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Abstract: - Assembly processes involve disparate materials that possess dissimilar resiliencies and therefore are prone to generating 

defective products. Manually performed quality inspection of such products is a time-consuming and susceptible to errors process. The 

emerging computer vision techniques in smart manufacturing can alleviate the need for thorough manually performed quality control. 

Object detection techniques provide crucial localization abilities, thus helping the operators further validate the identified defect with ease. 

In this work, several state-of-the-art object detection models are assessed in a real industrial imagery dataset and with the use of transfer 

learning. EfficientDet D2 is proposed for the identification and the localization of antenna defects that are generated during the assembly 

process. To further enhance the dataset, heavy on-the-fly data augmentation is employed along with synthetic samples generated with the 

use of image processing software. The proposed approach utilizing EfficientDet D2 can increase the Average Precision from 0.90 (at IoU 

0.5) to 0.97 (at IoU 0.3). The overall performance is further evaluated by applying the F1-Score at each confidence score. For conducting 

the experiments, the TensorFlow object detection API is employed. 

Keywords: Deep Learning, Defect Detection, EfficientDet, Smart Manufacturing. 

 

I.  INTRODUCTION 

Assembly operations are vital for the manufacturing process [1]. The assembly of materials and parts with different 

characteristics for the fabrication of the final product is typically one of the most common processes in 

manufacturing lines. In the case of antenna manufacturing, metallic source reflectors are jointed with plastic housing 

to form the final product. Despite the fact that modern manufacturing equipment handles such materials thoroughly, 

incorrect assemblies are highly anticipated due to various reasons. The complexity of the process and the overall 

quality of each distinct element are among the reasons that would be responsible for defective outcomes. On that 

basis, prime quality control is vital for ensuring the manufacturing of high-quality products. 

Manual product inspection in an exclusive manner, is an obsolete strategy, as it induces many limitations, especially 

in large scale productions. To this, computer vision techniques have emerged as a way to handle massive amount 

of information in contemporary manufacturing equipment, in a faster and much more accurate way, compared to 

manual inspection performed by humans. Quality inspection based on computer vision can be described as a 

classification approach which distinguishes compliant from non-compliant to prescribed specifications products. 

As an enhancement of the classification approach, object detection (OD) is the process of estimating the location 

of the defect using a bounding box. This defect detection enhancement clearly poses an advantage when working 

in line with the operator for decision making, as it offers an explanation on what was identified as a defect.  

Nevertheless, defect detection is differentiated from typical OD schemes, in which efforts are mainly focused on 

increasing the mean Average Precision (mAP). Although this metric is essential for OD contests, it doesn’t provide 

insights about the False Positives (FP), and thus its application in a real industrial case entails limitations. In 
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addition, defects classes can be of several shapes, or sparse along the product, in comparison to OD standard 

datasets. Therefore, the overlapping area between ground truth and prediction boxes, or the Intersection over Union 

(IoU) threshold should also be examined. To this, OD needs to be customized based upon the needs of the industrial 

task. 

 

The literature involves two categories for Convolutional Neural Network (CNN) object detectors [2]: 

1) Single stage. These detectors can perform end-to-end object detection in a single shot. They are mostly used 

for real-time applications where fast inference is crucial. Such models are the YOLO [3], EfficientDet [4], 

CenterNet [5], etc.  

2) Two-stage. These algorithms decouple the bounding boxes from the detections. In the first stage, the model 

proposes regions. Then, a dedicated network classifies these Regions of Interest (ROI). They are preferred when 

high accuracy is of high importance at the expense of computational effort, as they are considered slower but more 

accurate than the single-stage detectors [6]. Faster R-CNN [7] is a popular model that belongs in this group. 

Each category has its own pros and cons, yet all require a massive amount of data for efficient learning. However, 

real industrial data are often scarce or imbalanced [8]. This poses a challenge in the development of robust solutions 

with deep learning, and hence transfer learning and data augmentation techniques have been employed in literature. 

TensorFlow Object Detection (TFOD) offers an Application Programming Interface (API) [9] which contains state-

of-the-art pre-trained models. These models were trained on the Common Objects in Context (COCO) dataset [10] 

and are presented in TFOD with their metrics in mAP and inference speed. In addition to the provided models, 

TFOD offers flexibility in the customization of both the processing and the training parameters. Based on the 

presented metrics, an examination of the most promising models is performed in this work for the task of defect 

detection following the assembly of antennas. The EfficientDet models meet the criteria that are essential in real-

time industrial applications, as they combine relatively high mAP with small processing latency.  

