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Abstract: - Alzheimer's disease (AD) presents a significant global health challenge, emphasizing the need for advanced diagnostic 

methodologies. This study proposes an innovative approach for AD detection by integrating natural language processing and quantum-

inspired optimization techniques. The research employs the powerful language model GPT-4 for text analysis, extracting valuable 

information from clinical reports and narratives related to AD patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. 

Additionally, Local Binary Pattern (LBP) feature extraction is applied to enhance the representation of neuroimaging data. The fusion of 

GPT-4-processed textual information and LBP-enhanced image features aims to provide a comprehensive understanding of AD 

manifestations. To optimize the diagnostic accuracy, Stochastic Simulated Quantum Annealing (SSQA) is introduced as a novel 

computational approach. SSQA leverages quantum-inspired strategies to efficiently navigate the complex space of diagnostic patterns. 

Additionally, the study extends its focus to the area of 5G edge-enabled Cognitive Internet of Things (IoT) for monitoring and personalized 

recommendation provisioning. Leveraging the capabilities of 5G edge computing, the cognitive IoT system facilitates real-time monitoring 

of diverse health parameters related to AD. This includes the seamless integration of sensor data, medical records, and personalized 

information through edge computing nodes. The proposed system not only monitors health metrics but also employs cognitive intelligence 

to provide personalized recommendations, optimizing patient care and well-being. The experimental evaluation on the ADNI dataset 

demonstrates the efficacy of the proposed methodology in detecting early signs of Alzheimer's disease. 

Keywords: Alzheimer's disease, GPT-4, Local Binary Pattern, Stochastic Simulated Quantum Annealing, ADNI dataset, 

Natural Language Processing, Image Feature Extraction, Diagnostic Tool. 

 

 

1.  Introduction 

Alzheimer’s disease (AD) stands as a formidable challenge in the realm of neurodegenerative disorders, 

representing an incurable condition that profoundly affects the brain. With a global presence, AD manifests through 

the insidious process of neurodegeneration, marked by the presence of β-amyloid (Aβ). These pathological 

hallmarks include the formation of extracellular plaques and intracellular neurofibrillary tangles containing tau 

proteins (Knopman et al., 2021). The predominant symptom of AD is a disorder of cognitive abilities, and its impact 

is widespread, affecting millions worldwide. Primarily afflicting the elderly, AD typically emerges in individuals 

aged 65 and older, although a notable 10% of cases exhibit early onset, striking individuals younger than 65. The 

repercussions of AD extend beyond cognitive domains, encroaching upon language, attention, comprehension, 

reasoning, and memory. Professionals in healthcare play a pivotal role in providing care for individuals grappling 

with the debilitating symptoms of AD. The decline in cognitive abilities is synonymous with dementia, adversely 

affecting daily activities and diminishing the quality of life for those affected. AD stands as the most prevalent form 

of dementia, constituting about two-thirds of cases attributed to age-related factors. In the United States, the impact 

of AD is starkly evident, with it ranking as the seventh leading cause of death in the year 2020. While there are 
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treatments available to ameliorate the symptoms of AD, the lack of a definitive cure underscores the pressing need 

for further research and innovative interventions in the quest for effective treatment modalities (Kumar et al., 2018). 

The complex nature of AD necessitates a comprehensive approach to understanding and addressing the multifaceted 

challenges posed by this debilitating disease. 

Over the past decade, there has been a remarkable advancement in the field of computer vision and image 

processing, driven by the integration of machine learning and fully automatic segmentation methods. These 

technologies have demonstrated remarkable efficacy across various tasks within these domains. In the context of 

AD diagnosis from magnetic resonance images (MRIs), the application of machine learning has evolved 

significantly. Initially, efforts in utilizing machine learning for Alzheimer's diagnosis from MRIs focused on 

discriminative features predetermined and selected a priori (Salehi et al., 2020; Butt et al., 2019). These 

discriminative features encompassed regional volumes and cortical thickness, specifically segmented from brain 

regions known to be implicated in memory loss and accelerated neurodegeneration associated with AD(Suh et al., 

2020). The rationale behind this approach was to leverage prior knowledge about brain regions affected by 

Alzheimer's and design features that could effectively distinguish between affected and healthy individuals. The 

utilization of machine learning in Alzheimer's diagnosis marked a significant departure from traditional diagnostic 

methods, offering a data-driven approach that could potentially enhance accuracy and efficiency. These early 

applications laid the foundation for more sophisticated techniques that emerged subsequently, as the field continued 

to explore and harness the capabilities of machine learning for advancing our understanding and detection of 

ADthrough non-invasive imaging techniques. 

The emergence of large language models (LLMs) has introduced a promising solution to the challenges mentioned 

above, particularly exemplified by Chat Generative Pre-Trained Transformer (ChatGPT) developed by OpenAI. 

Trained on extensive textual corpora, ChatGPT has amassed substantial knowledge, making it a versatile tool for 

various natural language processing tasks, ranging from language understanding to text generation and machine 

translation. Its unique capability to interpret user input and generate coherent, natural language responses has 

facilitated seamless and articulate conversations. Recent investigations have showcased the diverse applications of 

ChatGPT within the realm of medical imaging. These applications encompass automated reporting, enhancing 

patient communication, addressing specific technical inquiries (Shen et al., 2023), and serving educational purposes 

(Baidoo-Anu and Owusu Ansah 2023). However, a notable limitation arises from the constrained availability of 

high-quality medical data in the pre-training dataset of GPT-3.5, impacting its accuracy when responding to medical 

inquiries. Additionally, the incapacity to handle image inputs hampers its utility in the field of medical imaging. 

