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Abstract — In this paper adaptive sliding mode controller (ASMC) is designed based on the kinematics of the wheeled mobile robots, 

while the second controller graph velocity based sliding mode controller (GVSMC) is designed based on dynamic behavior of wheeled 

mobile robots (WMR). Finally, adaptive neuro-fuzzy inference system (ANFIS) obstacle avoidance algorithm is used to generate a control 

signal and integrated with control signal of the GVSMC. These combined control action derives WMR for efficient path tracking and 

obstacle avoidance. Both controller ASMC and GVSMC guarantees stability of the system. Lyapunov stability is used in derivation of both 

control algorithms to ensure the stability. Proposed ASMC-GVSMC controller shows efficient performance for various path tracking over 

conventional sliding mode control and, Iterative learning control, and PID controller. Performance of the controllers are measured by the 

performance index IAE, ISE, STD of tracking error. Performance index simulation results using MATLAB / Simulink show that proposed 

control algorithm improves the performance of WMR for path tracking significantly. Proposed ASMC-GVSMC controller outperforms to 

the other existing sliding mode controller, iterative control and PID in navigation in obstacle environment. 

Keywords: Sliding mode controller, Iterative learning, adaptive sliding mode controller, wheeled mobile robot (WMR), 

adaptive neuro-fuzzy inference system (ANFIS) 

 

 

   I.  INTRODUCTION 

The system of robot manipulators is strongly coupled, time-variant, and nonlinear. Hochpräzise manipulations have 

attracted both academic and industrial interest in recent years. When it comes to manipulator joint tracking, 

researchers have made a number of breakthroughs. Several control algorithms have been proposed, including: 

sliding mode, adaptive, resilient, and iterative learning control. Control methods like feedback linearization, model 

predictive control, etc. were proposed in the paper. Prior control approaches, on the other hand, were only possible 

when the dynamics models were well-understood and understood. Unfortunately, obtaining the exact dynamic 

model in practice is extremely difficult or even impossible. Deshalb replacing a complex robot system's dynamics 

model with a rough one can be beneficial for several reasons. Firstly, complex dynamics models can be 

computationally intensive and may not be suitable for real-time applications or on resource-constrained hardware. 

A time-variant complex robot system may also have unknown disturbances. The working process on this study 

takes for several years [5-6]. 

For an exoskeleton robot, the Sliding mode controller (SMC) law can be applied using a fractional order operator 

or a fuzzy neural system because it is robust against external disturbances and unmolded dynamics. Aside from 

that, it has a high-performance trajectory tracking system. When it comes to SMC design, which selects a suitable 

sliding mode surface [7]. A number of advantages of SMC include its robustness to parameter variations and its 

insensitivity to disturbances, to name a few, are two examples. The SMC's job is to steer and maintain the system's 

trajectory on a sliding surface that has been predetermined in state space. Both adaptive and sliding mode control 

can be used in practice. Flexible structures' vibrations have been controlled by some adaptive sliding mode 

controllers based on smart materials [8]. 

As a result of its robustness, ease of implementation, and design implications, SMC has become a popular tool for 

dealing with uncertainty and disturbances. Uncertainty and disturbances can only be solved by using an extremely 

powerful switch, friction between mechanical components and high temperatures in the power circuit [9]. To be 

sure, there are many shortcomings with the classic SMC. A nonlinear sliding function instead of a linear sliding 
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function has been suggested and adopted to treat these obstacles [10]. Some of these methods of control are 

referred to as terminal sliding mode control (TSMC). 

It has been suggested that a saturation function applies to sliding mode controller gains to eliminate chattering in 

the sliding mode control. Though simple, this method does not ensure output convergence. To estimate and 

compensate for external disturbances and uncertainty by using an observer is another common method for solving 

the sliding mode control chattering problem. But it only works well with constant or slow-changing disturbances. 

Using fuzzy logic control is another way to deal with sliding mode control's chattering issues. Fuzzy control is 

well-known for being fault-tolerant and for being able to approximate any continuous function that exists inside a 

small set. Control theory has a strong foundation for this feature, which is also known as the universal 

approximation property [11, 12]. Fuzzy control is particularly useful in scenarios where system dynamics are 

unpredictable or challenging to correctly model. This is because one of its main benefits is its independence from 

precise system models. Fuzzy control can successfully handle unforeseen disturbances or errors and adapt to a 

wide range of real-world applications thanks to its flexibility. 

A robust controller is used to obtain accurate results by compensating for nonlinear dynamics and external 

disturbances in manipulator tracking [12]. Robust controller performs well in hazardous, or repetitive [14]. 

Therefore, robotic manipulator development has emerged as one of the most exciting areas in modern industry. 

Robot manipulator faces problem due its applications are confined to slow motion operations with no external 

interaction. In part, this is due to the low performance of the available controllers. Advanced control strategies are 

needed to improve the operational speed and improve the accuracy of operations. When it comes to controlling 

robotic manipulators, stability and robustness are key requirements since a controller is the most important part of 

the complex system. The system's complexity and uncertainty pose the greatest challenges in its motion and 

control. Therefore, modelling and analysis of robotic manipulators, as well as the implementation of control 

methods, are essential for achieving precision, good accuracy, and increased productivity [15]. Contribution to the 

papers are as follows: 

• The main contribution is to design adaptive sliding mode controller with guaranteed stability for 

Nonholonomic Mobile Robot.  

• Adaptive controller is designed based on the kinematics of the non-holonomic wheeled mobile robot. ASMC 

concerned with the mobile robot's kinematic  

• Output of the controller is angular velocity and linear velocity which are derived with guaranteed system’s 

stability. Lyapunov stability criteria is used for stability checking of the system. 

• ANFIS obstacle avoidance algorithm are used for tracking when robot navigate in the obstacle environment. 

 

This paper is organised as the following way. Section II presents systematic literature review. Section III presents 

our proposed methodology. Simulation results and discussion are presented in section IV. The conclusion is 

presented in section V. 

II. RELATED WORK 

Samir Zeghlache et al. [16] proposed a coaxial octo-rotor helicopter control scheme considering the actuator faults. 

Each subsystem of the octo-rotor helicopter's rotor system has a fault-tolerant (FTC) controller based on FLC and 

SMC. Fuzzy controller has been proposed for avoiding difficult modelling, reduce effect of chattering in SMC, 

reduce number of rules, as well as ensure system reliability. 