The main contribution of this research work is the investigation of OD models from the EfficientDet family (D0 -

D4) and the application of the most efficient one for defect detection in real-time production process. Moreover, 

the antenna assembly generates defects that affect the shape (housing imperfections), the surface (small 

cracks/breaks) and the overall product (cracks/breaks/missing parts). The accurate detection of these defects with 

the proposed approach can greatly improve the production efficiency and the overall quality of the products. In 

addition, the investigated models were further compared to both state-of-the-art single-stage and two-stage detectors 

such as the YOLOv7, the Faster R-CNN and models that were proposed in the literature, to further assess the 

strengths and weaknesses of each model.  

The rest of the paper is organized as follows. The next section introduces the previous work and the basic concepts 

of OD. In the third section, the details of the methodology are further explained. The results of the applied 

methodology are presented and discussed in the fourth section. Finally, the work is summarized in the final section. 

II. LITERATURE AND BASIC CONCEPTS 

A. Related work 

Deep learning OD has been widely used in smart manufacturing with promising results [11]. However, our proposed 

approach has not yet been adequately explored in literature. This ascertainment is based on the results provided 

after a rigorous search conducted by the authors. More specifically, a meticulous search utilizing the following 

combination of keywords “antenna AND (assembly OR manufacturing) AND defect detection” was performed in 

research databases such as Scopus and Google Scholar. Although these search engines gave back a plethora of 

results concerning articles in the field of antenna sensor development for metal quality inspection, these results 

were not relevant to the scope of the current research attempt. In fact, the only pertinent prior work that was found 

belongs to the authors of this manuscript. This prior work along with a literature review regarding defect detection 

methodologies in surfaces and/or materials with the use of EfficientDet is presented herein to further assess the 

abilities and the generalization of these models in the defect detection task.  
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Lite versions of EfficientDets that were developed with the TensorFlow Lite were examined in [12]. In this initial 

work of the authors, the efforts were focused on lowering the computational needs of the EfficientDet algorithms 

in order to be used within edge devices. TensorFlow Lite was used to compress and memory-optimize the original 

EfficientDet models. The derived models, even though capable of being deployed and run in edge devices, produced 

modest detection metrics with the proposed model EfficientDet D2 Lite, which achieved 73.68% AP at 0.5 IoU. 

In another prior work of the authors [13], the advantages of CenterNets were assessed for the same task. In detail, 

CenterNet models with different backbone CNNs were examined. The CenterNet ResNet50 version achieved the 

highest AP of 0.94 at IoU 0.3. To further prove the effectiveness of the proposed OD approach, an accuracy 

comparison was performed with a binary classification approach. The work of [14], investigated the application of 

binary classification in this task further. Their novel method incorporated Fuzzy Cognitive Maps, state-of-the-art 

CNN models and transfer learning. This method enhanced the accuracy of the CNNs and the transparency in the 

decision-making. However, as evidenced by the findings in [13] this binary classification method ultimately 

underperforms compared to the proposed OD approach.   

By utilizing a similar dataset that consisted of antenna images from laboratory measurements, the work of [15] 

proposed a two-phase training strategy to boost the performance of baseline classifiers while maintaining low 

inference times. They employed ResNets in their experiments and each acquired image was split into multiple 

image patches. Subsequently, when a defective patch was recognized by the classifier, its coordinates were used to 

estimate the location of the defect. Their methodology achieved 0.91 AP. Finally, they presented an IoT framework 

using Blockchain deployed in Private Ethereum. 

Regarding the employment of EfficientDets in different domains of defect detection, literature results demonstrate 

that these models are applicable to ultrasonic material inspection [16], fabric [17], packaging [18] and PCB [19] 

defect detection. In the work of [16], the D0, D1 and D2 versions of EfficientDet family were examined. These 

EfficientDets were compared to RetinaNets with different backbone ResNets CNNs and to YOLOv3. The D0 

version was proved to be the most efficient in detecting defects in steel blocks with 89.6% mAP which is a 9% 

increase in the mAP achieved by YOLOv3.  

