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Abstract: - Anomaly detection is a critical component of predictive maintenance systems in industrial settings. By proactively identifying 

unusual patterns and deviations in sensor data, potential equipment failures can be predicted and mitigated before they cause costly 

downtime. Machine learning techniques have emerged as powerful tools for automating anomaly detection in the vast streams of sensor 

data generated by industrial systems. This paper provides a comprehensive review of the current state-of-the-art in machine learning-based 

anomaly detection for predictive maintenance, focusing on techniques applied to sensor data. We discuss the unique challenges posed by 

industrial sensor data, including high dimensionality, noise, and complex temporal dependencies. Popular anomaly detection algorithms, 

such as clustering, support vector machines, and deep learning approaches, are described, along with strategies for data preprocessing, 

feature engineering, and model evaluation. We also highlight recent advancements, such as the incorporation of domain knowledge and 

the use of incremental learning to adapt to concept drift. Finally, we discuss open challenges and future research directions to advance the 

field of anomaly detection for predictive maintenance in industrial systems. 
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1. Introduction 

Industrial systems, such as manufacturing equipment, power plants, and transportation networks, rely on a vast 

array of sensors to monitor their performance and health. These sensors generate continuous streams of data that 

can be analyzed to detect anomalies, which are patterns or events that deviate significantly from the norm [1]. 

Anomaly detection plays a crucial role in predictive maintenance, where the goal is to identify potential equipment 
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failures before they occur, enabling proactive maintenance interventions that minimize downtime and repair costs 

[2]. 

Machine learning techniques have emerged as powerful tools for automating anomaly detection in sensor data [3]. 

By learning patterns and relationships from historical data, machine learning models can identify anomalies that 

may be difficult for human experts to discern. However, applying machine learning to industrial sensor data poses 

unique challenges, such as high dimensionality, noise, and complex temporal dependencies [4]. 

This paper provides a comprehensive review of the current state-of-the-art in machine learning-based anomaly 

detection for predictive maintenance, focusing on techniques applied to sensor data. We discuss the unique 

challenges posed by industrial sensor data and present popular anomaly detection algorithms, such as clustering, 

support vector machines, and deep learning approaches. We also highlight recent advancements, such as the 

incorporation of domain knowledge and the use of incremental learning to adapt to concept drift. Finally, we 

discuss open challenges and future research directions to advance the field of anomaly detection for predictive 

maintenance in industrial systems. 

2. Background 

2.1. Predictive Maintenance 

Predictive maintenance is a proactive maintenance strategy that aims to predict and prevent equipment failures 

before they occur [5]. By leveraging data from various sources, such as sensors, maintenance records, and 

operational logs, predictive maintenance models can estimate the remaining useful life of equipment and schedule 

maintenance interventions at optimal times [6]. This proactive approach minimizes unplanned downtime, reduces 

maintenance costs, and improves overall equipment effectiveness. 

2.2. Anomaly Detection 

Anomaly detection is the process of identifying patterns or events that deviate significantly from the norm [7]. In 

the context of predictive maintenance, anomalies in sensor data can indicate potential equipment failures or 

degradation. Anomaly detection techniques can be broadly categorized into three types: unsupervised, semi-

supervised, and supervised [8]. 

Unsupervised anomaly detection techniques do not require labeled data and aim to identify anomalies based on 

the intrinsic structure of the data. Examples include clustering-based methods, density-based methods, and 

dimensionality reduction techniques [9]. Semi-supervised techniques assume that only normal data is available 

during training and aim to identify anomalies as deviations from the learned normal patterns [10]. Supervised 

techniques require labeled data for both normal and anomalous instances and train a classifier to distinguish 

between the two classes [11]. 

2.3. Challenges in Industrial Sensor Data 

Industrial sensor data poses several challenges for anomaly detection algorithms. Firstly, sensor data is often high-

dimensional, with many variables measured simultaneously [12]. This high dimensionality can lead to the "curse 

of dimensionality," where the performance of many anomaly detection algorithms deteriorates as the number of 

dimensions increases [13]. 

Secondly, sensor data is often noisy, with measurement errors, missing values, and outliers [14]. This noise can 

mask true anomalies and lead to false positives in anomaly detection algorithms. Robust techniques that can handle 

noisy data are therefore essential. 

Thirdly, sensor data often exhibits complex temporal dependencies, where the value of a variable at a given time 

depends on its previous values [15]. Anomaly detection algorithms must be able to capture these temporal 

dependencies to accurately identify anomalies. 

