the continual adaptation and retraining of local H-nodes to effectively accommodate the dynamic 

variations in motor speed. While a two-dimensional array offers the advantage of reduced memory overhead 

compared to its three-dimensional counterpart, which integrates speed as an additional axis, it is imperative to 

recognize the potential trade-offs inherent in such an approach. Nonetheless, the proposed adoption of a three-

dimensional table, as explicated in this study, holds significant promise in yielding markedly improved dynamics 

and responsiveness. By incorporating speed as a pivotal determinant within the model, this comprehensive 

approach not only facilitates a more nuanced comprehension of the system's behavioral dynamics but also 

engenders enhanced performance and adaptability. Thus, it represents a seminal advancement towards augmenting 

the efficacy and robustness of motor control systems in practical contexts. 

A. The configuration of the mapping metrics protocol 

An effective and simple method to illustrate the nonlinear surface of the inductance profile was to use a lookup 

table in conjunction with the mapping strategy. Different lookup table implementations, including torque [34], flux 

linkage, and inductance profile [35], were employed for DSSEM control. The 𝐻∞  lookup table algorithm 

comprised three steps: packing, extraction, and interpolation. The packing procedure, which separated the 

inductance profile's surface into a sufficient number of 𝐻∞ cores, was the first stage. Next, a sample of rotor angles 

and currents was chosen to create a bidirectional lookup table large enough to overcome the DSSEM's nonlinear  
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Fig 1. The nonlinear inductance profile of DSSEM. 

 

domain. Each H∞ core was a local linear controller that can apply and learn linear equations. In order to train the 

𝐻∞ matrix until optimal values were achieved using the data observed in each preset segment, 𝐻∞ tracking control 

was applied to each section. Each section's training 𝐻∞ matrices was crammed into the table to create an array that 

held the 𝐻∞ matrix. The extraction process, which took place in the second step, located the current trajectory in 

the table and extracted the 𝐻∞ matrices that were closest to the current. Finding the single 𝐻∞ matrix that aligned 

most closely with the present path was done by measuring the distances between the current and neighboring 

matrices. While this method aided the problem's resolution, its imprecise conclusions resulted in a disordered 

current route between the two cycles. In order to solve this problem, the third step used linear interpolation, which 

was a far more effective method than trying to locate the closest 𝐻∞ matrix method for improving accuracy and 

outcomes through a smoother transition. This method estimated the new interpolated matrix at the current path by 

taking the distance-weighted average of the eight closest 𝐻∞  matrices. This procedure suggested that the 

parameters of the estimated matrix were equally averaged based on equal distances if the estimated point was at 

the center of the closest predefined 𝐻∞  matrix. To develop a speed controller capable of seamlessly adapting 

mechanical speed without requiring a reset of the learning process, it is essential to incorporate speed as a 

supplementary axis within the system's inductance surface. In order to achieve a fluid transition across the surface 

of the quantized 3D domain, it is crucial to introduce a sophisticated 3D interpolation mechanism into the existing 

table structure. This enhancement will enable the system to smoothly navigate through the multidimensional space, 

ensuring that the controller's responses remain consistent and accurate across varying operating conditions. The 

mapping function plays a pivotal role in this process, as it dictates how the interpolated 𝐻∞ matrix is derived from 

the data stored within the 3D table. Defining this Algorithm can optimize the interpolation process to effectively 

capture the nuances of the system's behavior and ensure that the controller's speed actions align with the desired 

performance objectives. The mapping function for generating the mapped matrix can be expressed as: 

𝐻𝑠 = 𝐻𝑇∀𝑇∅ (19) 

𝐻 = [𝐻1 𝐻2 𝐻3 𝐻4 𝐻5 𝐻6 𝐻7 𝐻8]  

∀=

[
 
 
 
 
 
 
 

1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0
−1 0 1 0 0 0 0 0
−1 1 0 0 0 0 0 0
1 0 −1 0 −1 0 1 0
1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0

−1 1 1 −1 1 −1 −1 1]
 
 
 
 
 
 
 

  

∅ = [1 ∆𝑖 ∆𝜃 ∆𝜔 ∆𝑖∆𝜃 ∆𝜃∆𝜔 ∆𝜔∆𝑖 ∆𝑖∆𝜃 ∆𝜔]  
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where 𝐻 is the eight nearest H-matrices to the 𝐻𝑠, ∀ is a predefined constant matrix, and ∅ is the vector of 

distances related to the three axises, and ∆𝑖 = (𝑖 − 𝑖0 𝑖1 − 𝑖0⁄ ) , ∆𝜃 = (𝜃 − 𝜃0 𝜃1 − 𝜃0)⁄ , and ∆𝜔 =

(𝜔 − 𝜔0 𝜔1 − 𝜔0)⁄ . The parameters of 3D table scheduling are illustrated in Fig. 5. 

B. Learning structure of the mapped matrices 

This study employed least squares method to train and solve the 𝐻∞ tracking problem by observing certain data 

sets, such as the cost function and system states, generated from the model during the machine trajectories. One of 

the main benefits of LS approaches was that they do not require additional models to determine model parameters. 

In practice, the control strategy was enhanced by including an observer to gather the states of the system states. 