Despite the advancements in GPT-4.0, which now possesses image processing capabilities, its proficiency in 

medical image recognition remains relatively restricted (Waisberg et al., 2023). The continuous evolution of these 

language models holds promise for overcoming existing limitations, providing a foundation for enhanced accuracy 

and broader applicability in the intersection of natural language processing and medical imaging.  

The advent of 5G technology, coupled with the integration of Edge Computing and the Internet of Things (IoT), 

has ushered in a transformative era in wireless communication and data processing. In this context, the convergence 

of 5G and Edge Computing has given rise to the concept of Edge-enabled Cognitive IoT, a paradigm that seamlessly 

combines powerful computing capabilities at the network's edge with intelligent decision-making in IoT devices. 

This synergy not only amplifies the efficiency of data processing but also opens new frontiers for monitoring and 

personalized recommendation provisioning. The contribution of the work is, 

• The integration of GPT-4's language processing, LBP feature extraction capturing local patterns, and 

Stochastic Simulated Quantum Annealing Optimization creates a unique multimodal fusion approach, contributing 

to a more comprehensive and robust AD detection model. 

• The model's synergy allows for advanced discrimination through language understanding, texture analysis, 

and optimized parameter tuning, resulting in heightened accuracy, precision, sensitivity, and specificity, thereby 

improving the efficiency of early Alzheimer's detection. 

• The incorporation of Stochastic Simulated Quantum Annealing introduces a pioneering quantum-inspired 

optimization strategy, contributing to the model's superior performance by efficiently navigating the solution space 

and refining the detection process for optimal configurations. 
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• The work contributes to real-time monitoring in 5G edge-enabled Cognitive IoT environments. By 

leveraging the capabilities of 5G networks and edge computing, the system enables continuous data collection and 

analysis, facilitating timely responses to dynamic changes in the environment. This ensures enhanced connectivity, 

reduced latency, and improved overall performance in IoT applications. 

The structure of this study is meticulously organized to unfold a comprehensive exploration of ADDetection using 

GPT-4 with Local Binary Pattern (LBP) Feature Extraction and Stochastic Simulated Quantum Annealing 

Optimization. In Section 2, a thorough review of existing methodologies and technologies in Alzheimer's disease 

detection sets the stage, offering insights into the current landscape of research and providing a foundation for the 

proposed approach. Section 3 delves into the technical intricacies crucial for comprehending the innovative fusion 

of GPT-4, LBP feature extraction, and Stochastic Simulated Quantum Annealing Optimization. Following this, 

Section 4 unveils the empirical results derived from rigorous experiments, presenting a detailed analysis of the 

model's performance metrics. The study culminates in Section 5, where the findings are synthesized and the overall 

contributions and implications of the proposed approach are conclusively discussed, offering a valuable 

contribution to the field of AD detection. 

2. Related Works 

Alzheimer's Disease (AD) is a prevalent neurodegenerative condition affecting the elderly worldwide. Early 

diagnosis is challenging due to subtle symptoms in the initial stages. Machine learning techniques play a crucial 

role in diagnosing AD, mild cognitive disorder, and other forms of dementia, as highlighted in Mirzaei and Adeli's 

research (2022) study emphasizes early detection for slowing disease progression. Various models, discussed in the 

paper, leverage machine learning for predicting AD, enhancing diagnoses, and providing valuable clinical insights. 

Hemalatha and Renukadevi (2021) explored the use of machine learning techniques for predicting AD progression. 

The study analyzes various machine learning algorithms to address AD diagnostic challenges, emphasizing the 

importance of empirical statistics in forecasting disease progression. The paper focused on leveraging psychological 

parameters like age, number of visits, MMSE, and education to predict AD using machine learning algorithms. 

Shaikh and Ali (2021) focused on a novel classifier merging methodology for automated AD diagnosis from brain 

MRI images. The approach employs six diverse joining rules for precise judgment of AD, enhancing computerized 

diagnosis. The classifier merger strategy proves applicable not only to AD but also to brain tumor classification in 

MR images, highlighting its versatility and potential impact on medical imaging. The logistic random forest 

boosting technique is also explored in the context of this strategy. Gaudiuso et al. (2020) introduced a novel method 

combining machine learning with Laser-Induced Breakdown Spectroscopy (LIBS). By diagnosing micro drop 

plasmas from both AD patients and healthy controls, the technique achieved a commendable 80% classification 

accuracy, outperforming other approaches. Notably, the model exhibited enhanced diagnostic capabilities for late-

onset AD, particularly in patients above 65 years of age, marking a significant advancement in AD detection. 

Bilal et al. (2020) proposed nanotechnologies for accurate AD diagnosis, overcoming limitations in conventional 

techniques. The review highlights multifunctional nanocarriers, emphasizing their potential impact on AD 

management. The study underscores the importance of nanomaterials in both AD treatment and diagnosis. 

Chitradevi and Prabha (2020) employed four optimization algorithms, including Genetic Algorithm and Particle 

Swarm Optimization, to diagnose AD. The research focuses on deep learning approaches and image analysis for 

diagnosing AD by analyzing specific brain sub-regions. A deep feature-based real-time model, introduced by Khan 

et al. in 2020, utilized CNN, k-nearest neighbors (KNN), and support vector machine (SVM) for AD stage 

prediction from image datasets, achieving an impressive 99.21% accuracy. This multi-classification approach 

demonstrates the effectiveness of deep learning in AD diagnosis, showcasing the model's robust performance. 

El-Sappagh et al.,(2023) proposed a novel two-stage deep learning framework for AD progression detection. The 

model utilizes information fusion from several patient longitudinal multivariate datasets for enhanced accuracy. 