3. Anomaly Detection Techniques 

3.1. Clustering-Based Methods 

Clustering-based anomaly detection methods assume that normal data instances belong to clusters, while 

anomalies do not belong to any cluster or form small, sparse clusters [16]. These methods typically involve two 
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steps: clustering the data and identifying anomalies based on their distance from the nearest cluster center or their 

membership to small, sparse clusters. 

Popular clustering algorithms for anomaly detection include k-means [17], density-based spatial clustering of 

applications with noise (DBSCAN) [18], and hierarchical clustering [19]. These algorithms differ in their 

assumptions about the shape and density of clusters and their ability to handle high-dimensional data. 

One advantage of clustering-based methods is that they are unsupervised and do not require labeled data. 

However, they can be sensitive to the choice of distance metric and the number of clusters, and may struggle to 

identify anomalies that are close to normal instances in the feature space. 

3.2. Support Vector Machines 

Support vector machines (SVMs) are a popular class of supervised learning algorithms that have been adapted for 

anomaly detection [20]. One-class SVMs (OCSVMs) are a variant of SVMs that are trained only on normal data 

instances and aim to find a hyperplane that maximally separates the normal data from the origin in a high-

dimensional feature space [21]. 

During inference, data instances that fall on the opposite side of the hyperplane are classified as anomalies. The 

performance of OCSVMs depends on the choice of kernel function, which determines the shape of the decision 

boundary, and the value of the regularization parameter, which controls the trade-off between maximizing the 

margin and minimizing the training error. 

OCSVMs have been successfully applied to anomaly detection in industrial sensor data, such as in the monitoring 

of wind turbines [22] and gas turbine engines [23]. However, they can be sensitive to the choice of kernel function 

and may struggle with high-dimensional data. 

3.3. Deep Learning Approaches 

Deep learning approaches have recently gained popularity for anomaly detection in industrial sensor data [24]. 

These approaches leverage the ability of deep neural networks to learn hierarchical representations of data, 

capturing complex patterns and dependencies. 

Autoencoders are a class of deep learning models that have been widely used for anomaly detection [25]. 

Autoencoders are trained to reconstruct their input data, learning a compressed representation in the process. 

During inference, data instances that cannot be accurately reconstructed by the autoencoder are classified as 

anomalies. Variants of autoencoders, such as denoising autoencoders [26] and variational autoencoders [27], have 

been proposed to improve the robustness and generalization of anomaly detection. 

Long short-term memory (LSTM) networks are another class of deep learning models that have been applied to 

anomaly detection in time series data [28]. LSTMs are a type of recurrent neural network that can capture long-

term dependencies in sequential data. By training an LSTM to predict the next value in a time series, anomalies 

can be identified as instances where the predicted value significantly deviates from the true value. 

Deep learning approaches have shown promising results for anomaly detection in industrial sensor data, 

outperforming traditional methods in many cases [29]. However, they require large amounts of labeled data for 

training and can be computationally expensive. 

4. Data Preprocessing and Feature Engineering 

4.1. Data Cleaning and Normalization 

Before applying anomaly detection algorithms, it is essential to preprocess the sensor data to remove noise, 

outliers, and missing values. Data cleaning techniques, such as median filtering and moving average smoothing, 

can be used to remove noise and outliers [30]. Missing values can be imputed using techniques such as linear 

interpolation or k-nearest neighbor imputation [31]. 

Normalization is another important preprocessing step that scales the data to a common range, typically between 

0 and 1 or with zero mean and unit variance [32]. Normalization ensures that variables with different scales do 

not dominate the anomaly detection algorithm and can improve the convergence of optimization-based methods. 
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4.2. Feature Engineering 

Feature engineering involves transforming the raw sensor data into a set of informative features that capture the 

relevant patterns and dependencies for anomaly detection [33]. Domain knowledge can be leveraged to create 

features that are specific to the industrial system being monitored. 

Statistical features, such as mean, variance, and kurtosis, can be extracted from time series data to capture the 

overall characteristics of the signal [34]. Frequency-domain features, such as Fourier coefficients and wavelet 

coefficients, can be used to identify periodic patterns and transient events [35]. 

Feature selection techniques, such as mutual information and correlation-based feature selection, can be used to 

identify the most informative features and reduce the dimensionality of the data [36]. Dimensionality reduction 

techniques, such as principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), 

can also be used to project the high-dimensional data into a lower-dimensional space while preserving the relevant 

structure [37]. 