The data packets received from system N were required to be at least 𝑁 ≥ 𝑎(𝑎 + 1)/2 to meet the excitation 

requirement of the least square equations, where 𝑎 denoted the total number of states. Also, It was necessary to 

perform the Kronecker product ⨂ to allow the user to build the cost function as linear in vectors (28). Then, 

𝑣𝑒𝑐(𝑃𝑗+1) was created by compiling the columns of 𝑡ℎ𝑒 𝐻∞ matrix. Once enough time had elapsed to meet the 

persistence constraint, the batch LS equation was produced as follows: 

𝑣𝑒𝑐(𝐻𝑗+1) = (Π𝑇Π)−1Πℬ (20) 

Π = [(𝑋∆
𝑘)𝑇 (𝑋∆

𝑘+1)𝑇 ⋯(𝑋∆
𝑘+𝑧−1)𝑇]  

𝑋∆
𝑘 = 𝑋𝑘+𝑧⨂𝑋𝑘+𝑧 − 𝛾𝑋𝑘+𝑧+1⨂𝑋𝑘+𝑧+1  

ℬ = [ℎ(𝑋𝑘, 𝑢𝑘, 𝑤𝑘)𝑇 ℎ(𝑋𝑘+1, 𝑢𝑘+1, 𝑤𝑘+1)
𝑇 ⋯ℎ(𝑋𝑘+𝑧 , 𝑢𝑘+𝑧, 𝑤𝑘+𝑧)

𝑇]  

 

Policy iteration-based adaptive optimal control strategies rely on a persistent excitation condition (PE) to ensure 

thorough exploration of the state space. However, when the state nearly reaches the desired position and stabilizes, 

the persistent excitation condition may no longer hold. To mitigate this issue, an exploratory signal containing 

sinusoids of varying frequencies can be introduced into the control input to qualitatively maintain the persistence 

of excitation [29]. 

 

 
Fig 3. The block diagram of the proposed learning control. 
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IV. SIMULATION RESULTS 

This section describes the execution and analysis of a simulation of the 𝐻∞ tracking control using a linear 

interpolation approach to control the DSSEM drive's current. The most effective tool for designing the suggested 

scheme was MATLAB Simulink. The blocks for the simulation were constructed and adjusted using the 500 W 

DSSEM parameters that were examined in the experimental result. Fig 3 displays the suggested control blocks 

diagram. The motor had 12 poles on the stator and 8 poles in the rotor. It was a 3-phase motor with 2  resistance 

for each phase and a nominal current of 5A. The motor had a maximum inductance of 16.6 mH and a minimum 

inductance of 6 mH. A range of 2.5-step rotor angles and 2-step sequence current values were registered to create 

a two-dimensional 𝐻∞core table. 100V was chosen as the available DC-link voltage. Based on the suggested 

controller's (10KHz) sampling frequency, a simulation step time of 100 microseconds was chosen. In order to 

enable the algorithm to train every local training centers that had been pre-specified on the nonlinear domain of the 

system, the tuning process was initiated with an acceptable control input and an augmented state, which were 

defined as 𝑋0 = [1 1]𝑇 and 𝐾0 = [80 −80]𝑇, respectively. The least squares approach was used to train the 

local 𝐻∞ matrix using 10 data tubules per iteration. In order to evaluate the suggested controller, the simulation 

operated under the assumption that the motor speed was initially at 60 RPM. Fig 4 shows that the local matrices 

has been fully learned after around 0.2 seconds of training. In this Fig, the rotational speed of shaft has been shifted 

up from 60 to 100 RPM. Fig 5 demonstrates the control that were applied to the motor during the training stage to 

meet the tracking performance requirements. Fig 6 illustrate the behavior of the disturbance input during the normal 

operating region. In this experimental setup, we utilized a sophisticated tridimensional table to facilitate 

comprehensive analysis. When we modified the rotational speed range from 60 to 100RPM, the speed response 

exhibited remarkable agility and stability throughout the duration of the training process. he concurrent variation 

in current corresponding to these alterations in motor speed meticulously provides valuable insights into the 

system's dynamic behavior. An intriguing observation arises when the speed changes at the 0.6-second mark: the 

local points remain unaffected and do not necessitate retraining. This phenomenon can be attributed to the 

incorporation of the speed axis within the learning centers. Consequently, even after initializing the algorithm and 

allowing the matrices to adapt to the plant, the controller seamlessly transitions to utilizing the plane corresponding 

to the measured speed. This seamless integration eliminates the need for re-adaptation, ensuring optimal utilization 

of optimal policy control regardless of the speed variation. This comprehensive analysis not only enhances our 

understanding of the system's behavior but also underscores the efficacy of the implemented control strategy in 

achieving stable and responsive performance across varying operating conditions.  

  

 
Fig 4. the behavior of the current waveform when the speed changed. 
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Fig 5. The input voltage during the training and normal operating condition. 

 

 
Fig 6. The behavior of the disturbances introduced to the system. 

 

V. CONCLUSIONS 

This work has researched a reinforcement robust 𝐻∞ learning controller for regulating the speed of DSSEM. 

In addition to the zero-sum game problem, the 𝐻∞ tracking control for the local linear region was examined and 

formulated. A lookup table was employed to illustrate the nonlinear inductance profile of motor. This lookup table 

was used to develop a mapping strategy for the proposed control scheme, which extended the linear controller to 

run in the nonlinear domain of system. The 𝐻∞ centers located on the system's state trajectory were then tuned and 

mapped using an online training methodology. Cubic-linear estimation algorithm was employed to accomplish 

smooth variation of speed without requiring learning process. Lastly, the simulation findings were used to test the 

proposed speed control of DSSEM, demonstrating that the controller was robust and efficient in controlling the 

DSSEM speed. Moreover, there was a significant reduction in ripples along with a decrease in the effects of system 

disturbances.  
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