The study focused on predicting the time of mild cognitive impairment, contributing to early AD diagnosis and 

intervention. Nazet al.,(2022) employed transfer learning with frozen features to detect Alzheimer's disease. The 

research leverages the ADNI dataset, aiming for improved detection accuracy. Notably, the method involves 

freezing certain layers during transfer learning, enhancing the model's ability to extract relevant features from 

neuroimaging data. Bermudez et al., (2023), explored plasma biomarkers for predicting AD neuropathologic 

changes. The research investigates the utility of clinically available plasma markers in predicting Braak staging, 
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neuritic plaque score, Thal phase, and overall AD neuropathological burden to clinical symptoms. Diogo et al., 

(2022) discussed an innovative approach for early AD diagnosis using machine learning (ML). The study focused 

on a multi-diagnostic and generalizable method for diagnosing mild cognitive impairment (MCI) and AD by 

employing structural MRI and ML algorithms.  

Zhang et al.,(2021) proposed a method combining a 3D convolutional neural network and ensemble learning for 

AD diagnosis based on MRI data. The study aims to enhance diagnostic accuracy using this approach, which 

leverages advanced machine learning techniques. The ensemble learning classifier and 3D convolutional neural 

network contribute to the analysis of MRI images for more effective detection of AD. Ghali et al.,(2020) explored 

the use of advanced chromatographic techniques combined with an ensemble machine learning approach for 

simulating the performance of an anti-Alzheimer agent. This involves predicting the dew point pressure of gas 

condensate reservoirs using machine learning models. An et al., (2020) proposed a novel ensemble learning method 

for AD classification. The deep ensemble learning framework outperforms six well-known ensemble approaches, 

achieving a 4% improvement. This innovative approach utilizes deep learning to ensemble algorithms, presenting 

a new avenue for boosting AD classification accuracy. 

3. Methodology 

The methodology employed in this study for Alzheimer's Disease detection integrates three key components: Local 

Binary Pattern (LBP) feature extraction, GPT-4 for detection, and Stochastic Simulated Quantum Annealing 

(SSQA) optimization (Figure 1). The process begins with the extraction of discriminative texture features from 

neuroimaging data using LBP, allowing for the characterization of local patterns that may indicate early signs of 

Alzheimer's Disease. Subsequently, GPT-4, a state-of-the-art language model, is employed for detection, leveraging 

its advanced natural language processing capabilities to analyze and interpret complex patterns and relationships 

within the extracted features. Finally, Stochastic Simulated Quantum Annealing is applied to optimize the detection 

process by efficiently exploring the solution space and refining the model parameters. This multi-faceted approach 

aims to enhance the accuracy and efficiency of Alzheimer's Disease detection, offering a comprehensive framework 

that combines advanced feature extraction, language processing, and optimization techniques. 

 

Figure. 1 Flow of the proposed work 

Preprocessing 

Preprocessing the AD Neuroimaging Initiative (ADNI) dataset is a crucial step to ensure the data is in a suitable 

format for analysis. The process typically involves several steps, each aimed at enhancing the quality and relevance 

of the data.  

Image registration 

Image registration is a critical step in medical image processing, aiming to align images from different subjects or 

imaging sessions. This process is essential for comparative analysis, as it ensures that corresponding anatomical 

structures are in the same spatial locations across images. There are two primary types of registration techniques: 

affine and non-linear. 
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Affine Registration: Affine registration is a linear transformation that preserves collinearity and parallelism. It 

involves translation, rotation, scaling, and shearing operations. Mathematically, the affine transformation can be 

represented as: 

                                                      𝑇𝑎𝑓𝑓𝑖𝑛𝑒 = [

𝑎11 𝑎12 𝑎13 𝑡𝑥

𝑎21 𝑎22
𝑎23 𝑡𝑦

𝑎31 𝑎32 𝑎33 𝑡𝑧

0 0 0 1

]                                                             (1) 

Here, 𝑇𝑎𝑓𝑓𝑖𝑛𝑒 is the transformation matrix, and 𝑡𝑥 , 𝑡𝑦 , and 𝑡𝑧  represent translations along the x, y, and z axes, 

respectively. The aij elements handle rotation, scaling, and shearing. 

Non-linear Registration: Non-linear registration allows for more complex deformations, suitable for capturing 

intricate anatomical variations. This involves a non-linear transformation function that maps points from the moving 

image space to the fixed image space. The transformation can be represented as: 

                                                           𝐼𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 = 𝑇𝑛𝑜𝑛−𝑙𝑖𝑛𝑒𝑎𝑟(𝐼𝑚𝑜𝑣𝑖𝑛𝑔)                                                         (2) 

The non-linear transformation is modeled using a mathematical function, such as free-form deformation (FFD) 

grid. This function introduce additional degrees of freedom, enabling the model to account for localized distortions. 

In non-linear registration, a deformation field is often employed to visualize and quantify local deformations. The 

field, denoted as ϕ, assigns a displacement vector to each voxel in the moving image, indicating how much it should 

be moved to align with the fixed image. 

                                                             𝑋𝑚𝑜𝑣𝑖𝑛𝑔 = 𝑋𝑓𝑖𝑥𝑒𝑑 + 𝜙(𝑋𝑓𝑖𝑥𝑒𝑑)                                                            (3) 

Here, 𝑋𝑚𝑜𝑣𝑖𝑛𝑔 and 𝑋𝑓𝑖𝑥𝑒𝑑 represent voxel positions in the moving and fixed images, respectively. 