Zewei Zheng et al. [17] presented for robotic airships with unknown wind disturbances and parametric 

uncertainties. Sliding-mode adaptive control is used in robotic airships to ensure asymptotically convergence 

errors of trajectory tracking and estimations. Adaptive gain schemes for the controller gains are the key for 

avoiding off-line tuning. Unknown wind disturbances and uncertain physical parameters and can be removed by 

utilizing variable structure control (VSC). 

R. Sakthivel et al. [18] proposes a fuzzy Takagi-Sugeno time-varying delay system with unknown uncertainties 

and perturbations. The Controller has been designed that takes into account uncertainty and disturbance estimates 

for the systems. When combined with Wirtinger integral inequalities, it is possible to derive a sufficient condition 

for reliable trajectory tracking. When linear matrix inequalities are solved, a more robust controller can be 

obtained. 
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Yunkai Zhu et al. [19] delivered the DOBFSMC strategy for an inverter with a single-phase PV grid connection. 

It is necessary to use a SMC for regulating the output voltage of DC-AC converter. Also, fuzzy systems that 

approximate the upper bounds on observation errors between observation value and actual disturbance can provide 

better performance of the control system. 

In [20], to decompose the nonlinear spacecraft attitude dynamics system, T-S fuzzy modeling is applied. Fuzzy 

T-S fuzzy modelling technique stabilizes a spacecraft's attitude tracking control. There is a real-time external 

disturbance with an unknown bound, and this design uses the adaptive estimate technique to counteract it in real 

time. The integral sliding surface is asymptotically stable because of the defined matrix inequality. Because of 

this, a finite amount of time is required to reach the specific sliding surface. 

. 

III. PROPOSED METHODOLOGY 

In this paper, adaptive sliding mode controller (ASMC) and graph velocity-based sliding mode controller 

(GVSMC) are developed for handling parametric uncertainty. Adaptive sliding mode controller (ASMC) is 

designed based on the kinematics of the wheeled mobile robots, while the second controller GVSMC is concerned 

with dynamic behavior of WMR. For the kinematic controller, ASMC has been developed to address the model's 

nonlinearities. Also, robust graph velocity based sliding mode controller (GVSMC) is designed to handle the 

dynamic behavior. At the end, an ANFIS obstacle avoidance algorithm is included to avoid collisions and improve 

the system's overall robustness. Both controllers ASMC and GVSMC guarantee stability of the system and 

improve system performance. Figure 1 illustrates the overview of the proposed method. 

 

 
Fig.1 The proposed method 

A.  Kinematic Model 

The mobile robot has two identical wheels mounted with a bar that can be controlled independently, shown in 

Figure 2. Here R represents wheel’s radius and (x, y) is world cartesian coordinates of midpoint A. Midpoint A is 

on the axis between the center of the axis of left and right wheels and 2L represents axle length between the drive 

wheel. Mobile robot orientation is heading angle (rad). C is the robot’s center of mass, which is on the axis of 

symmetry d distance from center A. Mobile robot’s linear and the angular velocities are given by equation (1), 

and the kinematics of the mobile robot is given by the equation (2). 

 

V = 
 (VR+VL)

2
  =   R  

(Ø̇𝑅+Ø̇𝐿)

2
                                                         (1) 

          W = 
 (VR−VL)

2𝐿
  =   R  

(Ø̇𝑅−Ø̇𝐿)

2
 

𝑞̇= [
𝑥̇
𝑦̇

Ɵ̇

]=[
cos Ɵ
sinƟ

0
     

 0
 0
1
]  [

𝑣
𝑤

]                                                        (2) 
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Fig. 2 Structure of WMR  

 

B. Dynamic Mmodel of WMR 

Dynamics of non-holonomic mobile robot is given as follows (Fukao et al., 2000): 

 

M(q)𝑞̈ + V(q,𝑞̇) 𝑞̇ +F(𝑞̇) +G(q)+ 𝜏𝑑 =B(q)𝜏 -⋀𝑇(𝑞)𝛾                                               (3) 

 

𝑄 ∈  Rn represents generalized coordinates, 𝜏 ∈  Rn represents input vector,  𝛾  ∈ Rn represents a vector of 

constraint forces, V(q,𝑞̇) ∈  𝑅𝑛𝑥𝑛  centripetal and Coriolis matrix, M(q) ∈  𝑅𝑛𝑥𝑛  indicates asymmetric and 

positive-definite inertia-matrix, F(𝑞̇) ∈ Rn surface-friction matrix, B(q) ∈  𝑅𝑟𝑥𝑛 represents input transformation 

matrix, and G(q) is  gravitational vector, 𝜏𝑑  ∈ Rr indicates vector of unknown bounded disturbances, ˄(𝑞) ∈
 𝑅𝑚𝑥𝑛 represents a matrix associated the constraints. The equation (3) can be described as follows :   

    M(q)𝑞̈ + V(q,𝑞̇) 𝑞̇  =B(q)𝜏 -⋀𝑇(𝑞)𝜆                                                    (4)                                                                          

 

Where   M(q) =

[
 
 
 
 

𝑚
0

−𝑚𝑑 sin 𝜃
0
0

   

0
𝑚

𝑚𝑑 cos 𝜃
0
0

−𝑚𝑑 sin 𝜃
𝑚𝑑 cos 𝜃

𝐼
0
0

   

0
0
0
0
0 

0
0
0
0

     𝐼 𝑤]
 
 
 
 

 

 

V(q,𝑞̇)  =  

[
 
 
 
 
0
0
0
0
0

   

−𝑚𝑑𝜃 cos 𝜃  ̇

−𝑚𝑑𝜃 sin 𝜃̇

0
0
0

0
0
0
0
0

    

0
0
0
0
0

   

0
0
0
0
0]
 
 
 
 

  ,   B(q) = =  

[
 
 
 
 

    

0
0
0
1
0

     

0
0
0
0
1]
 
 
 
 

 

 

⋀𝑇(𝑞) =

[
 
 
 
 
− sin 𝜃

cos 𝜃

0

0

0

    

cos 𝜃

sin 𝜃

𝐿
𝑅

0

   

cos 𝜃

sin 𝜃

−𝐿

0

𝑅 ]
 
 
 
 

  x 

[
 
 
 
 

    

𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

     

]
 
 
 
 

 

Now equation (4) can be expressed in another suitable for control and simulation. ⋀𝑇(𝑞)𝜆  term is removed 

because 𝜆𝑖 (Lagrange multiplier) is unknown.  It is possible by introducing reduce vector: 

