A Comprehensive Review on Diabetic Retinopathy Detection Techniques using Neural Network Architectures

Abstract: Diabetic retinopathy (DR) is a significant complication arising from diabetes, affecting the eyes and potentially causing vision loss if not identified and addressed promptly. Over the years, there has been a significant advancement in the field of DR detection, primarily driven by advancements in imaging techniques and machine learning algorithms. This review paper presents a comprehensive overview of different techniques and advancements in the detection of diabetic retinopathy using deep learning and several neural network architectures. The comparative study of the existing datasets for the DR detection with the benefits, challenges and possible solutions for each dataset is also provided. The paper discusses the methods, preprocessing, implementation platforms and results of various implementation of CNN architectures like Deep CNN, CNN with Transfer Learning, Capsule Networks and DNN. The objective of this paper is to furnish researchers and clinicians with a thorough understanding of the present status of diabetic retinopathy detection, highlight the strengths and limitations of existing approaches, and identify future research directions in this vital area of healthcare.

Keywords: Image Classification, Diabetic Retinopathy, CNN, Transfer Learning, Capsule Network.

1 INTRODUCTION

DR is a progressive condition characterized by microvascular changes leading to retinal ischemia, increased leakage in the retinal blood vessels, neovascularization, and macular edema [1]. Without intervention, individuals with DR may experience significant visual impairment [4]. In developed nations, DR stands as a leading cause of blindness among individuals of working age, exerting a substantial economic impact on society, particularly on healthcare systems [1,2].

In 2015, diabetic retinopathy contributed to 1.07% of cases of blindness and 1.25% of instances of moderate to severe visual loss. Despite worldwide efforts over the past two decades to reduce visual damage, there has been a significant 25% rise in the prevalence of diabetic retinopathy. This increase is linked to a simultaneous rise in the absolute number of individuals affected by diabetic retinopathy (DR), paralleling the rise in diabetes mellitus (DM) cases. [3].

Proper precautions play a crucial role in slowing down the progression of diabetic retinopathy, thereby preserving vision and maintaining overall eye health. Regular monitoring and early detection can significantly impact the outcome and quality of life for those at risk.

Automated systems for diabetic retinopathy (DR) detection utilize artificial intelligence (AI) and machine learning algorithms. The primary objective of these systems is to aid healthcare professionals in promptly and accurately identifying diabetic retinopathy in patients.

2 MOTIVATION

The progression of diabetic retinopathy unfolds from a mild, non-proliferative stage to moderate and severe non-proliferative diabetic retinopathy (NPDR), eventually advancing to proliferative diabetic retinopathy (PDR). The progression of vision-endangering diabetic retinopathy emerges from diverse mechanisms, encompassing macular edema, macular ischemia, bleeding from newly formed vessels, and the contraction of accompanying fibrous tissue. This process culminates in tractional retinal detachment.

Within the medical domain, image processing assumes a pivotal role in disease diagnosis. The extraction of relevant information from intricate arrays of images presents a substantial challenge. Recognizing that effective management can prevent over 90% of cases of visual impairment, it becomes crucial to systematically categorize,
classify, and stage the severity of DR to establish appropriate therapeutic interventions. [3]. The growing prevalence of diabetes and its consequences Emphasis on Necessity for Precautions. Efficient and automated systems can assist clinicians in the detection and classification of diabetic retinopathy.

Traditionally healthcare professionals visually inspect retinal images and grade them based on the presence and severity of diabetic retinopathy lesions [3]. This method is subjective and demands a considerable amount of time. Neural networks can be trained to exhibit high sensitivity, enabling them to detect subtle and early signs of diabetic retinopathy that may be challenging for human observers to identify.

3 DIABETIC RETINOPATHY DETECTION DATASETS

3.1 Diabetic Retinopathy Datasets Overview

To facilitate the detection of diabetic retinopathy and contribute to the progress of computer-aided diagnosis systems, various datasets related to diabetic retinopathy have been made accessible. These datasets primarily comprise retinal images along with ground truth annotations. This enables researchers to train and evaluate their neural network algorithms for the early identification and classification of diabetic retinopathy.

