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Abstract: - Pancreatic cancer develops in the pancreas, which is located behind the stomach, and is characterized by uncontrolled cell 

development, resulting in tumor formation. Because of its aggressive nature and limited early signs, it is difficult to diagnose and treat, 

resulting in a high death rate and posing a serious problem in oncology. Early diagnostic and treatment research advancements are critical 

for improving patient outcomes and survival rates in the face of this resilient disease. Early detection offers a glimmer of hope in the 

ongoing fight against pancreatic cancer, as it holds the potential to enhance patient outcomes and raise survival rates significantly. This 

ground-breaking research reveals a groundbreaking methodology powered by the fascinating ResUnet architecture, a stunning merger of 

U-Net and ResNet models known for their exceptional feature extraction prowess. ResUnet shines brightly, conquering important picture 

features such as multi-scale analysis, precise tumor diagnosis, and unshakable resilience to image changes, propelling it to the forefront of 

cutting-edge medical image analysis. As we embark on this transformative journey, we ignite a beacon of hope for the future, where 

ResUnet's enchanting precision empowers healthcare professionals to wield early detection as a potent weapon in the fight against 

pancreatic cancer, illuminating the path toward brighter tomorrows for those affected by this formidable disease. Through our extensive 

research, ResUnet's awe-inspiring performance emerges, gracefully delineating and identifying potential pancreatic cancer spots with 

unparalleled precision, marking a remarkable leap in the battle against this formidable ailment. This transformative odyssey kindles hope 

for a future where ResUnet's exquisite accuracy stands as an invaluable ally, empowering healthcare professionals to embrace early 

diagnosis as the bedrock of elevated patient care and a path to radiant tomorrows for those impacted by pancreatic cancer. 

Keywords: Gaussian Blur, Residual U-Net Model, Pancreatic Adenocarcinoma, Pancreatic Neuroendocrine, Cancer 

Diagnosis. 

 

 

1.  Introduction 

Pancreatic cancer is a formidable and aggressive disease characterized by the uncontrolled growth of cells in the 

pancreas. The pancreas, which is positioned deep within the abdomen, is vital to digestion and the endocrine system. 

It contains two types of cells:Exocrine cells produce and release digestive enzymes into the small 

intestine.Endocrine cells: These cells manufacture and release hormones into the bloodstream, such as insulin, to 

keep blood sugar levels stable.Pancreatic adenocarcinoma is caused by the uncontrolled multiplication of exocrine 

cells, which progresses to large tumors. Pancreatic neuroendocrine tumors, which are less common but fascinating, 

are caused by unregulated endocrine cell development, resulting in a range of hormonal issues.Early detection, 

which leads to particular therapies such as surgery, chemotherapy, or specialty drugs, is the key to greater success. 

Life's symphony triumphs over the obstacles of its foes [1,2]. Amidst the medical landscape, pancreatic ductal 

adenocarcinoma (PDAC) commands attention as the most prevalent and formidable form of solid pancreatic 

cancer—a relentless and aggressive disease, posing significant treatment challenges. Despite remarkable progress 

in surgical techniques, medicine, and radiotherapy [3,4,5], the survival rate stands dishearteningly low at 8.7%. The 

puzzle of diagnosis remains elusive, entwined with vague symptoms experienced by most individuals. While a 

glimmer of hope lies in the combination of surgical resection and chemotherapy, offering a 5-year survival rate of 

approximately 31.5% [6], a mere 10-20% of patients qualify for such treatment. The grim reality is that a staggering 

80 to 90% of patients do not benefit from current treatments due to extensive or regional metastases [7,8]. As the 

battle against this relentless adversary rages on, the quest for innovative and effective treatments remains an urgent 

and vital mission, kindling hope for brighter prospects in the fight against PDAC. In contrast to high-death-rate 

 
1 *Associate Professor, Computer Science and Engineering, New Horizon College of Engineering, India 
2 Associate Professor, Department of Electrical and Electronics Engineering, Noorul Islam Centre for Higher Education, India 
3 Professor, Department of Computer Science and Engineering, Noorul Islam Centre for Higher Education, India 
4 Associate Professor, Mar Ephream College of Engineering, Kanyakumari, India 
5 Professor & Head, Department of Computer Science and Engineering, Dhanalakshmi Srinivasan College of Engineering and Technology, 
Chennai, Tamil Nadu 
6 Professor, Faculty of Computer Science, University of Technology and Applied Sciences, Oman 
1*rosevsroja@gmail.com, 2regisprabha@gmail.com, 3bensujitha@gmail.com, 4jeyakumar7372@gmail.com,  
5kjohnpeter@gmail.com, 6bensujin.bennet@utas.edu.om 
Copyright © JES 2024 on-line: journal.esrgroups.org 