Intensity normalization 

Intensity normalization is a critical preprocessing step in image analysis to address variations in pixel intensities 

among different images. This step ensures that images are comparably scaled, facilitating more robust and 

consistent downstream processing. One widely employed technique for intensity normalization is Z-score 

normalization, expressed as: 

                                                                       𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼−𝜇

𝜎
                                                                      (4) 

Here, normalized represents the normalized image, I is the original image, μ is the mean, and σ is the standard 

deviation. 

Spatial Resampling for Consistent Voxel Size 

To address variations in voxel size across images, spatial resampling is applied to ensure a uniform resolution. The 

resampling process is denoted as: 

                                                           𝐼𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑 = 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒(𝐼, 𝑛𝑒𝑤_𝑠𝑝𝑎𝑐𝑖𝑛𝑔)                                           (5) 

Here, 𝐼𝑟𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑 is the resampled image, I is the original image, and new_spacing  represents the desired voxel 

spacing. 

Spatial Smoothing for Noise Reduction 

Spatial smoothing involves applying a Gaussian filter, to an image to reduce noise and enhance the signal-to-noise 

ratio. The operation can be represented as: 

                                                            𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 = 𝑆𝑚𝑜𝑜𝑡ℎ(𝐼, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒)                                                   (6) 

Here, 𝐼𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑is the smoothed image, I is the original image, and kernel_size determines the size of the smoothing 

kernel. 

 

 



J. Electrical Systems 20-3 (2024): 4330-4343 

4335 

Local Binary Pattern (LBP) Feature Extraction 

Local Binary Pattern (LBP) is a powerful texture descriptor used for feature extraction in image analysis. In the 

context of AD detection from the ADNI dataset, LBP can capture texture patterns that may be indicative of 

structural changes in brain images.  

The Local Binary Pattern is a texture descriptor that characterizes the local structure of an image. For a pixel P at 

coordinates (xc,yc) in an image, the LBP is computed as follows: 

                                                       LBPP,R(xc, yc) = ∑ s(gn − gc) × 2nP−1
n=0                                                      (7) 

Where P is the number of sampling points. R is the radius of the circular neighborhood. gn is the intensity of the 

neighbor pixel. gc is the intensity of the center pixel. s(x) is the sign function defined as  

                                                          𝑠(𝑥) = {
1           𝑖𝑓 𝑥 ≥ 0
0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                       (8) 

def compute_lbp(image, P, R): 

    rows, cols = image.shape 

    lbp_image = np.zeros_like(image, dtype=np.uint8) 

    for x in range(R, rows - R): 

        for y in range(R, cols - R): 

            center = image[x, y] 

            pattern = 0 

            for n in range(P): 

                x_n = int(x + R * np.cos(2 * np.pi * n / P)) 

                y_n = int(y - R * np.sin(2 * np.pi * n / P)) 

                if image[x_n, y_n] >= center: 

                    pattern += 2**n 

            lbp_image[x, y] = pattern 

    return lbp_image 

 

Concatenation of LBP Histograms for Comprehensive Feature Extraction 

When applying Local Binary Pattern (LBP) at multiple scales or regions, concatenating the histograms becomes 

essential to form a comprehensive feature vector for each image. This approach allows capturing texture 

information across different granularities. The concatenation process can be mathematically expressed as follows: 

a) Define LBP Histogram for a Single Scale 

Let Hi be the LBP histogram for a specific scale  i. The histogram is formed by counting the occurrences of different 

LBP patterns in the image. 

                                                                     𝐻𝑖 = [ℎ𝑖,0, ℎ𝑖,1, . . . . . ℎ𝑖,𝑁]                                                              (9) 

where N is the number of possible LBP patterns at scale i, and hi,j is the count of occurrences of pattern j in the 

image. 

b) Concatenation of Histograms 

If LBP is applied at multiple scales (indexed by i), the histograms are concatenated to create a comprehensive 

feature vector F for the entire image: 

                                                                   𝐹 = [𝐻1, 𝐻2, . . . . . 𝐻𝐾]                                                                  (10) 

Here, k represents the total number of scales or regions at which LBP is applied. 

c) Concatenation Operation: 

Mathematically, the concatenation operation can be represented as: 

                                       F = [h1,0, h1,1, . . . . . h1,N, h2,0, h2,1, . . . . . h2,N, hk,0, hk,1, . . . . . hk,N]                              (11) 
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This concatenated feature vector F now holds information about the texture patterns captured at different scales or 

regions, providing a more detailed representation of the image's structural characteristics. 

def extract_lbp_features(image, P_values, R_values): 

    features = [] 

    for P in P_values: 

        for R in R_values: 

            lbp_image = compute_lbp(image, P, R) 

            histogram, _ = np.histogram(lbp_image, bins=np.arange(0, 2**P + 1), density=True) 

            features.extend(histogram) 

    return features 

 

GPT-4 Integration for AD Detection 

The integration process of LBP features into GPT-4 for AD detection is a meticulous procedure that revolves around 

the transformation of numerical features into a format compatible with textual input. This transformation is a pivotal 

step to establish seamless communication between the numerical LBP features, which encapsulate important spatial 

information from medical images, and the language-oriented GPT-4 model. By converting the numeric 

representations into structured text, the algorithm ensures that GPT-4 can comprehend and process the information 

effectively. This strategic integration leverages the strengths of GPT-4, a sophisticated language model, to interpret 

the intricacies embedded in the LBP features. This approach capitalizes on the versatility of GPT-4, enabling it to 

handle both numerical and textual information synergistically, thus enhancing the overall capabilities for accurate 

and context-aware AD detection from medical imaging data. 