Diabetic retinopathy dataset available on Zenodo is compact, comprising 757 color fundus images categorized into seven classes as detailed below: 187 images depicting No Diabetic Retinopathy (DR) signs, 4 images representing Mild or early Non-Proliferative Diabetic Retinopathy (NPDR), 80 images depicting Moderate NPDR, 176 images illustrating Severe NPDR, 108 images representing Very Severe NPDR, 88 images showcasing Proliferative Diabetic Retinopathy (PDR), and 114 images displaying Advanced PDR [4].

Diabetic Retinopathy Detection Competition dataset [5] provided by Kaggle, is publicly accessible. This dataset comprises both resized and cropped images and represents a modified version of the Diabetic Retinopathy Kaggle competition dataset. This dataset is currently widely used by researchers. Table 1 displays sample images from five distinct categories within this dataset.

Table 1. Comparison of 5 levels of images from images from eyePACS Dataset

<table>
<thead>
<tr>
<th>DR 0</th>
<th>DR 1</th>
<th>DR 2</th>
<th>DR 3</th>
<th>DR 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

APTOS Eye Pre-processing in Diabetic Retinopathy dataset is available on Kaggle. This dataset was created for APTOS 2019 Blindness Detection competition [6]. It is one of the largest datasets among all the datasets used by several researchers, with the images belonging to 5 categories.

Eye-diseases-classification dataset is also accessible from Kaggle. This is an almost balanced dataset consists of 1074 Normal images, 1098 Diabetic Retinopathy images, 1038 Cataract and 1007 Glaucoma images of eyes for Diabetic Retinopathy [7].
3.2 Diabetic Retinopathy Datasets Comparisons

The datasets discussed in 3.1 differ in terms of entire size of the dataset, no. of images, no. of classes, range of image size and image dimensions. Thus, advantages, difficulties and probable resolutions linked with each dataset also differ. The benefits, challenges and possible solutions associated with each dataset is represented in Table 2.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Benefits</th>
<th>Challenges and Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zenodo [4]</td>
<td>- Smallest dataset with few images belonging to each class.</td>
<td>- Due to the limited number of samples, the model's performance on a small dataset may have higher variance.</td>
</tr>
<tr>
<td></td>
<td>- Requires less time for model training thus allows faster experimentation, iteration and model development.</td>
<td>- Model performance can fluctuate significantly depending on the specific samples included in the training set; which makes it challenging to determine the true performance of the model.</td>
</tr>
<tr>
<td></td>
<td>- Beneficial when time or computational resources are limited.</td>
<td>- Techniques such as data augmentation, transfer learning, and regularization can be applied to improve model performance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Leveraging pre-trained models can help to compensate for the limited sample size and enhance the model's ability to generalize.</td>
</tr>
<tr>
<td>eyePACS [5]</td>
<td>- The largest datasets in terms of no. of images</td>
<td>- It is an imbalanced dataset, with maximum no. of normal retinal images and relatively minimum Proliferative DR images.</td>
</tr>
<tr>
<td></td>
<td>- Provides sufficient training data for neural networks, resulting in better generalization, improved accuracy, reduced overfitting, enhanced robustness, better representation learning and support for complex models.</td>
<td>- Imbalanced datasets can lead to biased model performance, especially when evaluating accuracy.</td>
</tr>
<tr>
<td></td>
<td>- Supports models to be adaptable and capable of handling real-world variations</td>
<td>- To mitigate the disadvantages of imbalanced datasets, various techniques can be employed, such as resampling methods like under sampling or oversampling, generating synthetic samples, using different cost functions, or applying ensemble methods.</td>
</tr>
<tr>
<td>APTOS 2019 Blindness Detection [6]</td>
<td>- Provides fundus images with maximum resolution, thus it can have the advantage of improved feature extraction and reduced information loss.</td>
<td>- Larger image sizes may lead to longer training times. Hence, a trade-off between resolution and computational efficiency needs to be considered based on the specific application and available resources.</td>
</tr>
<tr>
<td>Eye-diseases-classification [7]</td>
<td>- The only balanced dataset, discussed in this paper.</td>
<td>- It is comparatively a small dataset.</td>
</tr>
<tr>
<td></td>
<td>- By balancing the dataset, the neural network is less likely to exhibit any biases and can provide fair and unbiased predictions across all the classes.</td>
<td>- Transfer learning can be employed as a solution, leveraging pre-trained models trained on large datasets. By fine-tuning these pre-trained models on the small dataset, the network can benefit from the learned features while adapting them to the specific task. This approach enables effective training even with limited data.</td>
</tr>
<tr>
<td></td>
<td>- It enables accurate evaluation of the model's performance using metrics such as accuracy, precision, recall, F1-score or area under the receiver operating curve.</td>
<td></td>
</tr>
</tbody>
</table>
Numerous researchers in the diabetic retinopathy detection domain have designed models employing neural network architectures. A Convolutional Neural Network (CNN) is a fundamental architecture used by several researchers.

