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Abstract: - Among the workable technology alternatives to address the escalating climate change challenges is the transition to electrified 

transportation. The possibility of shared transport systems and intelligent cars accompany this shift. To move forward and keep comfortable 

driving conditions, an electric car only uses its stored electric energy. Energy management system (EMS) upgrades are crucial to enhancing 

efficiency, performance, sustainability of electric vehicles (EVs), as demand for EVs rises steadily. This research propose novel technique 

in enhancing and maximizing the energy efficiency of electric vehicle based on their charging infrastructure. Here the electric vehicle 

energy management system has been carried out based on ultracapacitor solar fuel cell and the energy optimization has been carried out 

using Gaussian grey whale Krill Herd optimization method. Experimental analysis is carried out in terms of energy efficiency, power 

consumption, Mean Absolute Percentage Error (MAPE), accuracy, robustness. proposed technique attained MAPE of 54%, Accuracy of 

97%, ROBUSTNESS of 92%, power consumption of 95%, energy efficiency of 98%. A evaluation based on simulation is carried out, 

confirming the improved efficiency of the suggested techniques in preserving energy under various driving circumstances.   

Keywords: electric vehicle, energy management systems (EMS), charging infrastructure, ultracapacitor, solar fuel cell 

1. Introduction: 

Energy storage systems, or ESSs, are widely utilised in renewable energy systems, microgrids, and electric 

vehicles (EVs). Worldwide, the usage of electric vehicles (EVs) has increased significantly since they were 

considered a suitable replacement for internal combustion engines (ICE). As it stands, ICE vehicles, ships, 

freight, and aeroplanes have consumed one-third of fossil fuel. In the transportation industry, 94% of vehicles 

are fueled by oil, 1% use electricity, 2% use biofuel, and 3% use natural gas. According to research, the main 

emitters of carbon dioxide (CO2), sulphur dioxide (SO2), carbon monoxide (CO), nitrogen oxides—which are 

main contributors to air pollution and greenhouse gas emissions—are factories and ICE [1]. The ESS in an EV 

powers the EV motor in addition to additional features like air conditioning and navigation lights. Since EVs 

emit no CO2, CO2, NO, or SO2 while in motion, they are regarded as zero-carbon vehicles and can help solve 

environmental issues including the use of fossil fuels [2]. Globally, almost 5 million electric vehicles are listed. 

In US, EV sales are up 2%, in Portugal, 3%, in China, 7% in Ireland, 8% in Netherlands, 50% of new EVs have 

been sold in Norway. There were an estimated 450 000 EV travellers in 2015. This was followed by a sharp 

increase in the market for EVs, with 2.1 million EV passengers in 2019. These days, the market for EV is 

growing rapidly in China and Europe. On the other hand, the environment that reduces greenhouse gas 

emissions and global warming by replacing internal combustion engine vehicles with electric vehicles is in 

danger. Policies encouraging the usage of electric vehicles have been put into place by numerous nations and 

businesses [3]. These methods make managing and implementing EVs easier and are more futuristic. As of right 

now, EVs are seen as an achievable energy source that can be delivered over a microgrid or grid and includes 

coordinated charging attempts to counteract erratic solar and wind power generation. ESS in EVs has amazing 

power that may scale from 17 kWh to 100 kWh at the moment. Energy management systems provide EVs with 

future electricity supply during pick-up load period. This makes it possible to connect a renewable electrical 

infrastructure to grid and enable grid-to-vehicle (G2V) and vehicle-to-grid (V2G) connections. Since charging 

time accounts for a sizable amount of overall trip time, charging behaviour is significantly influenced by it [4]. 

Due to the influence of unobservable elements and the climate on EV charging times, it is typically difficult to 

anticipate charging times with precision. A significant amount of data about EV charging events may be 

gathered using innovative techniques for data collection. Initial State of Charge (SOC), charging voltage, 

random arrival and departure times are some of the elements that affect charging time. The charger and EV's 
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voltage and current limitations, however, determine how long the EV will take to charge. The charger provides 

current and matches the voltage of the battery when it is first plugged in. Whichever limit is lower, the charger 

or the EV is limiting this current. More so than the high voltage, the low voltage has a substantial impact on 

charging time. Data comprise a number of unobservable influencing elements in addition to observable ones. As 

such, choosing a model that works well and can deal with uncertainty is difficult. A reliable method for 

obtaining an accurate charging time prediction is to build a model using data. ML-based energy optimisation 

method for electric vehicles (EVs) is one such solution. It makes predictions about energy use and optimises 

energy usage by analysing past driving data. By using data from traffic, weather, and driving behaviours, 

machine learning algorithms may provide drivers with individualised energy management solutions. These 

solutions can increase the driving range of an EV by reducing energy waste [5]. 