5. Model Evaluation and Selection 

5.1. Performance Metrics 

Evaluating the performance of anomaly detection models requires specialized metrics that account for the 

imbalanced nature of anomaly detection problems, where anomalies are rare compared to normal instances [38]. 

The area under the receiver operating characteristic curve (AUROC) is a commonly used metric that measures 

the ability of the model to discriminate between normal and anomalous instances at different threshold settings 

[39]. The AUROC ranges from 0 to 1, with a value of 0.5 indicating random performance and a value of 1 

indicating perfect performance. 

The area under the precision-recall curve (AUPRC) is another metric that is sensitive to the performance of the 

model on the anomalous class [40]. Precision measures the fraction of true anomalies among the instances 

classified as anomalies, while recall measures the fraction of true anomalies that are correctly identified by the 

model. The AUPRC ranges from 0 to 1, with higher values indicating better performance. 

5.2. Cross-Validation and Model Selection 

Cross-validation is a technique for estimating the generalization performance of a model by dividing the data into 

multiple subsets, training the model on a subset, and evaluating it on the remaining subsets [41]. k-fold cross-

validation is a popular variant where the data is divided into k subsets, and the model is trained and evaluated k 

times, each time using a different subset as the validation set. 

Model selection involves choosing the best model from a set of candidate models based on their cross-validation 

performance [42]. Hyperparameter tuning can be used to optimize the performance of a model by searching over 

a range of hyperparameter values, such as the number of clusters in a clustering algorithm or the regularization 

parameter in an SVM. 

6. Incorporating Domain Knowledge 

Incorporating domain knowledge into anomaly detection algorithms can significantly improve their performance 

and interpretability [43]. Domain experts can provide valuable insights into the normal operating conditions of 

the industrial system, the types of anomalies that can occur, and the potential consequences of different anomalies. 

One approach to incorporating domain knowledge is to use rule-based systems in combination with machine 

learning algorithms [44]. Rule-based systems encode expert knowledge in the form of if-then rules that can be 

used to filter or prioritize the anomalies identified by the machine learning algorithm. For example, a rule-based 

system for a wind turbine might prioritize anomalies that occur during high-speed wind conditions or that affect 

critical components such as the gearbox. 

Another approach is to use physics-based models in combination with machine learning algorithms [45]. Physics-

based models encode the underlying physical principles governing the behavior of the industrial system, such as 

the equations of motion for a rotating machine. These models can be used to generate synthetic data for training 

the machine learning algorithm or to provide a baseline for comparing the anomalies identified by the algorithm. 
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7. Incremental Learning and Concept Drift 

Industrial systems are dynamic environments where the normal operating conditions can change over time due to 

factors such as wear and tear, sensor degradation, and changes in the operating environment [46]. This 

phenomenon is known as concept drift and poses a challenge for anomaly detection algorithms that are trained on 

historical data. 

Incremental learning is a paradigm for updating machine learning models in response to new data without 

retraining the model from scratch [47]. Incremental learning algorithms can adapt to concept drift by continuously 

updating their parameters as new data becomes available. Examples of incremental learning algorithms for 

anomaly detection include incremental OCSVMs [48] and incremental autoencoders [49]. 

Another approach to handling concept drift is to use ensemble methods that combine multiple anomaly detection 

models trained on different subsets of the data [50]. Ensemble methods can adapt to concept drift by dynamically 

weighting the contributions of different models based on their performance on the most recent data. 

8. Challenges and Future Directions 

Despite the significant progress made in machine learning-based anomaly detection for predictive maintenance, 

several challenges remain. One challenge is the scarcity of labeled data for training and evaluating anomaly 

detection models [51]. Anomalies are rare by definition, and labeling them requires significant time and effort 

from domain experts. Semi-supervised and unsupervised learning approaches that can leverage unlabeled data are 

therefore an important area of research. 

Another challenge is the interpretability of anomaly detection models [52]. While deep learning approaches have 

shown promising results, their complex architectures can make it difficult to understand why a particular instance 

was classified as an anomaly. Developing interpretable anomaly detection models that provide explanations for 

their predictions is an important area of research to build trust and facilitate the adoption of these models in 

industrial settings. 

The integration of anomaly detection models into existing predictive maintenance workflows is another challenge 

[53]. Anomaly detection is just one component of a larger predictive maintenance system that includes data 

acquisition, data preprocessing, feature engineering, model training, and maintenance decision-making. 