The CNN architecture typically consists of multiple convolutional layers followed by pooling layers and fully connected layers [8]. The convolutional layers conduct feature extraction through the convolution of filters across input images to detect relevant patterns and structures. CNNs automatically learn features from the retinal images during the training process. The initial layers of the network capture basic features such as edges, lines, and textures, while deeper layers focus on higher-level features and semantic representations that are pertinent to diabetic retinopathy.

Once the CNN has been trained, it can be used to identify the severity level of unseen retinal images. This is typically done using softmax activation at the output layer, which assigns probabilities to each class. The CNN model, after training, undergoes evaluation on an independent test dataset to measure its performance. Metrics such as accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC-ROC) are commonly used to evaluate the model's ability to detect and classify DR accurately. If the CNN model performs well during evaluation, it can be deployed as a tool to assist ophthalmologists in diagnosing and monitoring DR. It can analyze retinal images and provide an objective assessment of DR severity, aiding in early intervention and treatment decisions.

Implementation is done in TensorFlow and Keras by several researchers. TensorFlow is an open-source deep learning software library for defining, training and deploying machine learning models [9] Keras is a widely used TensorFlow extension libraries [10], written in Python. A method specific literature survey for DR detection is shown in the Table 5 including preprocessing techniques, datasets, implementation platforms and the results.

Table 3. Method Specific Literature Survey

<table>
<thead>
<tr>
<th>Model</th>
<th>Authors</th>
<th>Methods, Dataset, Implementation and Results</th>
</tr>
</thead>
</table>
| Deep CNN | Junjun et al. [11] | Pre-processing:
- Resized images to dimensions of 256x256
Method:
- Extracts (Regions Scoring Map) RSM from an image by a Fully Convolutional Network
- RSM is designed to identify various lesions, encompassing hard exudates, soft exudates, haemorrhages, and newly formed abnormal blood vessels, while highlighting these specific lesion areas
Dataset:
- The Fully Convolutional Network is structured on the ResNet18 model
Implementation:
- EyePACS dataset downloaded from the Kaggle.
Results:
- Accuracy: 78.4%
- Precision: 84.09% |
<p>| Deep | Darshit | Pre-Processing: |</p>
<table>
<thead>
<tr>
<th>CNN et al. [12]</th>
<th>- ImageMagick data pre-processing techniques using OpenCV Python library</th>
</tr>
</thead>
</table>
| Method: | - Convolutional Layer
| | - Max pooling with a filter size of 2x2
| | - Dropout Layer
| | - Hidden Layers Leaky Rectifier and Feature Pooling Layers |
| Dataset: | - EyePACS dataset downloaded from the Kaggle |
| Implementation: | - Training process NVIDIA GeForce GTX 780 series GPU with 3GB of RAM |
| | - Deployed on a machine equipped with an Intel Core i3 processor and 8GB of RAM. |
| | - Theano library is used to interface with the GPU. |
| | - Python libraries Lasagne and Nolearn for training of the deep network.|
| Results: | - Quadratic weighted kappa metric score: Achieved a quadratic weighted kappa metric score of 0.386 and the ensemble of three similar models further improved the score to 0.3996 |

| Pre-processing | - Implemented procedures for Black Box removal and image operations such as resizing, augmentation, green channel extraction, and image enhancement |
| Method: | - U-Net segmentation technique combined with region merging and Convolutional Neural Network |

Sairaj et al. [13]	- EyePACS Diabetic Retinopathy database provided by Kaggle
	- Employed images acquired through a diabetic retinopathy screening program in The Netherlands.
	- Utilized the DRIVE database containing images of individuals aged between 25 and 90 years.
	- Incorporated 700 images for each class in the dataset to overcome the problems related to over fitting.
	- The images are segmented manually.
Results:	- Accuracy: 93.33%