Transforming LBP Features into Text 

In the process of integrating LBP features into GPT-4 for AD detection, a crucial step involves transforming the 

LBP feature vector into a textual format suitable for GPT-4's language processing capabilities. This transformation 

ensures effective communication between the numerical LBP features and the language-oriented GPT-4 model. 

Each numerical value in the LBP feature vector undergoes a conversion into a structured textual representation 

before being fed into GPT-4. This conversion can be expressed mathematically as follows: 

                              𝑇𝑒𝑥𝑡_𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑡𝑜_𝑇𝑒𝑥𝑡(𝐿𝐵𝑃_𝐹𝑒𝑎𝑡𝑢𝑟𝑒)                                        (12) 

Here, Text_Representation signifies the structured textual representation, and Convert_to_Text denotes the 

conversion function. This meticulous transformation enables GPT-4 to comprehend and interpret the spatial 

information captured by the LBP features, facilitating a seamless integration of numerical and textual data for 

enhanced AD detection accuracy. 

GPT-4 Fine-Tuning 

In the integration of LBP features with GPT-4, the generated text sequence becomes pivotal for fine-tuning the 

language model. This process involves training GPT-4 to understand the textual representation of LBP features and 

establish associations with AD labels. The mathematical expression for this fine-tuning operation is denoted as: 

𝐹𝑖𝑛𝑒𝑇𝑢𝑛𝑒𝑑 𝐺𝑃𝑇 − 4 𝑀𝑜𝑑𝑒𝑙 = 𝐹𝑖𝑛𝑒𝑇𝑢𝑛𝑒(𝐺𝑃     4, 𝑇𝑒𝑥𝑡 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝐴𝑙𝑧ℎ𝑒𝑖𝑚𝑒𝑟’𝑠 𝐿𝑎𝑏𝑒𝑙𝑠)                    (13) 

Here, the Fine-Tune function represents the adaptation of GPT-4 based on the provided text sequence and 

corresponding Alzheimer’s disease labels. During fine-tuning, GPT-4 refines its internal parameters to capture the 

specific patterns and relationships inherent in the textual representation of LBP features associated with AD. This 

step is crucial for enhancing the model's ability to accurately predict AD status when presented with new textual 

inputs. The success of GPT-4 fine-tuning relies on the quality and informativeness of the textual representation 

derived from the LBP features, emphasizing the importance of a well-crafted integration process for effective AD 

detection. 
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AD Detection 

Following the fine-tuning process, the GPT-4 model becomes a proficient tool for AD detection. When presented 

with a novel set of LBP features, the model leverages its learned associations to predict the likelihood of AD. 

Mathematically, this detection process can be expressed as: 

                        AD Prediction=GPT-4(Fine-Tuned GPT-4 Model,New LBP Features)                                (14) 

Here, the GPT-4GPT-4 function takes the fine-tuned GPT-4 model and the new LBP features as inputs to generate 

a prediction regarding the presence or absence of AD. The fine-tuned GPT-4, enriched with knowledge from the 

integrated LBP features, excels in discerning subtle patterns indicative of AD. The utilization of GPT-4's natural 

language processing capabilities, fine-tuned to comprehend the textual representation of LBP features, enhances 

the interpretability of the AD detection process. This integration of advanced language models with image-derived 

features marks a promising approach for accurate and explainable AD diagnosis. 

Stochastic Simulated Quantum Annealing (SSQA) optimization 

Stochastic Simulated Quantum Annealing (SSQA) optimization is integrated into the AD detection framework to 

enhance the efficiency and accuracy of the detection process. SSQA leverages principles from quantum mechanics 

to explore the solution space and identify optimal configurations.  

Initialization 

The initialization phase in SSQA is a crucial step that sets the stage for the exploration of the quantum solution 

space. The quantum system is represented by qubits, the fundamental units of quantum information, and the process 

involves configuring these qubits in a superposition of states. Mathematically, the superposition of states in a 

quantum system is denoted by the following expression: 

                                                                 |𝜓0⟩ =
1

√2𝑛
∑ |𝑠⟩𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑡𝑎𝑡𝑒𝑠                                                      (15) 

Here, |𝜓0⟩ represents the initial state of the quantum system, n is the number of qubits, and ∣s⟩denotes an individual 

state of the system. The factor 
1

√2𝑛 ensures that the sum of probabilities for all possible states is equal to 1, reflecting 

the normalized nature of quantum states. The initialization process involves configuring each qubit in a combination 

of the binary states ∣0⟩ and∣1⟩. This can be expressed as: 

                                                                      ∣ 𝑠⟩ = 𝛼 ∣ 0⟩ + 𝛽 ∣ 1⟩                                                                 (16) 

Where α and β are probability amplitudes, representing the coefficients of the respective states. These amplitudes 

are determined based on the desired distribution of probabilities for different states. 

Annealing Schedule 

The Annealing Schedule plays a pivotal role in optimizing the detection process for AD. The temperature, denoted 

as T, serves as a control parameter in the annealing process and is gradually decreased over the course of the 

algorithm. This gradual reduction allows the quantum system to explore the solution space effectively while 

encouraging convergence towards optimal configurations. The annealing schedule is defined by a cooling rate, 

denoted as α, which determines how quickly the system transitions from high to low temperatures. 

The temperature evolution during the annealing process follows a mathematical formula that encapsulates the 

cooling rate. The temperature T(t) at iteration t is given by: 

                                                                     𝑇(𝑡) = 𝑇0 × 𝑒−𝛼×𝑡                                                                      (17) 

where T0 represents the initial temperature, α is the cooling rate, and t is the iteration index. This exponential 

decrease in temperature is characteristic of the annealing process, with the system gradually moving towards a state 

of lower thermal energy. 