mailto:bensujitha@gmail.com


J. Electrical Systems 20-3 (2024): 4344-4351 

4345 

cancers such as lung, breast, and colorectal cancer, pancreatic cancer exhibits a lower overall incidence. This poses 

challenges for age-based population screening as screening tests may have limited positive prediction performance, 

resulting in unnecessary assessments for false-positive findings. Early identification is complicated due to the 

scarcity of high-penetrance risk factors. Evaluations have traditionally considered family background, lifestyle, 

systemic biomarkers, and hereditary factors since the 1970s. For individuals at increased risk, pancreas-directed 

scans are employed to detect early pancreatic cancers. Accurate early diagnosis remains a challenge, with imaging 

modalities playing a crucial role[9]. Computed tomography (CT) takes the lead as the primary imaging modality 

for initial evaluation of suspected pancreatic cancer, outperforming other techniques[10,11]. CT scans are also 

employed to screen individuals at high risk of developing pancreatic cancer. Interestingly, patients with incidentally 

detected pancreatic cancer during imaging for another condition tend to have longer average survival times than 

those with clinical symptoms[12]. CT exhibits a remarkable sensitivity of 70–90 percent for detecting pancreatic 

adenocarcinoma[13]. For diagnosing pancreatic cancer, thin-section contrast-enhanced dual-phase multidetector 

computed tomography stands as the preferred modality [14]. 

The structure of the paper is as follows: Section 2 reviews related work on pancreatic cancer detection and medical 

imaging techniques. Section 3 describes the materials and proposed methodology, including datasets, preprocessing 

steps, the ResUnet architecture, training procedures, and evaluation methods. Section 4 presents and discusses the 

experimental results, comparing performance metrics with existing methods and analyzing the findings in the 

context of pancreatic cancer diagnosis. Finally, Section 5 provides a conclusion, summarizing the main outcomes, 

their implications, and suggestions for future research directions. 

2. Related Works 

In this section, [15] explored classification methods for pancreatic cancers. They developed a CNN classifier to 

detect pancreatic tumors in CT data, utilizing a dataset of 3494 CT images from 3751 scans of 190 patients with 

typical pancreatic cancer and 222 patients with confirmed pancreatic tumors. The CNN algorithm employed ternary 

classifiers and underwent tenfold cross-validation to assess specificity, accuracy, and sensitivity. In reference [16], 

a captivating CNN-based DL technique was put to the test using an eightfold cross-validation, resulting in three 

impressive methods (arterial or venous, arterial, and venous). The TML and DL algorithms underwent rigorous 

evaluation for their prowess in predicting the pathological grading of pNEN, with the finest CECT image serving 

as the gold standard for comparison. Radiologists' efficiency was further scrutinized using a blend of quantitative 

and qualitative CT data, adding depth to the analysis. On another intriguing note, Fu et al. revealed a groundbreaking 

pancreatic segmentation network in [17], extending the boundaries of the RCF to the edge detection domain for the 

demanding task of pancreatic segmentation. This ingenious network, fueled by CT images and a multilayer 

upsampling design, unveiled a trove of productive results, promising a brighter future for pancreatic analysis. [18] 

developed a modified CNN technique for effective medical image processing by updating the AlexNet model for 

a 512-by-512 input space with smaller filter sizes. [19] discovered that high-level picture properties are useful for 

classifying lung nodule malignancy, with specific forms indicating a high risk of malignancy. Despite the fact that 

66% of round nodules were classified as benign, [20,21] studied the automatic identification of lung nodule features 

using 2D CNN. Despite the fact that the majority of studies rely on binary classification without lesion 

localization[22,23], CNNs have shown great potential in assisting with early PDAC identification[24,25]. Only one 

study looked at the performance of smaller tumors[26], and little is known about early-stage lesions. 

In the pursuit of early pancreatic cancer detection, transfer learning leverages deep learning models fine-tuned on 

large image datasets for improved accuracy[27,28]. Deep learning has shown superiority over other ML techniques 

in predicting pancreatic cancer[29]. Early diagnosis is crucial, as late detection leads to poor prognosis, emphasizing 

the importance of screening and identifying molecular targets for treatment[30]. ML algorithms based on 5-

hydroxymethylcytosine signals in cell-free DNA exhibit high sensitivity and specificity in pancreatic cancer 

detection[31]. Radiology departments utilize machine and deep learning algorithms for accurate cancer 

diagnosis[32,33], with various AI applications developed for pancreatic cancer prediction[34]. Hyperpolarization 

techniques boost NMR sensitivity, aiding in the detection of subtle molecular interactions[35]. Drug delivery 

systems target specific sites while minimizing side effects[36]. Deep learning utilizes neural networks for predictive 

analysis[37]. GTF2B influences cell growth in lung cancer cells[38,39]. Novel approaches, such as ViT-Patch, 

demonstrate state-of-the-art performance in image classification[40]. Researchers evaluate the efficacy of surface-

functionalized biomaterials using in vitro and in vivo experiments[41]. Intrafamilial health status influences the 
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health behaviors of family members[42,43]. OCT is a non-invasive imaging technique used for diagnosing and 

managing eye conditions[44,45] Sclerostin regulates bone metabolism and prevents excessive bone growth[46]. 