The major contribution is as follows: 

• To propose novel electric vehicle energy maximization with optimization model based on their 

charging infrastructure analysis. 

• To optimize and develop EMS using ultracapacitor solar fuel cell and Gaussian grey whale Krill Herd 

optimization model 

• The energy management system's suggested control system is proven to be successful across a broad 

range of processes in the electric vehicle application, according to the results. a comparative analysis is 

made on system design and voltage variations. battery lifetime will be extended and efficiency can be 

maximized. 

2. Background and literature review: 

The use of novel techniques to accurately forecast EV energy usage is supported by current research, which also 

extends driving range as well as lessens range anxiety. Therefore, a larger range can be achieved by empowering 

drivers to feel more competent as well as allowing them to use car longer on a single charge. In order to provide 

next stage demand reference to operating efficiency optimisation of ICE, a driving cycle predictor based on MC 

is built in [6]. Based on anticipated braking torque by MC, stochastic DP (SDP) is utilised in [7] to optimise 

downshifting control for HEVs during regenerative braking. In [8], near-future driving velocity is predicted 

using a multi-step Markov prediction method, and the energy flow in PHEVs is subsequently managed by 

applying the MPC. An offline EMS based on reinforcement learning (RL) is examined in [9] using integrated 

stationary Markov transition probability matrix. In [10], transportation pattern is identified by using a Markov 

chain model and using clustering analysis to find characteristic specifications of transportation data. To 

maximise fuel efficiency of plug-in hybrid electric vehicles (PHEVs), study [11] combined driving condition 

detection, realised by learning vector quantization neural network, into PMP based energy management. A 

notable optimisation effect was achieved. The driving cycles were split into three categories by the author [12] 

using fuzzy C-means clustering, and the condition recognition was finished by calculating distance between 

value of attributes of actual driving circumstances as well as clustering centre. Machine learning is the primary 

source of inspiration for recognition techniques. According to NEDC driving cycle, Work [13] separated actual 

driving conditions into five categories. The BP neural network was then used to recognise the driving 

conditions, resulting in a high degree of condition identification accuracy. Author [14] investigates how the 

power grid is affected by the various charging behaviour states, including off-peak, delayed, 

coordinated/uncoordinated charging. Decentralised EV charging solutions were devised in work [15] to assure 

charge completion in distribution grid as well as minimise load variance. A multiagent simulation method for 

spatial distribution of EV ownership among local populations was proposed by author [16]. Using a variety of 

charging techniques, the effects of charging behaviour associated with growing EV ownership on local power 

system were examined. 

3. EV energy management system using ultracapacitor solar fuel cell (UCSFC): 

EV fuel cell power system is composed of a number of parallel fuel cell groupings that work together to produce 

necessary voltage and current to power electric motor. Fuel cell power method concept for an electric car is 

depicted in Figure 1. There are two types of loads for EVs: transient and steady. There is no peak demand for a 
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constant load, such as for on-board electricity or air conditioning. These loads are totally compatible with FC 

and never fluctuate. Acceleration, braking, and deceleration are all part of the transient load. 

 

Figure 1. Fuel cell system for EVs 

The following formula is utilized to find fuel cell system's global voltage by eqn (1) 

𝑉𝐹𝐶 = 𝑁𝑆(𝑉𝑟 − Δ𝑉𝑎𝑐𝑡 − Δ𝑉ohm − Δ𝑉conc )                                   (1) 

Vr is fuel cell's reversible voltage, ∆V is voltage drop, Ns is number of fuel cells in a serial configuration. The 

sub-indices act, ohm, and conc take into consideration the effects of mass transit on concentration, ohmic losses 

resulting from ionic and contact resistance, and the activation process of chemical species. The following 

mechanism determines how much total current (IFC) a group of fuel cells generates based on the flow of 

hydrogen by eqn (2) 

𝐼𝐹𝐶 = 2𝑁𝑝𝑒
− 𝜌𝐻2�̇�𝐻2

𝑀𝐻2

                                       (2) 

The fuel cell system's number of parallel cells is denoted by Np, the electron electric charge is represented by 

e−, and the density, molecular weight, and hydrogen flow are shown by ρH2, MH2, and • VH2, respectively. 