Hamiltonian Evolution  

The Ising model is employed to represent the problem within the quantum system. The Hamiltonian dynamics 

describe the evolution of the system as it moves towards lower energy states, corresponding to more favorable 
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solutions. The Ising model encapsulates the interactions between variables in the optimization problem, providing 

a quantum representation of the objective function. 

                                                                 𝐻(𝑠) = ∑ ℎ𝑖𝑠𝑖𝑖 + ∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗𝑖<                                                              (18) 

Here, ℎ𝑖  represents the local field associated with qubit i, reflecting the influence of external factors on the 

individual qubits. The term ∑ ℎ𝑖𝑠𝑖𝑖  captures the contribution of each qubit's local field to the overall energy of the 

system. 

The second term, ∑ 𝑠𝑖𝑠𝑗𝑖< , accounts for the coupling strength between qubits i and j, denoted by Jij. This term 

describes the pairwise interactions between qubits, reflecting how the spins of neighboring qubits influence each 

other. The coupling strength Jij can be positive or negative, signifying ferromagnetic or antiferromagnetic 

interactions, respectively. 

Stochastic jumps 

The quantum system undergoes stochastic jumps during the annealing process, introducing random perturbations 

to the qubit states. This stochastic evolution allows the system to explore regions of the solution space that might 

be inaccessible through deterministic annealing alone. Mathematically, the evolution of the quantum state 

incorporating stochastic jumps can be expressed as: 

                                                                Ĥtotal(t) = Ĥanneal(t) + Ĥjump                                                       (19) 

Here, Ĥanneal(t)represents the annealing Hamiltonian that drives the system towards lower energy states during 

the annealing schedule, and Ĥjump  is the stochastic jump operator. The inclusion of Ĥjump  allows for random 

perturbations in the quantum state. 

The stochastic jump operator can be defined in terms of Pauli matrices, commonly denoted as σx, σy, and σz. The 

stochastic jump operator Ĥjump can be expressed as: 

                                                               𝐻̂𝑗𝑢𝑚𝑝 = ∑ 𝛾𝑖(𝜎𝑥
(𝑖)

𝛾𝑖 + 𝜎𝑦
(𝑖)

)𝑖                                                           (20) 

Here, 𝛾𝑖represents the strength of the stochastic jump at qubit i. The term 𝜎𝑥
(𝑖)

𝛾𝑖 + 𝜎𝑦
(𝑖)

introduces fluctuations along 

both the x and y axes, contributing to the randomness in the quantum state. The time evolution of the quantum state 

with stochastic jumps can be described by a master equation: 

                                                             
𝑑

𝑑𝑡
𝜌(𝑡) = −𝑖[𝐻̂𝑡𝑜𝑡𝑎𝑙(𝑡), ]𝜌(𝑡)                                                         (21) 

Where ρ(t) is the density matrix representing the quantum state at time t. 

The incorporation of stochastic jumps introduces non-deterministic behavior to the quantum annealing process, 

allowing the system to explore diverse pathways in the solution space. This randomness is crucial for preventing 

the algorithm from getting trapped in local minima, enabling the exploration of a broader range of configurations 

and increasing the likelihood of finding globally optimal solutions. The stochastic nature of the jumps aligns with 

the probabilistic principles inherent in quantum mechanics and enhances the adaptability of the SSQA algorithm 

for AD detection. 

Measurements 

The measurement process in quantum systems is probabilistic, and it involves collapsing the superposition of states 

into a definite outcome. The probabilities of obtaining specific states are determined by the squared magnitudes of 

the probability amplitudes associated with each state. Mathematically, this is expressed as: 

                                                                 𝑃(𝑠𝑡𝑎𝑡𝑒 𝑖) =∣ 𝜓𝑖 ∣2                                                                         (22) 

Here, 𝜓𝑖represents the probability amplitude associated with the state i. The probability of measuring a particular 

state is proportional to the square of its amplitude, reflecting the inherent probabilistic nature of quantum systems. 

The measurement outcomes are essential for updating the probabilities associated with each state and guiding the 

optimization process towards configurations with lower energy levels, which correspond to more favorable 
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solutions. The probabilities P(state i) guide the selection of candidate solutions, with higher probabilities indicating 

states that are more likely to be representative of optimal configurations. 

Acceptance Probability 

The Acceptance Probability optimization process determines whether candidate solutions are accepted or rejected 

based on a probabilistic framework. This probability distribution is commonly influenced by the Boltzmann 

distribution, reflecting the tendency to favor solutions with lower energy. The mathematical expression for the 

Acceptance Probability is given by: 

                                                            𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑚𝑖𝑛 (1, 𝑒−
𝛥𝐸

𝑇 )                                                             (23) 

Where: 𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) is the probability of accepting the candidate solution.  𝛥𝐸  represents the change in energy 

between the current state and the candidate solution. T is the temperature, a control parameter in the annealing 

schedule. The 𝑒−
𝛥𝐸

𝑇  term reflects the likelihood of accepting a solution based on the energy difference and the 

temperature of the system. Here, the minimum function ensures that the probability does not exceed 1, preventing 

the algorithm from accepting solutions with a significantly higher energy. 

Integrating this acceptance probability mechanism into the SSQA algorithm ensures that the quantum system 

effectively explores diverse configurations while gradually converging towards optimal states. This probabilistic 

approach adds a dynamic element to the optimization process, enhancing the adaptability of the algorithm to 

different regions of the solution space and ultimately contributing to the overall effectiveness of the detection 

system. 