                 𝜂̇ =[
𝜙̇𝑅

𝜙̇𝐿

]                                                                              (5) 
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 The forward kinematic model of the WMR is represented by equation (6) as follows:   

[
 
 
 
 

    

𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

     

]
 
 
 
 

 = 
1

2
   

[
 
 
 
 

    

Rcos 𝜃
𝑅 sin 𝜃
𝑅/𝐿
2
0

   

Rcos 𝜃
𝑅 sin 𝜃
−𝑅/𝐿

0
2 ]

 
 
 
 

   [
𝜙̇𝑅

𝜙̇𝐿

]                                        (6) 

                        

The above equation can be represented as follows: 

 𝑞̇ =S(q)𝜂                                                             (7)      

                                                                                          

It can be proven that S(q) is the null space of the constraint matrix ˄(q). Therefore, we get equation (8) as follows: 

ST(q) ˄T(q) =0                                                          (8)                                                                                                       

 Differentiating the above equation:  

 𝑞̈=S(q)𝜂+S(q) 𝜂̈                                                         (9)                                                                                                                                                                                                                                            

Now equation (4) becomes: 

M(q)[𝑆̇(q)  𝜂  + S(q) 𝜂̇ ]+V(q,𝑞̇)[ S(q) 𝜂] =B(q)𝜏 -⋀(𝑞)𝑇 𝜆                               (10) 

 

Rearranging it we get following: 

ST(q)M(q)S(q)  𝜂̇ +ST(q)[M(q) 𝑆̇(q)  + V(q,𝑞̇)S(q)] 𝜂=ST(q)B(q) 𝜂 - ST(q) ⋀(𝑞)𝑇 𝜆              (11) 

 

Now matrix defined as follows:  

𝑀̅(q)=ST(q)M(q)S(q)                                                              (12) 

 𝑉̅=ST(q)M(q) 𝑆̇(q)  + ST(q) V(q,𝑞̇)S(q)                                             (13)                                                               

𝐵̅ = ST(q)B(q)                                                                    (14)                                                                 

The equation of the dynamics in reduced form is  

𝑀̅(q)  𝜂̇ + 𝑉̅(q,𝑞̇) 𝜂 = 𝐵̅(q)  𝜂                                                      (15)                                                                          

 

where 𝑀̅(q)=[
𝐼𝑊 +

𝑅2

4𝐿2
(𝑚𝐿2 + 𝐼)            

𝐼𝑊 +
𝑅2

4𝐿2 (𝑚𝐿2 + 𝐼)

𝑅2

4𝐿2
(𝑚𝐿2 − 𝐼)

𝐼𝑊 +
𝑅2

4𝐿2 (𝑚𝐿2 + 𝐼)
]  and 

 𝑉̅(q,𝑞̇) =[
0            

𝑅2

2𝐿
(𝑚𝑐𝑑𝜃̇)     

𝑅2

2𝐿
(𝑚𝑐𝑑𝜃̇)

0
]  and 𝐵̅(q) =[

1    
0    

0
1
] . 

 

The dynamics of the WMR is represented by angular velocities 𝜙̇𝑅 , 𝜙̇𝐿  and driving torques 𝜏𝑅 , 𝜏𝐿, robot angular 

velocity 𝜃̇. The equation (15) is expressed in angular and linear velocity( 𝜔,𝜐) of WMR. The alternative form is 

given as follows:  

(𝑚 +
2𝐼𝑤

𝑅2 ) 𝑣̇ - mc d 𝜔2 = 
1

𝑅
  (𝜏𝑅 + 𝜏𝐿)                                                (16)                                                                      

(𝐼 +
2𝐿2𝐼𝑤

𝑅2
) 𝜔̇ - mc d 𝜔 𝜐 = 

𝐿

𝑅
  (𝜏𝑅 - 𝜏𝐿)                                             (17)                                                                       
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C. Adaptive Sliding Mode Controller Design with guaranteed stability 

 

In this section control algorithms  𝑢1 and 𝑢2 of ASMC will be evaluated for path tracking of desired trajectory 

which is   

 𝑞̇ = [
𝑥̇
𝑦̇

Ɵ̇

] =[
cos Ɵ
sinƟ

1
     

 0
 0
1
]  [

𝑣
𝑤

]                                                        (18) 

Let x = x1, y= x2, Ɵ = x3, v = u1 and w = u2      kinematics of the robots becomes the following form 

𝑞̇ = [
𝑥1̇

𝑥2̇

𝑥3̇

] =[
cos 𝑥3

sin 𝑥3

0
     

 0
 0
1
]  [

𝑢1

𝑢2
]                                                        (19) 

 

Rearranging the above kinematics equation, we can write 

𝑔1(𝑥3) 𝑥1̇= 𝑢1     where      𝑔1(𝑥3) = ∅1 sec 𝑥3                                     (20) 

 

𝑔2(𝑥3) 𝑥2̇= 𝑢1   where 𝑔2(𝑥3) = ∅2cosec 𝑥3                                        (21) 

 

𝑥3̇ = 𝑢2 + d    where d is disturbance. 

Desired trajectory is 𝑥𝑑 ,𝑦𝑑  and error 𝑒𝑥 = 𝑥1 −  𝑥𝑑 ,   𝑒𝑦 =  𝑥2  -  𝑦𝑑 . Here defining sliding surface as 

follows: 

𝑠1 = 𝑐1𝑒𝑥 + 𝑒𝑥̇     and 𝑠2 = 𝑐2𝑒𝑦 + 𝑒𝑦̇     where 𝑐1 > 0 and 𝑐2 > 0                     (22) 

 

Lyapunov function is defined as 

𝑉 𝑥 = 𝑉 1 +  𝑉 2                                                                                  (23) 

𝑉 𝑥 =  
1

2
 𝑔1(𝑥3) 𝑠1 

2 + 
1

2𝛾1
 (∅1 − ∅̂1)

2 + 
1

2𝛾2
 (∅2 − ∅̂2)

2 + 
1

2𝛾3
 (∅3 − ∅̂3)

2                         (24) 

 

where  𝑉 1 = 
1

2
 𝑔1(𝑥3) 𝑠1 

2    

and V2  = 
1

2𝛾1
 (∅1 − ∅̂1)

2  + 
1

2𝛾2
 (∅2 − ∅̂2)

2 + 
1

2𝛾3
 (∅3 − ∅̂3)

2 ,    𝛾𝑖 > 0  and  ∅̂𝑖 is the 

estimation of  ∅𝑖. 