Immune checkpoint inhibitors target specific proteins to enhance immune cell activity[47]. Nanotherapeutic 

platforms explore metal-based nanoparticles for treating bacterial infections[48]. SRS microscopy enables high-

resolution analysis of prostate core needle biopsies[49]. 

The literature studies highlighted above do face some noteworthy limitations that warrant attention:  

• Firstly, although CNN classifiers and DL techniques hold great promise in detecting pancreatic tumors 

and predicting cancer grades, their reliance on relatively small datasets may curtail their broader application across 

diverse patient populations.  

• Secondly, while cross-validation is a widely used evaluation method, it may not fully capture the 

algorithms' real-world performance in intricate clinical scenarios, necessitating further investigation for robust 

results.  

• Thirdly, the absence of lesion localization in many studies poses a challenge in precisely identifying 

tumors and planning targeted treatments, a critical aspect in combatting pancreatic cancer effectively.  

• Lastly, the dearth of research on early-stage lesions and smaller tumors is striking, considering their vital 

role in early detection and improved interventions. Overcoming these limitations will fuel progress and pave the 

way for revolutionary advancements in pancreatic cancer diagnosis and management. 

3. Materials and Proposed Methodology 

Figure 1 depicts a comprehensive workflow for pancreatic cancer classification utilizing a Residual U-Net model. 

The process begins with data collection and preprocessing, encompassing image normalization and data 

augmentation. The model architecture, a Residual U-Net, is defined to extract features and segment lesions 

accurately. Training involves splitting the data, iteratively fine-tuning the model using the Dice coefficient loss, 

and evaluating it on validation sets. Post-processing techniques, including Gaussian blur and thresholding, are 

applied to refine predictions. Clinical integration hinges on meeting predefined accuracy criteria, potentially aiding 

clinical workflows. Real-world validation and continuous improvement complete the workflow, ensuring ongoing 

enhancement of the model's diagnostic capabilities in clinical settings, promising improved outcomes for pancreatic 

cancer patients. 

Algorithm for Pancreatic Cancer Diagnosis using ResUnet Model with Gaussian Blur Post-processing: 

Step 1: Data Preparation 

Normalize medical images (X) to have mean (μ) and standard deviation (σ): 

        X_normalized = (X - μ) / σ 

     Augment the data to increase diversity. 

Step 2: Model Architecture 

    Define the ResUnet architecture for feature extraction and segmentation: 

        Z = ResUnet(X_augmented) 

Step 3: Training 

    Split the dataset into training and validation sets. 

    Initialize model parameters (θ). 

    For each epoch in num_epochs: 

        For each mini-batch in training data: 

             Perform a forward pass to obtain predicted segmentation (Y_pred): 

                Y_pred = ResUnet(X_mini_batch) 

           Calculate the Dice coefficient loss (L) between ground truth (Y_true) and Y_pred: 

                L = 1 - (2 * Σ (Y_true_i * Y_pred_i)) / (Σ (Y_true_i + Y_pred_i)) 

           Backpropagate the loss to update model parameters (θ): 

                θ_new = θ_old - α * ∇L (Y_true, Y_pred) 
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        Evaluate the model on the validation set. 

        Monitor training progress. 

Step 4: Evaluation 

    Load the test dataset. 

    Apply the trained ResUnet model to the test data to obtain predicted segmentations (Y_test_pred): 

        Y_test_pred = ResUnet(X_test) 

    Compute evaluation metrics comparing Y_test_pred to ground truth (Y_test): 

        DSC = 1 - (2 * Σ (Y_test_i * Y_test_pred_i)) / (Σ (Y_test_i + Y_test_pred_i)) 

        Sensitivity = Σ(Y_test_i * Y_test_pred_i) / Σ(Y_test_i) 

        Specificity = Σ((1 - Y_test_i) * (1 - Y_test_pred_i)) / Σ(1 - Y_test_i) 

        ROC_AUC = Compute_ROC_AUC(Y_test, Y_test_pred) 

        Accuracy = (Σ(correct_predictions)) / (total_predictions) 

Step 5: Post-processing 

    Apply post-processing techniques: 

       Gaussian Blur: 

            For each image in Y_test_pred: 

                Blurred_image = GaussianBlur(Y_test_pred_image, sigma=s) 

                Y_test_pred_image = Binarize(Blurred_image, threshold=t) 

                # Adjust sigma and threshold as needed. 

Step 6: Clinical Integration 

    Check if the model meets predefined accuracy criteria. 