 In [17], only the lightest EfficientDet version was examined, the D0, as the authors focused on developing an edge-

computing solution with the use of a NVIDIA Jetson TX2 device. Their approach achieved both high mAP (>90%) 

and low latency in the examined datasets as the proposed scheme proved to be 2.5 faster than a cloud-based 

approach. EfficientDet D0 accuracy was compared to single-stage OD models such as YOLOv3, RetinaNet and 

Single Shot Detector (SSD) proving the efficiency of D0. 

The work of [18] leveraged transfer learning and incorporated a channel attention network with the Mish activation 

function into a modified EfficientDet architecture. This approach achieved a mean Average Precision (mAP) of 

99% in detecting defects in packaging bottles, which is a 2% improvement in the current state-of-the-art which 

consists of single-stage models such as YOLOv3/v4, and SSD.  

In [19], the authors employed the EfficientDet D1 architecture for PCB defect detection. They utilized an open 

dataset augmented with data augmentation techniques. Furthermore, they compared their method to established OD 

models, including Faster R-CNN and RetinaNet. Their findings suggest that EfficientDet D1 offers a compelling 

balance between accuracy and speed.  

In addition to the scarcity of research directly addressing antenna manufacturing defect detection, a further 

limitation identified in the existing literature is the restricted use of OD models for comparative analysis. While 

several OD models with diverse properties have been proposed [2] [11], many prior studies restrict their evaluation 

to a limited selection of models within the context of their tasks. Our work aims to provide a more comprehensive 

assessment by comparing the proposed approach with a wider variety of OD models. 

B. Problem Formulation 

The formal expression of the defect detection approach is described in the following. Given a sample set of N 

defected antennas depicted as 2D images, then for each image xi , xi : i ∈ ℕ*, a mapping function is pursued with 

supervised learning to provide an output yi.  
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yi = {(c1, b1, s1), …, (cj, bM, sM)} (1) 

where j ∈ ℕ* is the number of defect classes; b is the bounding box representing the two corner points in the height 

and width of the image [h1, w1, h2, w2]; s ∈ (0,1] is the confidence score of the prediction, and M ∈ ℕ* is the number 

of defects in this sample. 

Learning is performed by minimizing the combination of a classification and a localization loss: 

Total loss = (w1 × classification loss) + (w2 × localization loss) (2) 

where w1, w2 are the assigned weights for biased penalization. The Jaccard Index or the IoU between prediction 

bounding boxes and ground truth is used to assess the True Positives (TP), the False Positives (FP) and the False 

Negatives (FN) predictions, and to define the Precision, Recall and F1-Score classification metrics. The IoU, the 

Precision, the Recall and the F1-Score are defined as: 

IoU = Area of Overlap / Area of Union (3) 

Precision = TP / (TP + FP) (4) 

Recall = TP / (TP + FN) (5) 

F1-Score = 2 × (Precision × Recall) / (Precision + Recall) (6) 

The Average Precision (AP) is employed as primary metric, with AP ∈ [0, 1]. AP is calculated as the Area Under 

Curve (AUC) of the Precision × Recall curve. For competition metrics such as COCO, the AP is the mean across 

10 incrementing IoU values {0.5, 0.95} to reward localization across all classes. In this work, COCO metrics were 

primarily used to evaluate the training. 

C. EfficientDet 

EfficientDet [4] (D0-D7) is a family of single stage OD models targeting efficiency in terms of speed and accuracy. 

It utilizes several optimization and backbone architectures, like the EfficientNet [20] and the bi-directional Feature 

Pyramid Network (bi-FPN), to achieve state-of-the-art AP while being up to 9x smaller than detectors previously 

explored. It is also an approach with considerably less computational costs compared to detectors of prior works. 

EfficientNet is employed as a backbone feature extraction network, since it uniformly scales each dimension with 

a fixed set of scaling factors. The bi-directional Feature Pyramid Network (bi-FPN) is also employed for feature 

mapping. In short, the network receives multiple levels of features from the backbone as input, and outputs a list of 

fused features that represent the most important characteristics of an image. The exploitation of BiFPN improves 

the accuracy by 4%, while reducing the computational cost by 50%, as compared to alternative architectures, such 

as top-down Feature Pyramid Network (FPN) [21] as well as alternative FPNs such as the NAS-FPN [22]. Further 

details on the architecture of the EfficientDet are provided in [4]. 