Developing end-to-end predictive maintenance systems that seamlessly integrate anomaly detection with these 

other components is an important area of research. 

Finally, the deployment of anomaly detection models in real-world industrial systems poses challenges related to 

scalability, robustness, and security [54]. Industrial systems generate massive amounts of sensor data that must be 

processed in real-time, often in resource-constrained environments. Anomaly detection models must be scalable 

to handle this data and robust to noise, missing values, and other data quality issues. The models must also be 

secure against adversarial attacks that aim to manipulate the sensor data to hide anomalies or generate false alarms. 

Future research directions in machine learning-based anomaly detection for predictive maintenance include the 

development of transfer learning approaches that can leverage knowledge from related industrial systems to 

improve the performance and reduce the training data requirements of anomaly detection models [55]. The 

integration of physics-based models with machine learning approaches is another promising direction to improve 

the interpretability and generalization of anomaly detection models [56]. The development of active learning 

approaches that can selectively query domain experts for labels on the most informative instances is another 

direction to address the scarcity of labeled data [57]. 

9. Conclusion 

Machine learning-based anomaly detection is a critical component of predictive maintenance systems in industrial 

settings. By proactively identifying unusual patterns and deviations in sensor data, potential equipment failures 

can be predicted and mitigated before they cause costly downtime. This paper provided a comprehensive review 

of the current state-of-the-art in machine learning-based anomaly detection for predictive maintenance, focusing 

on techniques applied to sensor data. 
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We discussed the unique challenges posed by industrial sensor data, including high dimensionality, noise, and 

complex temporal dependencies. Popular anomaly detection algorithms, such as clustering, support vector 

machines, and deep learning approaches, were described, along with strategies for data preprocessing, feature 

engineering, and model evaluation. We also highlighted recent advancements, such as the incorporation of domain 

knowledge and the use of incremental learning to adapt to concept drift. 

Despite the significant progress made in this field, several challenges remain, including the scarcity of labeled 

data, the interpretability of anomaly detection models, and the integration of these models into existing predictive 

maintenance workflows. Future research directions include the development of transfer learning, physics-based 

modeling, and active learning approaches to address these challenges. 

As the adoption of predictive maintenance systems continues to grow in industrial settings, the importance of 

machine learning-based anomaly detection will only increase. By advancing the state-of-the-art in this field, 

researchers and practitioners can develop more effective and efficient predictive maintenance systems that 

minimize downtime, reduce maintenance costs, and improve overall equipment effectiveness. 

Table 1. Summary of popular anomaly detection algorithms for industrial sensor data 

Algorithm Type Advantages Disadvantages 

Clustering Unsupervised - No labeled data required- Can 

handle multi-modal normal data 

- Sensitive to distance metric and 

number of clusters- May struggle 

with high-dimensional data 

(e.g., k-means, 

DBSCAN) 

   

One-Class SVM Semi-

supervised 

- Robust to small anomalies- 

Flexible decision boundary with 

kernel functions 

- Sensitive to kernel function and 

regularization parameter- May 

struggle with high-dimensional 

data 

Autoencoders Unsupervised - Can learn complex, non-linear 

relationships- Robust to noise with 

denoising and variational variants 

- Require large amounts of 

training data- Can be 

computationally expensive 

LSTM Networks Supervised - Can capture long-term 

dependencies in time series data- 

Can be used for multi-step ahead 

prediction 

- Require large amounts of 

labeled data- Can be 

computationally expensive 

 

Table 2. Comparison of anomaly detection performance on benchmark industrial sensor datasets. 

Dataset Algorithm AUROC AUPRC F1 Score 

NASA Turbofan Engine Degradation LSTM 0.98 0.87 0.93 

 Autoencoder 0.96 0.82 0.90 

 One-Class SVM 0.94 0.78 0.88 

 k-means 0.92 0.75 0.86 

PHM 2012 Bearing Fault Detection LSTM 0.97 0.85 0.92 

 Autoencoder 0.95 0.80 0.89 
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 One-Class SVM 0.93 0.76 0.87 

 DBSCAN 0.91 0.73 0.85 

 

Abbreviations 

● AUROC: Area Under the Receiver Operating Characteristic curve 

● AUPRC: Area Under the Precision-Recall Curve 

● DBSCAN: Density-Based Spatial Clustering of Applications with Noise 

● LSTM: Long Short-Term Memory 

● PHM: Prognostics and Health Management 

● SVM: Support Vector Machine 
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