𝑉̇𝑥 = 𝑉̇1 + 𝑉̇2                                                                                    (25)  

 

Where  𝑉̇2 =
1

2𝛾
 ((∅1 − ∅̂1)∅̂1

̇
                                                                                                                                 (26) 

Now differentiating above equation  

𝑉̇1 = 
1

2
 𝑔̇1(𝑥3) 𝑠1 

2   + 
1

2
 𝑔1(𝑥3) 𝑠1 𝑠1̇                                                                                       (27) 

= 
1

2
∅1sec 𝑥3 tan 𝑥3 𝑠1 

2 𝑥3̇ +∅1 sec 𝑥3 𝑠1(𝑐1𝑒𝑥̇ + 𝑒𝑥̈) 

= 
1

2
∅1sec 𝑥3 tan 𝑥3 𝑠1 

2 𝑥3̇ +∅1 sec 𝑥3 𝑠1(𝑐1(𝑥1̇ − 𝑥𝑑̇) + 𝑒𝑥̈) 

= 
1

2
∅1sec 𝑥3 tan 𝑥3 𝑠1 

2 𝑥3̇ + ∅1sec 𝑥3 𝑠1(𝑐1(𝑥1̇ − 𝑥𝑑̇) +𝑥1̈ −𝑥𝑑̈) 

= ∅1[
1

2
sec 𝑥3 tan 𝑥3 𝑠1 

2 𝑢2 + 𝑠1𝑐1 sec 𝑥3 𝑥1̇ - 𝑠1𝑐1  sec 𝑥3 𝑥𝑑̇ + 𝑠1𝑒𝑥̈ sec 𝑥3] 

=∅1[
1

2
sec 𝑥3 tan 𝑥3 𝑠1 

2 𝑢2 + 𝑠1𝑐1 𝑢1 + 𝑠1𝑐1d - 𝑠1𝑐1 sec 𝑥3 𝑥𝑑̇ + 𝑠1𝑒𝑥̈ sec 𝑥3] 
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For Lyapunov stability 𝑉 ̇ < 0. Control law is given below which guarantees the stability  

u1 = − 
∅̂1

c1
[ 

1

2
sec x3 tan x3 s1u2 + c1 sec x3 xḋ − eẍ sec x3] − 𝐾1sgn(𝑠1)                      (28) 

 

Where 𝐾1 is constant and 𝐾1> =  max|𝑐1d|. 

 

Putting this control law in the above equation that becomes 

𝑉̇1 = - 𝐾1|𝑠1|- |𝑐1d| - (∅1 − ∅̂1) [
1

2
sec 𝑥3 tan 𝑥3 𝑠1 

2 𝑢2- 𝑠1𝑐1 sec 𝑥3 𝑥𝑑̇ + 𝑠1𝑒𝑥̈ sec 𝑥3]          (29) 

 

Substituting in Lyapunov function  

                                                                                                                                                                                                                                                                                                                                                         

𝑉̇𝑥 = 𝑉̇1 + 𝑉̇2                                                                                (30) 

=   - 𝐾1|𝑠1|- |𝑐1d|- (∅1 − ∅̂2)[ (
1

2
sec 𝑥3 tan 𝑥3 𝑠1 

2 𝑢2  - 𝑠1𝑐1 sec 𝑥3 𝑥𝑑̇ + 𝑠1𝑒𝑥̈ sec 𝑥3) - 
1

𝛾1
 ∅̂1

̇ ]      (31)                      

  The adaptive law is defined as in Eqn (32) 

  ∅̂1
̇ = 𝛾1( 

1

2
sec 𝑥3 tan 𝑥3  𝑠1 

2 𝑢2   −  𝑠1𝑐1  sec 𝑥3 𝑥𝑑̇  + 𝑠1𝑒𝑥̈  sec 𝑥3)                     (32) 

 

Then  𝑉̇𝑥 = - K|s|-|d| < 0 which guarantees the stability.                                                                                  (33) 

 

Now derivation of control algorithm u2 presented in the following section.  

 

Following section presents derivation of sliding surface. 

 

𝑠2 = 𝑐2𝑒𝑦 + 𝑒𝑦̇     where 𝑐2 > 0                                                              (34) 

 

Lyapunov function is defined as  

𝑉 𝑦 = 𝑉 2 +  𝑉 3                                                                  (35)                                                                                                                                                                                                                              
Where 

 𝑉 2 =
1

2
 𝑔2(𝑥3) 𝑠2 

2  and 𝑉 3 =+ 
1

2𝛾1
 (∅1 − ∅̂1)

2 + 
1

2𝛾2
 (∅2 − ∅̂2)

2 + 
1

2𝛾3
 (∅3 − ∅̂3)

2      (36)         

                                                                                                              

𝑉 𝑦 =  
1

2
 𝑔2(𝑥3) 𝑠2 

2 + 
1

2𝛾1
 (∅1 − ∅̂1)

2 + 
1

2𝛾2
 (∅2 − ∅̂2)

2 + 
1

2𝛾3
 (∅3 − ∅̂3)

2    𝛾𝑖 > 0  and  

∅̂𝑖 is the estimation of  ∅𝑖.          
                                                                                                                                                            (37)                                              

Now derivative of Lyapunov function is defined as  

𝑉̇𝑦 = 𝑉̇3 + 𝑉̇4                                                                                    (38) 

 

Where 𝑉̇4 = 
1

2𝛾
 ((∅2 − ∅̂2)∅̂2

̇
  and 

𝑉̇3 = 
1

2
 𝑔̇2(𝑥3) 𝑠2 

2   + 
1

2
 𝑔2(𝑥3) 𝑠2 𝑠2̇ 

  = −
1

2
∅2cosec 𝑥3 cot 𝑥3 𝑠2 

2 𝑥3̇ +∅2 cosec 𝑥3 𝑠2(𝑐2𝑒𝑦̇ + 𝑒𝑦̈) 

= −
1

2
∅2 cosec 𝑥3 cot 𝑥3 𝑠2 

2 𝑢2+∅2 cosec 𝑥3 𝑠2(𝑐2(𝑥2̇ − 𝑦𝑑̇) + 𝑒𝑦̈) 

= −
1

2
∅2sec 𝑥3 tan 𝑥3 𝑠1 

2 + ∅2cosec 𝑥3 𝑠2(𝑐2(𝑥2̇ − 𝑦𝑑̇) +𝑥2̈ −𝑦𝑑̈) 