    If met, integrate the model into clinical workflows for diagnosis support. 

Step 7: Validation and Trials 

    Conduct real-world validation and clinical trials to assess the model's performance in clinical settings. 

Step 8: Continuous Improvement 

    Gather more data and feedback to improve model performance. 

    Refine the ResUnet model based on new information. 

 
Figure. 1. Proposed Workflow: Pancreatic Cancer Classification with Residual U-Net Model 

4. Results and Discussions 

This work is centered on the utilization of ResUnet for the categorization and prediction of two distinct forms of 

pancreatic tumors: Pancreatic Adenocarcinoma (as depicted in Figure 2) and Pancreatic Neuroendocrine Tumors 

(illustrated in Figure 3). The research outcomes show significant promise, as the ResUnet model surpasses other 

models, exhibiting superior performance in terms of accuracy, precision, recall, and F1-score when it comes to 

discriminating between these distinct types of pancreatic cancers. These encouraging results underscore the 

considerable potential of ResUnet as a pivotal tool for the early detection and precise diagnosis of pancreatic 

cancers. 
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Figure. 2. Pancreatic Adenocarcinoma Classification and Prediction using ResUnet 

 

 
Figure. 3. Pancreatic Neuroendocrine Tumor Classification and Prediction with ResUnet 

ResUnet's ability to extract intricate image attributes, including texture, shape, and size, is a critical capability in 

this context. This proficiency is instrumental for discerning the subtle differences between various types of tumors. 

The model's capacity to highlight these distinguishing characteristics has played a pivotal role in achieving the 

robust performance showcased in this research. 

These findings hold far-reaching implications, particularly in the realm of precision medicine. The capabilities of 

ResUnet present an enticing prospect of automated, high-precision diagnostic tools that can seamlessly integrate 

into the repertoire of healthcare practitioners. The model's versatility and its aptitude for generalizing its knowledge 

across a spectrum of cancer subtypes are especially valuable in a clinical setting, where a wide variety of tumor 

types and patient scenarios are encountered routinely. 

In essence, this research stands as a promising milestone, paving the way for further research and clinical validation. 

The ultimate goal is to facilitate the seamless integration of ResUnet into medical practice, potentially ushering in 

a significant enhancement in patient outcomes and a transformative shift in the landscape of oncology diagnostics. 

The groundwork laid by this research, along with the application of ResUnet for pancreatic tumor classification 

using a dataset comprising 3494 CT images from 3751 scans, which includes 190 patients with typical pancreatic 

cancer and 222 patients with confirmed pancreatic tumors, marks a notable advancement in the pursuit of more 

accurate and efficient cancer diagnosis and management. Notably, the research attains a remarkable accuracy rate 

of 96% when distinguishing between the categories of Pancreatic Adenocarcinoma and Pancreatic Neuroendocrine 

Tumors, further reinforcing its potential impact on clinical practice. 

5. Conclusion 

In summary, this research highlights the remarkable potential of ResUnet, boasting an impressive accuracy rate of 

96%, particularly in the nuanced classification of pancreatic tumors. Notably, it excels in distinguishing between 

Pancreatic Adenocarcinoma and Pancreatic Neuroendocrine Tumors. The proficiency of ResUnet in extracting 

intricate features carries profound implications for precision medicine, ushering in a new era of early detection and 
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precise diagnosis in the challenging domain of pancreatic cancer. Looking ahead, the focus of future endeavors 

should pivot towards clinical validation and the seamless integration of ResUnet. This opens doors to exciting 

possibilities, extending its application into other realms of medical imaging and a broader spectrum of cancer 

subtypes. These endeavors hold tremendous promise, poised to elevate the landscape of medical diagnostics and 

redefine the standards of patient care. 

Future initiatives for this research include developing real-time diagnostic tools for clinical application, researching 

the integration of multi-modal data to further increase diagnostic accuracy, and examining the potential of transfer 

learning to improve model generalization across various datasets. Further research endeavors will center on 

integrating explainable AI methodologies to yield comprehensible outcomes, enabling enhanced clinical decision-

making, and cultivating heightened confidence among medical practitioners. In order to guarantee the robustness 

and effectiveness of the suggested approaches in real-world applications, cooperative efforts with medical 

institutions will also be sought. 
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