Ratul et al. [14]	- Following layers were used for CNN model architecture:
	Convolutional Layer, Activation Layer, Max pooling Layer, Dropout Layer, Fully Connected Layer and Classification Layer
Dataset:	- EyePACS dataset downloaded from the Kaggle
Implementation:	-
- Using Theano, a Python open-source numerical computation library
- Employed ImageMagick’s convert tool to remove extraneous spaces from the sides of the images.
- Conducted training on a high-performance GPU

Results:
- Accuracy: 95% for Binary classification
- Accuracy: 85% accuracy for multiclass classification
- Kappa score: 0.74

CNN with Transfer Learning

Harry et al. [15]

Method:
- CNN architecture and data augmentation
- Maxpooling
- Implemented dropout on dense layers to decrease the effect of overfitting
- Softmax activation function for classification
- Applied L2 regularization on weight and biases
- Initialized network with Gaussian initialization to accelerate initial training.
- Enhanced the model by widely accepted categorical cross-entropy loss function for optimization

Dataset:
- From the Kaggle

Implementation:
- NVIDIA K40c, a High-end GPU for the training of the network
- NVIDIA CUDA Deep Neural Network library for GPU learning.

Results:
- Accuracy 75%
- Specificity 95%
- Sensitivity 30%

CNN

Othmane et al. [16]

Method:
- CNN architecture for image classification
- MobileNet Architecture using a transfer learning approach coupled with a self-attention mechanism
- Utilized Gradient-weighted Class Activation Mapping (Grad-CAM) to accentuate crucial regions in the OCT for prediction

Dataset:
- Messidor dataset

Implementation:
- Keras 2.3.1 with TensorFlow 2.04

Results:
- Accuracy 98%
- Specificity 98%
- Sensitivity 98%

DNN

Zhentao et al. [17]

Pre-processing:
- Size Normalization
- Shape Normalization
Color Normalization
Augmentation

Method:
- Inception-V3 network as a core model.
- Softmax output layer for classification in four categories

Dataset:
- The development was undertaken by the authors from three clinical departments—the Ophthalmology Department, Health Management Center, and Endocrinology & Metabolism Department—in Sichuan Provincial People's Hospital, a prominent institution in Ophthalmology in Sichuan Province in China.
- Introduced initial diagnostic services for diabetic retinopathy to multiple hospitals.

Results:
- Accuracy: 88.72% for a four-degree classification.
- During the clinical evaluation, the system demonstrated a concordance rate of 91.8% when compared with analyses by ophthalmologists.

Capsule Networks

Gaurav et al. [19]

Preprocessing:
- Most of the dark space is removed by identifying the center and radius of the eye retina image.
- The images found entirely black or very close to being entirely black were manually excluded from the dataset.

Method:
- DRDNet with a layer of primary capsules network.
- The hidden layer comprises two primary components: the convolution layer and the capsule layer.
- ReLU convolution layer
- Capsule layer
- Digicaps layer

Implementation

- Implementation and training using NVIDIA CUDA architecture.
- The system includes uses NVIDIA GPU with DDR6 Memory of 8GB, AMD Ryzen processor 2700x processor with eight cores and 32 GB RAM.
- Keras API in TensorFlow

Results:
- Accuracy for healthy retina 97.98%, stage 1 fundus images 97.65%, stage 2 fundus images 97.65% and stage 3 fundus images 98.64%
- Sigmoid activation function

Dataset:
- From the Kaggle competition and APTOS 2019 Blindness Detection competitions is used.

Implementation:
- The model is trained using Python on Nvidia DGX II.
- The implementation of the proposed framework utilized specific Python modules, including Keras version 2.2.4, TensorFlow-gpu version 1.14, Seaborn, and Scikit-learn

Results:
- Accuracy: 80.59%

5 CONCLUSION

Neural network based identification of diabetic retinopathy holds immense potential in improving the efficiency and accessibility of DR screening programs. Overall, the combination of advanced imaging techniques, machine learning algorithms and CNN architectures have shown promising results in the identification of severity level of Diabetic Retinopathy, contributing to improved patient care and potentially reducing the risk of vision loss associated with this condition. Further research can be carried out to overcome the existing challenges and translate these technological advancements into routine clinical practice, ultimately benefiting patients with diabetes and reducing the burden of vision loss.

References