Equation (3) combined yields the fuel cell power, or PFC: 

𝑃𝐹𝐶 = 2𝑁𝑠𝑁𝑝[(𝑉𝑟 − Δ𝑉act − Δ𝑉ohm − Δ𝑉conc )]𝑒
−

𝜌𝐻2
�̇�𝐻2

𝑀𝐻2 == 2𝑁𝑠𝑁𝑝(𝑉𝑟 − Δ𝑉)𝑒
−

𝜌𝐻2
�̇�𝐻2

𝑀𝐻2     (3) 

Taking into account that both the voltage drop, ∆V, and the reversible fuel cell voltage remain constant by eqn 

(4) 

𝑃𝐹𝐶 = 𝐶𝐻2
�̇�𝐻2

                                (4) 

where constant CH2 is given by eqn (5) 

𝐶𝐻2
= 2𝑁5𝑁𝑝(𝑉𝑟 − Δ𝑉)𝑒− 𝜌𝐻2

𝑀𝐻2

                                    (5) 

Power is supplied by the UC under temporary load conditions. The model is made up of capacitance Cuc and 

series equivalent resistance Rsc, which stand for charging and discharging, respectively. The equivalent parallel 
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resistance, or Rpc, is a representation of self-discharging losses. One way to express the voltage level of UC is 

given by eqn (6) 

𝑉uc(𝑡) = 𝑉init 𝑒
(−

𝑡

𝐶uc𝑅sc
)
                                  (6) 

The energy extracted from UC can be written as follows is given by eqn (7) 

𝐸uc =
1

2
𝐶uc(𝑉init 

2 − 𝑉final 
2 )                                   (7) 

where Vfinal is the voltage at which the discharge process ends and Vinit is the value at which it begins. 

Depending on where switch S1 is located, the converter can be in one of two states. When a signal is applied at 

the gate to turn on switch S1, the diode will not conduct, the inductor current will equal the source current, and 

the switch will conduct the same current. At this time, the output capacitor Cout will be the only source of load 

current, and the inductor will be storing energy. When switch S1 is turned off, the diode will become forward-

biased and the inductor current will pass through it, charging the capacitor that was discharged during the 

preceding situation. The car can only be driven by the electric accumulator, regardless of the driving conditions. 

When the battery encounters an excessive discharge rate during periods of high power consumption, such as 

during the acceleration process or in areas with a slope, this results in a decreased battery capacity and a shorter 

driving range. Because the fuel cells function poorly at high discharge rates, which happen during the 

acceleration phase, fuel cell-powered electric cars have difficult acceleration. Fuel cell manufacturers expanded 

their product lines to circumvent this issue and supply the electric car with adequate power during periods of 

high power consumption. Hybrid fuel cell and supercapacitor systems circumvent the problems of rapid 

discharge and inability to tolerate high discharge rates. Actually, the electric automobile is powered by 

supercapacitor during periods of high power demand, fuel cell operates at medium or low power demand. The 

supercapacitor is also recharged by the fuel cell after use, but the discharge rate is far lower because the 

supercapacitor recharges more slowly than discharge. 

Because ultracapacitors have a cell voltage of 2.7 V, using them as energy storage devices in hybrid electric 

vehicles (HEVs) requires connecting multiple cells in series to achieve a high voltage level. Fuel cell's as well as 

supercapacitor's physical characteristics were taken into consideration when developing the power distribution 

plan. Because of its high energy density, fuel cell is intended to be used as main energy source majority of time. 

Due to its low power density, the fuel cell can operate continuously in low-load, stable settings. However, the 

high power density of the supercapacitor makes it perfect for high transient load scenarios. Because 

supercapacitor discharges quickly and offers significant power to the vehicle, it is employed as a secondary 

energy source due to its low energy density. The following is an overview of power management strategy: 

1. Majority of fuel cell's operation occurs at low power requirements. The supercapacitor is charged with 

the leftover energy. Supercapacitors are charged and discharged in accordance with the demands of the 

load. 

2. To satisfy high power requirements, fuel cell is temporarily powered by supercapacitor during high 

power demands. 

Nonlinear controllers were used to implement the previously outlined technique, and the outcomes are shown. 