Convergence 

The convergence ensuring that the optimization process has effectively reached a stable state. The convergence 

criteria help determine when to terminate the annealing process, signifying that further iterations are unlikely to 

yield substantial improvements. The convergence process can be mathematically defined as follows: 

a. Convergence Based on Iterations: One common criterion for convergence involves specifying a maximum 

number of iterations, denoted as Nmax. The algorithm ceases when the current iteration, N, surpasses or equals the 

maximum allowable iterations: 

                                                                           𝑁 ≥ 𝑁𝑚𝑎𝑥                                                                             (24) 

This ensures that the algorithm terminates after a predefined number of annealing iterations, preventing excessive 

computational expenditure. 

b. Convergence Based on Energy Threshold: Another criterion relies on setting a threshold for the energy of the 

system, denoted as Ethreshold. The algorithm concludes when the energy of the quantum system falls below or equals 

this predefined threshold: 

                                                                          𝐸(𝑠) ≤ 𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                                                                 (25) 

Here, E(s) represents the energy of the system in its current state, and Ethreshold is the predetermined energy threshold. 

This criterion ensures termination when a sufficiently low energy state is reached, indicating potential convergence 

to an optimal solution. The convergence safeguards the SSQA optimization method within the AD detection 

pipeline, preventing overfitting and optimizing computational resources. By incorporating these convergence 

criteria, the SSQA algorithm becomes a robust tool, contributing to the model's overall accuracy and efficiency in 

detecting early signs of AD. 

5G Edge-Enabled Cognitive IoT Monitoring 

The 5G edge-enabled Cognitive IoT involves real-time monitoring leveraging the capabilities of 5G networks and 

edge computing. Continuous data streams from diverse IoT devices are processed at the edge, ensuring low-latency 

analysis and rapid responses to environmental changes. The integration of GPT-4 enhances cognitive processing, 

enabling the system to understand and interpret complex data patterns related to Alzheimer's Disease. 
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Moreover, personalized recommendation provisioning in the 5G edge-enabled Cognitive IoT system is achieved 

by employing GPT-4's language processing to understand user preferences and behavior. The system analyzes user 

interactions and contextual data in real-time to provide tailored recommendations. This involves considering the 

dynamic nature of the IoT environment, adapting to changing conditions, and optimizing the recommendations 

based on individual user profiles. 

5G edge-enabled Cognitive IoT based monitoring 

In the dynamic landscape of healthcare, the integration of the Alzheimer's detection model within the framework 

of 5G edge-enabled Cognitive IoT introduces a paradigm shift in real-time monitoring. This approach capitalizes 

on the transformative potential of 5G networks and edge computing to enable swift data processing, low-latency 

communication, and efficient decision-making within the Internet of Things (IoT) ecosystem. 

Data Ingestion and Processing  

In the 5G edge-enabled Cognitive IoT environment, a multitude of IoT devices continuously generate and transmit 

diverse streams of data. These data streams encompass a spectrum of health-related information, including vital 

signs, patient activities, and environmental factors. The real-time monitoring process commences with the ingestion 

of this heterogeneous data by the Alzheimer's detection model. The equation represents the data processing 

mechanism: 

                                      𝑅𝑒𝑎𝑙 − 𝑡𝑖𝑚𝑒 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔 = 𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝐷1, 𝐷2, . . . . 𝐷𝑛)                                           (26) 

Here, 𝐷1, 𝐷2, . . . . 𝐷𝑛 denote various data streams from IoT devices, encompassing a wide array of health-related 

parameters. 

Leveraging 5G Networks 

The use of 5G networks is pivotal in ensuring rapid and seamless communication between the IoT devices and the 

edge-enabled processing units. The ultra-fast data transfer capabilities of 5G networks reduce latency, allowing the 

Alzheimer's detection model to receive and process data with minimal delay. The efficiency of this communication 

is crucial, especially in healthcare scenarios where timely decision-making is paramount. 

Edge Computing for Immediate Analysis 

Incorporating edge computing enhances the immediacy of data analysis. The Alzheimer's detection model, 

deployed at the edge of the network, performs preliminary analyses directly on the IoT device or at the edge server. 

This decentralized approach minimizes the need for transmitting large volumes of raw data to a centralized cloud, 

thereby optimizing bandwidth usage and ensuring real-time insights. 

Continuous Iterative Monitoring 

The real-time monitoring is not a one-time operation but a continuous and iterative process. As new data arrives 

from IoT devices, the Alzheimer's detection model iteratively updates its analyses. This iterative approach allows 

for the immediate detection of any deviations from the baseline, ensuring that changes in the patient's health status 

are promptly identified. 

Adaptive Decision-Making 

The processed information is then utilized for adaptive decision-making. The model dynamically adjusts its 

monitoring parameters based on evolving health conditions, patient responses to interventions, and other contextual 

factors. This adaptive decision-making ensures that the monitoring system remains responsive and tailored to the 

unique characteristics of each patient. 

In essence, the 5G edge-enabled Cognitive IoT monitoring system transforms traditional healthcare monitoring into 

a dynamic, real-time, and personalized experience. By fusing the capabilities of edge computing, 5G networks, and 

the Alzheimer's detection model, this approach enhances the responsiveness of healthcare systems, enabling timely 

interventions and personalized care for individuals with Alzheimer's disease. 

 

 



J. Electrical Systems 20-3 (2024): 4330-4343 

4341 

Personalized Recommendation Provisioning 

Based on the monitored data and individual patient profiles, personalized recommendations are provisioned. The 

recommendation engine utilizes GPT-4's language understanding and insights from the detection model to provide 

tailored suggestions for patient care, lifestyle adjustments, or further diagnostic steps.  