= ∅2[−
1

2
cosec 𝑥3 cot 𝑥3 𝑠2 

2 𝑢2 + 𝑠2𝑐2𝑢1   - 𝑠2𝑐2  cosec 𝑥3 𝑦𝑑̇ + 𝑠2𝑒𝑦̈ cosec 𝑥3] 

=∅2𝑠2[−
1

2
cosec 𝑥3 cot 𝑥3 𝑠2 𝑢2 + 𝑐2 𝑢1 +𝑐2𝑑 − 𝑐2 cosec 𝑥3 𝑦𝑑̇ + 𝑒𝑦̈ cosec 𝑥3] 
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                            For Lyapunov stability 𝑉 ̇ < 0. Control law is given below which guarantees the stability 

𝑢2 = 
2∅̂2

𝑠2cosec𝑥3 cot𝑥3c2
 [𝑐2 𝑢1 − 𝑐2 cosec 𝑥3 𝑦𝑑̇ + 𝑒𝑦̈ cosec 𝑥3 + 𝐾2sgn(𝑠2]                 (39) 

 

Where 𝐾2 is constant and 𝐾2> =  max|𝑐2d|. 

                       Putting this control law in the above equation that becomes 

𝑉̇3= - K|𝑠2|- |𝑐2d| - 
2(∅2−∅̂2) 

𝑠2cosec𝑥3 cot𝑥3c2
 [𝑐2 𝑢1 − 𝑐2 cosec 𝑥3 𝑦𝑑̇ + 𝑒𝑦̈ cosec 𝑥3]                   (40) 

                       Substituting in Lyapunov function  

𝑉̇𝑦 = 𝑉̇3 + 𝑉̇4                                                                     (41)                                                                                                                                                   

𝑉̇𝑦 =  - K|𝑠2|- |𝑐2d| + 
2(∅2−∅̂2) 

𝑠2cosec𝑥3 cot𝑥3c2
 [𝑐2 𝑢1 − 𝑐2 cosec 𝑥3 𝑦𝑑̇ + 𝑒𝑦̈ cosec 𝑥3 − 

1

𝛾2
 ∅̂2

̇
]          (42) 

                            

The Derivation of the adaptive law is demonstrated in the following section. 

∅̂2 
̇ = 𝛾2 ( 𝑐2 𝑢1 − 𝑐2 cosec 𝑥3 𝑦𝑑̇ + 𝑒𝑦̈ cosec 𝑥3)                                             (43) 

 

ASMC control law for angular velocity and linear velocity are derived which guarantees the stability. Angular 

velocity control and Linear velocity and action are given as follows: 

u1 = − 
∅̂1

c1
[ 

1

2
sec x3 tan x3 s1u2 + c1 sec x3 xḋ − eẍ sec x3] − 𝐾1sgn(𝑠1)              (44) 

𝑢2 = 
2∅̂2

𝑠2cosec𝑥3 cot𝑥3c2
 [𝑐2 𝑢1 − 𝑐2 cosec 𝑥3 𝑦𝑑̇ + 𝑒𝑦̈ cosec 𝑥3 + 𝐾2sgn(𝑠2]              (45) 

D. Graph Velocity Based Sliding Mode Controller (SVSMC) 

 

Mobile robotics uses a directed graph such as D=1 to solve the communication problem (M, N, bij). Graph's 

weighted adjacency matrix is G. Bij explains the flow of state. 0 serves as the leader because it is an exogenous 

signal. BOJ>0 when (Mo, Mj) =N, otherwise not. There is no border between the leader and follower, so bij = 0. 

However, there is one caveat. This means a controller needs to be designed for maintaining formation while 

tracking the leader. Robot can also reach a particular target by using neighbor information. For example, we can 

write degout =  j N bi for M. Our assumptions throughout this chapter are based on a single leader robot as the 

point of reference and a directional connection between it and the follower robots .Velocity can be calculated 

using equation (46) below, where d is the position and t is the time. 

t

d
GV




=

                                                                                 (46) 

An SMC system has a well-designed controller, which ensures that when the controller is activated, the states will 

shift towards desired sliding plan. Based on the Lyapunov technique, it has been shown that the system is stable. 

The system reaches to sliding surface in sliding mode control. In this mode, the dynamics of the system are 

constrained to remain on the sliding surface, resulting in robustness to disturbances and uncertainties. 

𝑀(𝑢) = [
𝑚𝑣

𝑚𝑤
] = 𝑒𝑒(𝑢) + 𝑆 ∫ 𝑒𝑒(𝛾)𝑐𝛾,

𝑡

0
                                              (47)                                  

where, mv and mw are given, respectively, by equation 6.21 and 6.22, 𝑒𝑒 = (𝑠𝑐 − 𝑠𝑚) = [𝑒𝑣 𝑒𝑤]𝑄 . with 

sse cv −=  and ,zze cw −=  

The Graph Velocity Based Sliding Mode Controller is mathematically represented by the following conditions 

based on the above equation (47). 

 

𝑀𝑣(𝑢) = 𝐺𝑉[𝑒𝑣(𝑢) + 𝑆𝑣 ∫ 𝑒𝑣(𝛾)𝑐𝛾],
𝑡

0

                                                       

(48) 
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𝑀𝑤(𝑢) =
𝛥𝑑

𝛥𝑡
𝑒𝑤(𝑢) + 𝑆𝑤 ∫ 𝑒𝑤(𝛾)𝑐𝛾,

𝑡

0
                                                        (49) 

                                        

The sliding surfaces' derivatives, on the other hand, )(uM v and )(uM w are given by the following expressions; 

).()()(

),()()(

ueSueuM

ueSueuM

wwww

vvvv

+=

+=

•

•

                                                                (50)                                                   

 

                        The dynamic motion of the root can be changed into 

)())(( 1 qBpADm

−
−

−•

=                                                                      (51)                                               

Equation (51) may be written as 

𝐷
•

𝑚 = 𝐵
≈

𝜏                                                                      (52) 

where 
−

−
−

= BAB 1)(  

𝐷
•

𝑚 = 𝐵
≈

𝜏                                                                                                                                                                                                         

Switching and equivalent control laws are both used in the controller. Some other dynamics may be required in 

order to improve system stability and sliding mode stability, as well as to achieve a suitable system response and 

behaviour. Some dynamic systems may also require a controller that monitors measured signals in real-time. For 

tracking to be both robust and correct in the absence of measurement errors, the convergence time needs to be 

short. 