III. METHODOLOGY  

This section outlines the methodology employed to develop the proposed defect detection scheme utilizing transfer 

learning (Fig. 1). We begin by detailing the dataset and the data acquisition process. Subsequently, the data 

processing steps undertaken to enhance their suitability for the task are described. Finally, the configuration of the 

employed OD models is elucidated. Each of these steps is comprehensively addressed in the following subsections.  

 

Fig. 1. The proposed methodology for antenna manufacturing defect detection 
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A. Dataset 

The employed dataset contains images directly acquired from production and laboratory measurements, using 2D 

area scan cameras. The laboratory measurements were performed under ideal conditions, i.e., uniform background 

color, diffuse top light etc. The cameras used are a FLIR Blackfly S BFS-PGE-200S6C and a Baumer VCXG-

241C. The output resolution of the sensors in width and height are 4401×2898 for the FLIR and 4096 × 3000 for 

the Baumer sensor, respectively. The dataset acquisition was focused on the defected samples that were scarce. 

Overall, the acquired dataset contains 161 defected samples and 25 healthy ones. Furthermore, the majority of the 

defected samples comprise more than one defects, with an average number of 2.5 per image, which further increases 

the variety and the total number of defects.  

The defects were manually annotated with the use of LabelImg software [23] to produce the required xml files in 

the PASCAL VOC [24] format for the TFOD models and in a simple txt format for the YOLOv7. The defect labels 

assigned by experts belong in three groups: a) plastic break, b) metal break and c) housing imperfection. These are 

depicted in Fig. 2. 

 

Fig. 2. Three classes of defects are considered. With red color the metal break, with yellow color the plastic breaks and with green color the 

housing imperfections  

B. Preprocessing 

The adopted data preprocessing strategy encompasses both offline and online methods. Offline methods, including 

data splitting, synthetic data generation, and data transformation, are applied prior to training. Online methods, 

defined during model configuration, involve data resizing and augmentation and are executed at each training 

iteration. For the sake of clarity and organization, all preprocessing methods are presented in this subsection.  

1) Data Split 

Of the defected samples, 80% (131 images) was kept for training and the remaining 20% (30 images) was used for 

testing. Subsequently, a small portion of these training images (20%, 24 images) was used as a separate dataset to 

validate the training procedure. Regarding the healthy samples (25 images), since they cannot be used in training, 

they were merged into the testing defectives to further examine the sensitivity in FPs. It is worth noting that data 

split was performed prior to synthetic data generation, to ensure that testing data were unique and hidden from the 

training stage. 

2) Synthetic Data Generation  

To further enrich the training and validation datasets, an image processing technique was used to mix and deform 

areas. This technique was primarily selected for the generation of rare defect types, such as breaks. By combining, 

inserting, or moving pixel areas from one image location to another, realistic defects were systematically produced. 

An example of this procedure can be seen in Fig. 3. However, only 24 new images (16 for training and 8 for 

validation) were created with this approach so as to prevent potential biases. The synthetic images were added to 

the originals and the overall number of images includes 123 for training, 32 for validation and 55 for testing. 

3) Data Transformation 
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Finally, images and labels were transformed into tfrecord files, a simple format for storing a sequence of binary 

records. This binary format offers advantages in storage memory, pipelines, batch processing etc. when working 

with TensorFlow[25]. 

4) Dimensionality Reduction  

As each model has its own requirements for input dimension and aspect ratio, the resize to the fixed aspect ratio of 

1 was performed on the fly by zero-padding for the larger examined models (D3, D4, Faster R-CNN), and with 

bilinear interpolation for the rest (YOLOv7, D0, D1, D2). Zero-padding offers less training time without affecting 

accuracy [26], whereas bilinear interpolation was chosen to avoid shrinking the input information in small networks.  