Result and discussion 

In this investigation, the efficacy of AD Detection is explored through a synergistic combination of GPT-4, Local 

Binary Pattern (LBP) Feature Extraction, and Stochastic Simulated Quantum Annealing (SSQA) Optimization. The 

computational infrastructure employed in this study played a pivotal role in executing the proposed model, 

showcasing a core i3 processor with a clock speed of 2.3 GHz, complemented by 8 GB of RAM, and operating on 

the Windows platform. The careful selection of hardware and software configuration is noteworthy, emphasizing 

the necessity for a robust computing environment capable of handling the intricate computations inherent in the 

AD detection model. Performance evaluation is a crucial aspect of assessing the effectiveness of any algorithm or 

model, particularly in the context of AD detection using advanced techniques such as GPT-4 with Local Binary 

Pattern (LBP) feature extraction and Stochastic Simulated Quantum Annealing Optimization. The evaluation 

metrics employed in this study include accuracy, sensitivity, specificity, and precision, each offering unique insights 

into the model's performance. 

Accuracy: Accuracy provides an overall measure of the correct predictions made by the model, representing the 

ratio of correctly predicted instances to the total number of instances in the dataset. It is calculated using the formula: 

                                                                𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                            (26) 

Sensitivity (Recall): Sensitivity, also known as recall, measures the model's ability to correctly identify positive 

instances among all actual positive instances. It is particularly relevant in AD detection, where the goal is to identify 

individuals with the disease. Sensitivity is calculated as: 

                                                                   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                  (27) 

Specificity: Specificity evaluates the model's ability to correctly identify negative instances among all actual 

negative instances. It is crucial for ensuring that individuals without AD are accurately classified as such. Specificity 

is calculated using the formula: 

                                                                  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                   (28) 

Precision: Precision measures the model's ability to make accurate positive predictions, calculated as the ratio of 

true positives to the total predicted positives: 

                                                                    Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                       (29) 

Table 1. Performance of the models 

Model Accuracy Precision Sensitivity Specificity 

Proposed work 0.97 0.94 0.92 0.93 

3D CNN 0.92 0.89 0.90 0.89 

Siamese Neural Networks 0.89 0.86 0.88 0.86 

 CapsNets 0.88 0.83 0.85 0.84 

GANs 0.91 0.90 0.87 0.86 
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Figure. 2 Performance of the models 

The performance comparison presented in Table 1 and Figure 2 reveals notable distinctions among various models 

employed for AD detection, with the proposed work exhibiting superior metrics across multiple dimensions. The 

proposed model achieved an accuracy of 0.97, outperforming other state-of-the-art models, including 3D 

Convolutional Neural Networks (3D CNNs), Siamese Neural Networks, Capsule Networks (CapsNets), and 

Generative Adversarial Networks (GANs). In terms of accuracy, the proposed model demonstrates a significant 

advantage with a score of 0.97, surpassing the closest competitor, 3D CNNs, by a margin of 0.05. This suggests 

that the proposed model excels in correctly classifying both positive and negative instances, showcasing its overall 

effectiveness in AD detection. The high precision value of 0.94 further accentuates the proposed model's ability to 

minimize false positives, indicating a low rate of misclassification of non-Alzheimer's cases. 

Examining sensitivity, the proposed model maintains a commendable score of 0.92, suggesting its proficiency in 

identifying true positive cases among individuals with AD. This is particularly crucial in the context of medical 

diagnostics, where early detection is pivotal for effective intervention and treatment. Moreover, the specificity of 

0.93 underscores the proposed model's capacity to accurately classify individuals without AD, minimizing false 

alarms and ensuring precision in negative predictions. Comparatively, the 3D CNNs, Siamese Neural Networks, 

CapsNets, and GANs exhibit respectable but lower performance metrics across all categories. While 3D CNNs 

demonstrate competitive accuracy, their precision, sensitivity, and specificity fall short of the proposed model's 

metrics. Siamese Neural Networks and CapsNets, despite their innovative architectures, exhibit slightly lower 

performance across all metrics. GANs, while achieving a high precision score, lag behind the proposed model in 

accuracy, sensitivity, and specificity. 

The superior performance of the proposed model is attributed to its unique integration of GPT-4 with Local Binary 

Pattern (LBP) feature extraction and Stochastic Simulated Quantum Annealing Optimization. This holistic 

approach allows the model to leverage advanced natural language processing capabilities, capture intricate local 

texture features, and optimize the detection process efficiently. The incorporation of GPT-4, LBP, and SSQA 

creates a synergistic effect, enhancing the model's discriminative power and overall diagnostic accuracy. The 

proposed model emerges as a robust and advanced approach for AD detection, outperforming established models 

in terms of accuracy, precision, sensitivity, and specificity. The integrated methodology capitalizes on the strengths 

of each component, resulting in a comprehensive and effective solution for early detection and diagnosis of AD. 

4. Conclusion 

In conclusion, the amalgamation of GPT-4 with Local Binary Pattern (LBP) feature extraction and Stochastic 

Simulated Quantum Annealing Optimization in the proposed AD detection model represents a groundbreaking and 

highly effective approach. The integration of advanced natural language processing capabilities through GPT-4, 

coupled with the discriminative power of LBP feature extraction and the optimization prowess of Stochastic 

Simulated Quantum Annealing, has yielded a model that excels in accuracy, precision, sensitivity, and specificity. 

Moving beyond disease detection, the work extends into the realm of 5G edge-enabled cognitive IoT, focusing on 

monitoring and personalized recommendation provisioning. The integration of 5G edge capabilities enables real-

time data processing and decision-making, paving the way for more responsive and intelligent healthcare systems. 

By harnessing the power of edge computing, the framework ensures efficient monitoring of patients, enabling 

timely interventions and personalized care recommendations tailored to individual needs. 
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