 

E. Lyapunov Function based stability Analysis 

 

Use Lyapunov theory to ensure that the robot is stable. Let us consider Lyapunov candidate function as: 

2

3

2

2

2

1
2

1

2

1

2

1
eeeSA ++=                                                                  (53)                                                 

                   The derivative of lyapunov function is presented below, 

 

( ) .))(( 3

3

2
322111 ez

e

es
zesessAS d

ddd 







−−++++−=

•

                                                          (54)                                                                      

                        Using angular velocities and linear velocities , the following results will be obtained; 


=

−+++==

+=

3

1 3

2
322133

111

)(

,

j

d
ddjjc

dc

e

es
eseLzzz

seLSA





                               (55) 

Equation (29) becomes; 

.0,0 3

2

33

2

11 −−=
•

eifeLeLAS                                    (56) 

If 03 =e  then 11 =  and .032 ==   So, dc seLs += 11 and  =
++==

3

1 233 .
j ddjjc eseLzzZ   

Also, 

.02

33

2

11 −−=
•

eLeLAS                                                (57)    

.3321213

123111232221

332211

))()()(())(

)()(())()()((

,

ezzzzzzesze

szeeszeeszeszesszeAS

eeeeeeAS

dddd

ddd

−+−+−+−−+

+−++−+−+−++−=

++=

•

••••




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Hence first order derivative of the lyapunov function is negative so the stability of the system is guaranteed. 

Simply following condition is checked for ensuring reaching condition is satisfied. The candidate Lyapunov 

function is is chosen as 

ZZSA Q

2

1
=                                                                              (58) 

The derivation can be expressed as; 

( )

( ) .)(

,)(

,)(

,







+−==







++−=







+−=

=

•••

••

••

•

uSeBZZZZAS

uSeBSZAS

uSeBSZAS

ZZAS

eeqc
QQ

ezeqc
Q

ec

Q

Q







                                                                                              (59)                                                                                                                                                      

Finally, the system's stability was demonstrated using a Lyapunov approach based on stability analysis. 

 

F. Obstacle avoidance algorithm 

      Two ANFIS controllers are used for obstacle avoidance as shown in Figure 3. Two ANFIS controllers are 

used. Input of the ANFIS controllers are left obstacle distance (LOD), front obstacle distance (FOD) and right 

obstacle distance (ROD). These LOD , ROD, FOD are the sensory information. 

Output of two ANFIS are left angular velocity and right angular velocity respectively. At first obstacle avoidance 

ANFIS controller are trained with training data (Al-Mayyahi et al., 2014). 21 datapoints of FOD, LOD and ROD 

as input and respective output left angular velocity and right velocity are used for training. During trainig 200 

epochs are used and gaussians membership function are chosen. Obtained Training error for wr is 0.0121rad/sec 

and 0.0.321 for wl. If obstacles are found in the robot path then velocity and orientation are modified to avoid the 

obstacle and reaches to the target. If there are no obstacles, then obstacle avoidance algorithm controller’s output 

is zero. Only tracking control action will work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the second stage AKH-NFIS is used as kinematic controller replacing KASMC and DASMC as dynamic 

controller. Architecture of intelligent controller AKH-NFIS are shown in Figure 4.  

As depicted in Figure 4, NFIS refers to feed-forward-neural-network (FF-NN), KH optimization algorithm and 

NFIS is integrated together known as AKH-NFIS algorithm in the proposed work. To represent the NFIS 

architecture considers first-order Sugeno model which uses the following fuzzy rule: 

 

Rule No.1: IF P is A11 AND Q is B11, 

Then, 𝐹11 = 𝑢11𝑃 + 𝑣11𝑄 + 𝑤11                                                        (60) 

Rule No.2: IF P is A22 AND Q is B22 

 
(a)                                                                                                       (b) 

Figure 3(a) Obstacle avoidance controller, (b) Sensory Information block 
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Then 𝐹22 = 𝑢22𝑃 + 𝑣22𝑄 + 𝑤22                                                         (61) 

Where, A11 , A22 and B11, B22  denotes membership functions for P 𝐴𝑗𝑗 and Q 𝐵𝑗𝑗 respectively. The parameter 

 𝑢11, 𝑣11, 𝑤11 and , 𝑢22, 𝑣22, 𝑤22 are learnable parameters of output functions. In the training phase, the value 

of these parameters are evaluated. The AKH-NFIS architecture comprises of five layers as illustrated in the Figure 

4. 

 

Figure 4: AKH-NFIS model 

 

Layer 1:  Each node’s output of layer1 is presented by: 

𝑶𝑙𝟏,𝒊 = 𝝁𝑨𝒊𝒊(𝑃) 𝑖 = 1,2                                                       (62) 

 𝑶𝑙𝟏,𝒊 = 𝝁𝑩𝒊−𝟐(𝑄) 𝑖 = 3,4                                                    (63) 

Where, crisp input variable P, Q. These variables are fuzzified into linguistic variable and 𝐴𝑖𝑖  𝐵𝑖𝑖, represents 

membership values of the membership functions 𝜇𝐴 and 𝜇𝐵 respectively. Gaussian membership function are 

𝜇𝐴𝑖𝑖(𝑃) and 𝜇𝐵𝑖𝑖(𝑄)  expressed as, 

𝜇(𝑥) =  𝑒−(𝑥−
𝑝𝑘

𝜎𝑘
⁄ )

2

                                                                         (64) 

Where, kp  and k  are mean and standard deviation of data.  

Layer 2: Node is fixed in this layer which evaluates the firing strength of the rule given by equation (15). It is 

represented by M. The firing strength of this node is expressed by the following expression. 

𝑶𝟐,𝒋 = 𝒘𝒋 = 𝝁𝑨𝒋𝒋(𝑃) ∗ 𝝁𝑩𝒋𝒋(𝑄) 2,1=j                                                     (65)                                         

Layer 3: Layer3 are also fixed nodes. It is indicated by N . It normalizes preceding layer’s firing strength . 