5) Data Augmentation 

In addition, heavy data augmentation (DA) was performed on the fly with random adjustments in the color channels, 

in noise and in the structure of the images, at each training step. Apart from increasing the number of images that 

the model is treating, the employed DA also aimed to minimize the differences between the lab and the production 

datasets by inducing noise in images; thus, making the model robust in noisy backgrounds. More specifically, DA 

was performed using random horizontal/vertical flip, random crop/scale [0.5, 2.0], random adjust in 

hue/contrast/brightness/saturation, random RGB to gray, random self-concatenation vertical/horizontal, random 

jpeg quality, and random patch of gaussian noise. In Fig. 4 some arbitrary examples of the data augmentation 

outcomes are presented. These examples were accessed through TensorBoard which is a provided tool by the 

TensorFlow library that enables tracking of the training.  

 

Fig. 3. Examples of synthetic defects 

 

Fig. 4. Examples of random data augmentation processing outcomes 

C. Model Configuration 

TFOD API allows the configuration of the models via the respective pipeline file provided with the pre-trained 

model [9]. The configuration is accomplished through the use of Protocol Buffers which is based on structured data. 



J. Electrical Systems 20-10s (2024):1940-1950 

1946 

As the addressed problem includes three types of defects, the classification problem consists of three classes. In 

addition, the total maximum number of boxes was decreased from 100 (COCO dataset requirement) to 20 due to 

the fact that 20 defects are more than what is anticipated to exist in a single image of the examined dataset. 

Furthermore, the decrease of the total predicted bounding boxes results in faster postprocessing when Non-Max-

Suppression (NMS) [27] is used. The main goal of model performance in the provided application was the 

classification accuracy rather than the localization accuracy. 

The batch size was the first parameter to be adjusted for the EfficientDets to allow efficient, accurate and robust 

performance. The batch size was set to values {1, 1, 2, 4, 8} for each one of the examined versions {D4, D3, D2, 

D1, D0}, respectively, as higher sizes resulted in GPU memory failures. Due to the low batch sizes, the modification 

of the optimizer learning rate and training steps (i.e., gradient updates) was also essential. Since EfficientDets were 

trained on COCO with a batch size of 128, the same learning rate with smaller batch sizes resulted in training 

failure. 

Following the original implementation of EfficientDets, the cosine decay learning rate and the momentum optimizer 

were used. The learning rate base was decreased from 0.08 to 0.004 while the warm-up learning rate was decreased 

from 0.001 to 0.0002. The maximum number of training steps during experiments was set to 120k. Regarding 

anchors, aspect ratios of 0.25 and 4.0 were added to the primary sizes {0.5, 1.0, 2.0}. For regularization purposes, 

a dropout with 0.3 probability was inserted into the box predictor. In addition, a higher weight (×1.2) was given to 

the sigmoid focal classification loss [28] instead of the Huber’s (smooth L1) localization loss [29], to further 

penalize misclassifications. The focal loss is a modified version of the cross-entropy loss that performs well with 

class imbalance. Finally, transfer learning was performed in TFOD by fine-tuning all layers. 

The NMS [27] algorithm was employed as a post-processing step to discard overlapping predictions of bounding 

boxes that belong to the same class. The algorithm calculates the IoU between predictions of the same class; if the 

IoU is higher than a predefined threshold only the prediction that has the highest confidence threshold is returned. 

Overlapping of defects was not anticipated in this task, therefore IoU was given the value of 0.3. Thus, on the 

occasion that defects overlap, even partially, the predictions of defects are considered that indicate the same defect. 

IV. RESULTS AND DISCUSSION 

All the experiments were performed in a workstation equipped with an Intel Core i9-11900KF @ 3.5GHz CPU, 16 

GB RAM and NVIDIA GeForce RTX 3080 Ti with 12GB of GDDR6X memory, running Windows 10 

Professional. The software was implemented in the Python language with the TFOD API (TensorFlow v.2.9.1).  

The experimentation process involved the initialization and the training of several separate model instances to 

acquire the proper hyperparameters and the best weights for each model. The minimum IoU value in OD metrics 

of 0.5 was compared with a smaller IoU threshold of 0.3 to emphasize the classification potentials of the model by 

allowing the localization to be less precise. The EfficientDet models were further compared to state-of-the-art 

single-stage and two-stage detectors. For the former category, the lightweight CenterNets of [13] and the YOLOv7-

x were examined which were designed for real-time processing. For the latter, the well-known Faster R-CNN model 

with the Inception ResNet [30] as a backbone network was exploited. Regarding YOLOv7-x, the PyTorch official 

edition was utilized. The anchors in YOLOv7 were initialized based upon the K-means algorithm as in the original 

implementation, whereas the EfficientDets and the Faster R-CNN shared the same anchor parameters. In addition, 

the Faster R-CNN was modified to have 100 region proposals to be more time-efficient without sacrificing 

accuracy, as suggested in [9]. 