This approach was chosen because it: (1) uses nonlinear controllers to distribute power in real-time for speed 

control; (2) does not require prior knowledge of driving cycle; (3) considers properties of both fuel cell as well 

as supercapacitor when distributing power; and (4) is easily implemented online. Neural networks, artificial 

intelligence, and optimization-based techniques can be applied to ensure the best possible HESS performance; 

however, these techniques have three drawbacks: (1) they require a lot of computational power; (2) they operate 

offline; and (3) they overlook real-world vehicle power requirements, like power needed to accelerate in 

presence of gravity as well as friction. (4) are difficult to execute. The controller equations for adaptive 

controllers based on Lyapunov as well as backstepping will be officially derived in the following stage. We 

create an adaptive parametric update rule for unknown time-varying specifications after first assuming that all of 

the parameters are known. 
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4. Energy optimization using Gaussian grey whale Krill Herd optimization model (GGWKHO): 

To increase forecasting accuracy, the GP model makes use of data from several sources (tasks); from now on, 

sources and tasks is utilized interchangeably. By transferring important information between tasks and 

extracting and learning the commonalities between them, forecasting accuracy is improved. It should be 

highlighted that task similarities are solely derived from observations of individual tasks; they are taught by 

inter-task dependency. Utilising a parameterized covariance function over input variables, this inter-task 

dependency matrix is used. Assume that there are N different inputs (x1, x2, • • •, xN) for each of the Z tasks. 

The energy consumption in this study, which is response variable, can thus be expressed as follows by eqn (8) 

𝒚 = (𝑦11, ⋯ , 𝑦1𝑁 , 𝑦12,⋯ , 𝑦𝑁2, ⋯ , 𝑦1𝑍, ⋯ , 𝑦𝑁𝑍)                        (8) 

where yil denotes the result of lth task and xi the ith input. We assume a GP prior with zero mean over latent 

functions fl to solve this issue. As a result, relationships between tasks can be shown as follows by eqn (9) 

⟨𝑓𝑙(𝑥)𝑓𝑘(𝑥
′)⟩ = 𝐾𝑙𝑘

𝑓
𝑘𝑥(𝑥, 𝑥′),  𝑦𝑖𝑙 ∼ 𝑁(𝑓𝑙(𝑥𝑖), 𝜎𝑙

2),                       (9) 

Furthermore, for the l th job, the noise variance is σ 2 l. It is assumed that k x is a stationary covariance function 

in this model. Joint Gaussian distribution over y is taken to be non-block-diagonal. Matrix's off-diagonal 

members take non-zero values because it isn't a block-diagonal matrix in relation to jobs. Due to this 

characteristic, predictions and observations from one job might have an impact on observations from other tasks. 

Therefore, it can be verified that tasks are transferring significant information. Additionally, by understanding 

the covariance function given in (2), predictive distribution may be determined by applying conventional 

Gaussian Process equations for mean as well as variance. Consequently, mean and covariance for a fresh set of 

data x in task l can be expressed as follows by eqn (10) 

𝑓‾𝑙 = (𝑘𝑙
𝑓
⊗ 𝑘∗

𝑥)
𝑇
Σ−1𝒚,

Σ = 𝑘𝑓 ⊗ 𝑘𝑥 + 𝐷 ⊗ 𝐼,
                                      (10) 

Fundamental concept of GWO is quite similar to the hunting strategy and leadership structure of wolves. 

Generally speaking, four distinct wolf types—alpha (𝛼), beta (𝛽), delta (𝛿), and omega (𝜔) wolves—are 

simulated, arranged in order of strength. The first three sorts of wolves working together to seek the prey and 

arrive at a better solution are represented by the best three solutions in order to locate a new one. GWO 

simulates social hierarchy, tracking, surrounding, and attacking behaviours of a grey wolf statistically by eqn 

(11) 

�⃗⃗� = |𝐶 ⋅ 𝑋 𝑝(𝑡) − 𝑋 (𝑡)| 

𝑋 (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 ⋅ �⃗⃗�   

𝐴 = 2𝑎𝑟1 − 𝑎 

𝐶 = 2𝑟2 

𝑎 = 2 − t
2

 Max_iter 
                                                           (11) 

where an is a linearly declining coefficient from 2 to 0, Max_iter is maximum number of iterations, and 𝑟1 and 

𝑟2 are equally distributed random values, 0 and 1. When hunting, alpha wolves (𝛼) take the lead over the other 

wolves. In addition, beta (𝛽) and delta (𝛿) wolves engage in hunting activities. In every iteration, the optimal 

solutions from alpha (𝛼), beta (𝛽), and delta (𝛿) are preserved, remaining omega (𝜔) wolves adjust their 

placements in response to them. The following equations are suggested in this regard by eqn (12) 