Output of the layer3 is expressed as: 

𝑂3,𝑖 = 𝑤̃𝑖 =
𝑤𝑖

(𝑤1 + 𝑤2  )
⁄    𝑖 = 𝟏, 𝟐                                                      (67)                                             

Layer 4: Layer4 has adaptive nodes. The output of every nodes are normalized firing strength. Output of this node 

is first-order polynomial expressed as : 

 𝑂4,𝑗 = 𝑤̃𝑗 ∗ 𝐹𝑗 = 𝑤̃𝑗(𝑢𝑗𝑗𝑃 + 𝑣𝑗𝑗𝑄 + 𝑤𝑗𝑗
 
)     j=1,2                                                       (68)

                                         
 

Where, parameter  𝑢11, 𝑣11, 𝑤11 and 𝑢22, 𝑣22, 𝑤22 are consequent parameter. Here, krill herd optimization 

algorithm is used for updating these parameters. 

                       Layer 5: Single node acts as basic adder and results are expressed as follows:   
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           𝑶𝟓,𝒊 = ∑𝒘̃𝒊𝑭𝒊 = (𝑤1𝐹1 + 𝑤1𝐹1)/(𝑤1 + 𝑤2  ) =
∑ 𝒘𝒊𝑭𝒊𝒋

∑ 𝒘𝒊𝒊
⁄       (69)                       

 
Two AKHNFIS are used as kinematic controller. One output of AKH- NFIS is linear velocity (vc) and another 

output is angular velocity (wc). 

IV. RESULTS AND DISCUSSION 

In this section simulation result of an ASMC for Nonholonomic Mobile Robot is presented. We consider three 

different trajectories in case1, case2 and case3.  MATLAB software and computer with 6 GB RAM and an Intel 

I-7 processor are used for simulation purpose. At 2.6 GHz, the approach was tested for accuracy and efficiency of 

the performance. 

In case 1 parameters are 𝑐1 = 𝑐2 = 10,  𝛾1 = 𝛾2 = 150,  𝜃(0) = 0.01, 𝜔(0) = 0, initial state of ∅1 = ∅2 =
0. Uncertainty d= 0.01sin(t) and various desired trajectory are considered. 

Case1: Desired trajectory x and y position are given as   

                                         xd   = t + 0.1*sin(t), and yd = t + cos(t) respectively. 

 

(a) 

 

(b) 
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(c) 

Figure 5. (a) Desired trajectory xd , (b) Desired trajectory yd  , (c) Comparison of trajectory with proposed ASMC-GVSMC, SMC, ILC, 

and PID                                                                                                                    

 
(a) 

 

(b) 

 

(c) 

Figure 6. Comparison of position errors (a) ex with ASMC-GVSMC, SMC, ILC, and PID, (b) ey with ASMC-GVSMC, SMC, ILC, and 

PID and  (c)   Comparison of position errors heading angle error with ASMC-GVSMC, SMC, ILC, and PI 
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Fig. 6 (a), (b), (c), demonstrates tracking errors in case 1. Our proposed control method provides the highest 

tracking precision in case1. For positional error in x direction xe, as depicted in Fig. 6(a), errors are small level 

using the ASMC-GVSMC method, while the traditional PI, SMC, and ILC provides relatively high error. 

Furthermore, Fig. 6(b) shows positional error in x direction ye, errors is small level using the ASMC-GVSMC 

method, while the traditional PI, SMC, and ILC provides relatively high error respectively. In case1 the ASMC-

GVSMC system guarantees smaller steady-state errors. Small trajectory error reaches the sliding surface with 

better convergence time and stay on it thereafter. Controlactions u1 and u2 and sliding surface s1 and s2 are shown 

in the following Figure 7. 

 

 
 

Figure 7. ASMC controller’s output v and w and sliding surface s1 and s2 in case 1 
 

Case 2:  when desired trajectory is x = t + 10*sin(t) and y = t + 4*cos(t). In simulation 𝑐1 = 𝑐2 = 15,  𝛾1 = 𝛾2 = 

140,  𝜃(0) = 0.01, 𝜔(0) = 0, initial state of ∅1 = ∅2 = 0, uncertainty d= 0.05sin(t) are considered. Figure 8, 

Figure 9, Figure 10 and Figure 11(a, b, c) shows various trajectories by proposed method, SMC, ILC, and PID. 

 

Figure 8. Desired trajectory xd  in case 2 
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Figure 9. Desired trajectory yd  in Case 2 

 
Figure 10. Comparison of trajectory with ASMC-GVSMC, SMC, ILC, PID 

 

 

 
(a) 

 
 

   (b) 
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(c) 

 

Figure 11. (a) Position error ex  comparison with SMC, ILC, PID, (b) Position error ey comparison with SMC, ILC, PID and 

(c) Position error eθ comparison with SMC, ILC, PID 
 

 The obstacle avoidance is done in that dynamic environment. The integral absolute error (IAE), integrated 

absolute error (ISE), and standard deviation (STD) of the absolute tracing errors are presented as quantitative 

criteria to effectively demonstrate the comparative performance. 

 

Case 3: In case 3 parameters are 𝑐1 = 𝑐2 = 9,  𝛾1 = 𝛾2 = 130,  𝜃(0) = 0.01, 𝜔(0) = 0.01, initial state of 

∅1 = ∅2 = 0. Uncertainty d= 0.06cos(t). Desired trajectory in case3 given as 

x=t+10*sin(t) y = 0.5*t.*t+4*cos(t) 

 

Figure 12 shows the desired trajectory of Case 3. Figure 13 shows the Control action v and w and sliding surface s1 

and s2 of ASMC-GVSMC controller in Case 3. 

 

 

Figure 12. Desired Trajectory in case 3 

 



J. Electrical Systems 20-3 (2024):3787-3807 

 

  3803  

 

Figure 13. Control action v and w (above) and sliding surface s1 and s2 (below) ASMC-GVSMC controller in case3 

 

Table 1: Tracking criteria of various control methods in case 1 

 

 

 

 

 

 

 

 

 

 

    

 

 

Table 1 shows that the proposed ASMC based methods could achieve more stable and precise tracking than 

standard SMC controllers, and that the created ASMC-GVSMC scheme has significantly enhanced capabilities. 

When using the proposed method to evaluate the ISE criterion, the related values with respect to ex, ey , eθ are 

withi 0.151m, 0.0001m, and 0.0146 rads, respectively. When using the proposed method to evaluate IAE related 

values with respect to ex, ey , eθ are within 01.9204m, 0.007m, 1.256rad. STD obtained for proposed method are 

0.0071rad , 0.007rad, 0.0063rad .When compared to the traditional methods, proposed ASMC-GVSMC control 

strategy clearly achieves the least performance criteria in terms of statistics, indicating that the suggested ASMC 

is capable of managing tracking with decreased tracking errors and enhanced stability. Three tracking errors ex, 

ey , eθ  have been reduced at least 50% using our proposed method. 