The best-performed models along with their values on the following performance metrics are depicted in Table 1. 

F1-score was calculated for each confidence score, and its highest values for each IoU are presented below. The 

minimum confidence score was set to 10%, meaning that below this score all the predictions are considered FPs 

and are omitted. The latency is calculated for both GPU and CPU processing, considering the potential hardware 

limitations in an industrial implementation. As far as the average inference speed estimation is concerned, it should 

be noted that the time needed for the first image is ignored due to internal resources initialization. Moreover, time 

per training step is calculated as a metric for the training duration which depends on the batch size, the architecture 

of the network and the preprocessing parameters that are performed on the fly.  
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The examined models of Table 1 can be divided in two categories based on their speed/accuracy trade-off for further 

assessment. The first category involves the lightweight models such as the CenterNets, the YOLOv7-x and the 

EfficientDets D0-D1. It is observed that the 13ms GPU latency of the YOLOv7-x indicates real-time 60 Frame Per 

Second (FPS) detection. However, the YOLOv7-x underperforms in defect detection abilities, as the low AP and 

F1-score sets limitations on industrial implementation. Regarding the D0 and D1 models, their metrics are mediocre 

for this task. In contrast, the best trade-off for this category is offered by the CenterNets from previous work, as 

they achieved the highest combination of F1-Score and AP among the lightweight models, and the fastest CPU 

inference. For the second category and the heavier models, it is evident that EfficientDet D2 has an advantageous 

performance. The AP of 0.97 indicates high detection capabilities, whereas F1-score implies model robustness 

against FPs. Furthermore, the time required for processing is less than a second even for CPU running, which means 

that the model can be implemented in the examined production process without any hardware limitations. Even 

though EfficientDet D3 and D4 are advanced versions, they failed to surpass D2, in terms of performance. Similarly, 

the two-stage Faster R-CNN detector despite achieving the second highest detection metrics, requires considerable 

processing time especially for CPU hardware. To this end, the CenterNet MobileNetV2, the CenterNet ResNet50, 

and the EfficientDet D2 are the most promising models for the requirements of this task. However, EfficientDet D2 

is preferred as it exceeds over CenterNets in AP and F1-score, with a substantial difference, though. 

Table 1 Performance metrics of the examined models. With bold the best metrics. 

Model 

AP @ 

0.5 

IoU 

F1-Score 

@ 0.5 IoU 

AP @ 

0.3 IoU 

F1-Score 

@ 0.3 

IoU 

Latency 

GPU (ms) 

Latency 

CPU (s) 

Time 

per step 

(s) 

Batch 

size 

CenterNet 

MobileNetV2 [13] 
0.80 0.86 0.93 0.93 26 0.17 3.1 16 

CenterNet ResNet50 

[13] 
0.88 0.89 0.94 0.94 28 0.19 3.0 8 

YOLOv7-x 0.81 0.80 0.82 0.81 13 0.64 2.4 8 

Faster R-CNN 0.85 0.89 0.94 0.96 112 1.70 1.3 2 

EfficientDet D0 0.60 0.74 0.84 0.86 57 0.19 0.7 8 

EfficientDet D1 0.78 0.80 0.89 0.90 65 0.47 0.9 4 

EfficientDet D2 0.90 0.93 0.97 0.98 98 0.65 0.6 2 

EfficientDet D3 0.84 0.89 0.92 0.96 128 1.16 0.6 1 

EfficientDet D4 0.84 0.87 0.91 0.94 191 1.80 0.8 1 

An insight of the training process is given in Fig. 5 which illustrates losses, in both training and validation. It is 

observed that the training curve of the EfficientDet D2 is fluctuated compared to the validation curve and the 

CenterNet MobileNetV2 training curve that are considerably smoother. This happens due to the low batch size of 

2 that was used in training and resulted in noisy learning. In addition, it is observed that both classification and total 

loss present high similarity with respect to the higher weight that was passed to the classification loss. 

A critical issue that needs to be elaborately investigated is the determination of the confidence threshold to filter 

out FPs. FPs with high confidence thresholds indicate models’ sensitivity to misclassifications. On that basis, AP 

needs to be calculated and further assessed through the Precision×Recall curve so that the proper threshold for 

filtering FPs is revealed. This can be attained by ranking the model’s total detections in a descending order of their 

confidence scores achieved in the test dataset, thus revealing where the highest metrics occurred. Each detection is 

classified either as TP or FP based on the selected IoU threshold, and then the accumulated TP (Acc TP) and FP 

(Acc FP) for each score are calculated. However, AP, as previously stated, cannot provide adequate insights 

regarding the FP performance. For this reason, F1-Score is also calculated for each score. Instances of confidence 

scores in descending order for the EfficientDet D2 are depicted in Table 2. In more detail, the optimum combination 

of the best AP and F1-score occurs in the 85th detection for the EfficientDet D2. Thus, the confidence score of this 

prediction can be defined as a threshold for filtering detections. Moreover, the proper confidence threshold for 
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filtering EfficientDet D2 detections can be pursued in between 0.25 and 0.19, where the former minimizes the FPs 

whereas the latter increases the detection ability. 

Table 2 Order where the highest metrics (in bold) were appeared in the test dataset predictions for the EfficientDet D2. 

Nr. 

Detection 

Confidence 

score 
IoU TP FP 

Acc 

TP 

Acc 

FP 
Precision Recall AP 

F1-

score 

83 0.27 0.6 ✓ - 83 0 1.0 0.95 0.95 0.98 

84 0.24 0 - ✓ 83 1 0.99 0.95 0.95 0.97 

85 0.19 0.7 ✓ - 84 1 0.99 0.97 0.97 0.98 

 

Fig. 5 The losses of the EfficientDet D2 and the CenterNet MobileNetV2 of [13]. Training loss in orange and Validation loss in blue. 

Regarding the necessity for a lower IoU value (at 0.3) resulting in accurate defect detection, as presented in Table 

1, this can be further explained by visualizing TP detections of the experiments with such low IoU values (Fig. 6). 

 

Fig. 6 The qualitative results of detections that have IoU <0.5. In the first and the third images break detections are presented, whereas housing 

imperfections are presented in the second and the last. 

As for the breaks, the model struggled to correctly locate such defects since there is no consistency in their shape 

and size. This also happens in the case of housing imperfections. Experts annotated the defects at the points where 

either the cap was deformed by rough edges or tiny cracks occurred from poor insertion. In most of the cases, these 

deformations mostly occurred at the point of insertion, whereas on some occasions such as the one in the last image, 

both edges of the cap were deformed. Thus, the whole cap was annotated as defected. However, only the point with 

the most noticeable deformation provided a more robust output of the model, thus resulting in lower IoU.  
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V. SUMMARY 

This work examined the process of defect detection following the assembly of antennas in a real industrial dataset, 

implementing an efficient methodology based on state-of-the-art object detection models. The proposed approach 

involved synthetic samples as well as heavy data augmentation to further enrich the limited samples. Subsequently, 

state-of-the-art models were assessed with transfer learning to alleviate the scarcity of this dataset and to explore 

and determine proper detectors of high accuracy and low latency for the task of defect detection. EfficientDet D2 

is proposed in this study as a particularly efficient classification model, which can achieve an AP of up to 97%, 

when lowering the IoU threshold to 0.3. The near-real-time inference execution speed of 98 ms in GPU and 650 ms 

in CPU indicates satisfying compliance with the requirements of the production times. To highlight the efficiency 

of the proposed methodology and assess its performance, the proposed model was examined side by side with other 

EfficientDet versions and other state-of-the-art models such as CenterNet variants, the Faster R-CNN and the 

YOLOv7.  

Future work will be oriented toward the inclusion and testing of more defected samples. Therefore, possible 

limitations of the current approach regarding data scarcity will be eliminated. Furthermore, in the development 

stage, data transmission latency as well as the overall integration of the scheme on cloud and edge devices will be 

further assessed. This assessment may uncover potential limitations in the proposed model, particularly regarding 

inference execution speed and the time required for near-real-time monitoring. 
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