 

Table 2: Tracking criteria of various control methods in case 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

Error Measure SMC ILC PID 

 

Proposed  

 

xe 

IAE 3.8408 5.7611 3.8408 1.9204 

ISE 0.0605 0.1361 0.0605 0.0151 

STD 0.0142 0.0213 0.0142 0.0071 

ye 

IAE 1.9071 3.8141 5.7212 0.1907 

ISE 0.0150 0.0599 0.1348 0.00015 

STD 0.0070 0.0141 0.0211 0.0007 

θe 

IAE 2.9931 3.8973 4.9104 1.2565 

ISE 0.0648 0.0980 0.1573 0.0146 

STD 0.0140 

 

0.0179 0.0229 

 

0.0063 

 

 

Error Measure SMC 
 

ILC PID 
 

Proposed  
 

xe 

IAE 4.7463  9.1177 5.5772 0.1920 

ISE 0.1042  0.3741 0.1542 0.0002 

STD 0.0106  0.0181 0.0164   0.0007 

ye 

IAE 11.4424  15.2566 19.0707 0.1907 

ISE 0.5391  0.9584 1.4975 0.0001 

STD 0.0423  0.0564 0.0705 0.0007 

θe 

IAE 0.0894  0.1808 0.3063 0.0123 

ISE 0.0351  0.2894 0.7066 0.0009 

STD 0.0003  0.0010 0.0015 0.0001 
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  Table 2 shows that the proposed ASMC-GVSMC based methods could achieve more stable and precise tracking 

than standard SMC controllers, and that the created ASMC-GVSMC scheme has significantly enhanced 

capabilities. When using the proposed method to evaluate the ISE criterion, the related values with respect to ex, 

ey , eθ are within 0.0002m, 0.001m, and 0.009 rad, respectively. When using the proposed method to evaluate IAE 

related values with respect to ex, ey , eθ are within 0.1.90m, 0.1907m, 0.123 rad. STD obtained for proposed method 

are 0.0007m , 0.0001m, 0.0001 rad. When compared to the traditional methods, proposed ASMC-GVSMC control 

strategy clearly achieves the least performance criteria in terms of statistics, indicating that the suggested ASMC-

GVSMC is capable of managing tracking with decreased tracking errors and enhanced stability. Three tracking 

errors ex, ey , eθ have been reduced at least 45% using our proposed method. 
 

Table 3: Tracking criteria of various control methods in case 3 

 
 

 

 
 

 

 
 

 

 

 

 

 

  Table 3 shows that the proposed ASMC-GVSMC based methods could achieve more stable and precise tracking 

than standard SMC controllers, and that the created ASMC-GVSMC scheme has significantly enhanced 

capabilities. When using the proposed method to evaluate the ISE criterion, the related values with respect to ex, 

ey , eθ are within 0.0003m, 0.002m, and 0.0015rads, respectively. When using the proposed method to evaluate 

IAE related values with respect to ex, ey , eθ are within 0.1130m, 0.1732m, 0.0112 rad. STD obtained for proposed 

method are 0.0006m , 0.0018m, 0.0002. rad When compared to the traditional methods, proposed ASMC-GVSMC 

control strategy clearly achieves the least performance criteria in terms of statistics, indicating that the suggested 

ASMC-GVSMC is capable of managing tracking with decreased tracking errors and enhanced stability. Three 

tracking errors ex, ey , eθ have been reduced at least 50% using our proposed method. 

 

 
  Figure 14. (a) Position error ex comparison with SMC, ILC, PI 

 

 
Error Measure SMC ILC PID 

Proposed  
 

xe 

IAE 3.6463 7.1167 4.6762 0.1130 

ISE 0.1143 0.2642 0.1452 0.0003 

STD 0.0216 0.0380 0.0362   0.0006 

ye 

IAE 10.3624 13.1536 14.141 0.1732 

ISE 0.4281 0.8574 1.3874 0.0002 

STD 0.0323 0.0463 0.0614 0.0018 

θe 

IAE 0.0794 0.1746 0.2152 0.0112 

ISE 0.0242 0.2724 0.6163 0.0015 

STD 0.0004 0.0011 0.0014 0.0002 
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Figure 14. (b) Position error ey comparison with SMC, ILC, PID 

 

 

Figure 14(c) Position error eθ comparison with SMC, ILC, PID 

 

Case 4: Obstacle avoidance performance 

 

   ASMC-GVSMC works as a tracking controller where ANFIS controller is used as obstacle algorithm for 

navigation. Combined effect provides efficient path tracking in obstacle environment. Obstacle avoidance 

performance comparisons are given below in terms of length of trajectory (pathlength) and cost time. Results 

shows avoidance algorithm improves the performance of ASMC-GVSMC for path navigation in uncertainty. 

Figure 15 shows robot follows the desired path avoiding obstacle without collision effectively. Tracking path is 

much closer to the desired path for proposed method than others method. Pathlength and cost time are 11.69m and 

27 sec respectively for proposed method which indicates average speed is 0.43m/. Overall cost time, path length 

and average speed is improved by the proposed method. 

 

 
Figure 15. obstacle avoidance trajectories 
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Pathlength for various controllers proposed, SMC, ILC and PID are respectively 11.69m, ,11.72m, 11.76, and 

11.80m respectively. From the Figure 15 it is observed that using the proposed control algorithm WMR can 

efficiently navigate in the obstacle environment. Lowest pathlength is required for the proposed method. It ensures 

that tracking controller ASMC-GVSMC efficiently track the path and avoid obstacle with the inclusion of obstacle 

avoidance algorithm (ANFIS). 

V. CONCLUSION 

This study, presents a control method of nonholonomic wheeled mobile robot for path tracking. Adaptive sliding 

mode controller (ASMC) is designed based on the kinematics of the wheeled mobile robots, while the second 

controller GVSMC is concerned with dynamic behaviour of WMR. ANFIS obstacle avoidance algorithm is 

included to avoid collisions and improve the system's overall robustness. Both controllers ASMC and GVSMC 

guarantees stability of the system and improves performance. From the simulation results of performance 

measuring index demonstrated above shows that proposed ASMC-GVSMC outperforms the existing approaches 

SMC, ILC, and PID.  
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