 �⃗⃗� 𝛼 = |𝐶1 ⋅ 𝑋 𝛼 − 𝑋 | 

�⃗⃗� 𝛽 = |𝐶2 ⋅ 𝑋 𝛽 − 𝑋 | 

 �⃗⃗� 𝛿 = |𝐶3 ⋅ 𝑋 𝛿 − 𝑋 |                                                (12) 
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where position vectors for alpha (𝛼), beta (𝛽), delta (𝛿) , 𝑋 𝛼, 𝑋 𝛽, and 𝑋 𝛿. The vectors 𝐶1, 𝐶2, and 𝐶3 are 

produced randomly, whereas 𝑋 is position vector of individual in question. Distance between current individual 

location and that of individual alpha (𝛼), beta (𝛽), and delta (𝛿) is measured by equations (13). Thus, the present 

individual's final position vectors are found by: 

𝑋 1 = 𝑋 𝛼 − 𝐴1 ⋅ �⃗⃗� 𝛼 

𝑋 2 = 𝑋 𝛽 − 𝐴2 ⋅ �⃗⃗� 𝛽 

𝑋 3 = 𝑋 𝛿 − 𝐴3 ⋅ �⃗⃗� 𝛿                                            (13) 

where the vectors 𝐴1, 𝐴2, and 𝐴3 are produced at random. A new position (solution) is created by combining 

the three best positions by eqn (14) 

𝑋 (𝑡 + 1) =
𝑤𝑋‾1+𝑤𝑋‾2+𝑤𝑋‾3

3
                                            (14) 

Three steps make up the WOA process: bubble assault (local search), prey encircling (global search), and prey 

searching (iterate updating). Updating each whale's location is the aim of prey seeking. Prey encirclement serves 

the objective of allowing individual whales to finish their worldwide search for ideal targets. The goal of the 

bubble assault is to achieve local optimisation. The number of whales in the population should first be 

initialised, and the number of iterations should be optimised. Assume that N is size of the whale population, D is 

optimised parameter dimension, and M is the optimal number of iterations. Every whale location in WOA 

stands for a potential fix for the optimisation issue. Let i be the number of distinct whales. If i = 1, 2,..., N, then 

position of i-th individual in the whale population is Xi = (x1 i, x2 i,..., xD i ). Furthermore, the global optimal 

solution is whale at ideal preying position. Fuel consumption of vehicle is the fitness value f (x), which may be 

expressed as follows by eqn (15) 

𝑓(𝑥) = ∑𝑓=1
𝑁   (𝑏cor(𝑋) + 𝜔𝑡

𝑃har (𝑋)

𝑄lir 
)                                   (15) 

When t is time step, 𝜔t is energy consumption conversion rate, Qlhv is fuel low heat value. To guarantee that 

various components can work within tolerances, certain powertrain performance as well as vehicle dynamic 

limitations are specified throughout the optimisation process. Set up each Krill individual: Provide a starting 

population of krill individuals, each represented by the GRP parameters C and σ and given a position in the 

search space as Ki. Set their starting points at random points in the search space by eqn (16) 

𝜃𝑖 , 𝜙𝑖 ∈ [𝜃min, 𝜃max] × [𝐶min, 𝐶max] × [𝜎min, 𝜎max]                         (16) 

Krill Movement: Movement of Separation: Krill people usually keep a minimum gap between themselves. 

Using the separation factor as a basis, compute the new position by eqn (17) 

𝜃𝑖(𝑡 + 1) = 𝜃𝑖(𝑡) + Δ𝜃𝑖(𝑡 + 1)                         (17) 

Where 

Δ𝜃𝑖(𝑡 + 1) = Δ𝑠∑𝑗=1
𝑁  𝑑(𝜃𝑖(𝑡), 𝜃𝑗(𝑡))(𝜃𝑖(𝑡) − 𝜃𝑗(𝑡)) 

Alignment Movement: Krill modify their velocities to match those of their neighbours. Determine the alignment 

factor and use it to calculate the new position by eqn (18) 

𝜃𝑖(𝑡 + 1) = 𝜃𝑖(𝑡) + Δ𝜃𝑖(𝑡 + 1) 

Δ𝜃𝑖(𝑡 + 1) = Δ𝑎∑𝑗=1
𝑁  (𝜙𝑗(𝑡) − 𝜙𝑖(𝑡))(𝜃𝑗(𝑡) − 𝜃𝑖(𝑡))                          (18) 

For Krill Herd Algorithm (KHA) to produce accurate predictions and efficient optimisation, parameter values 

must be chosen carefully. Parameter decisions like separation (¬s), alignment (¬a), cohesiveness (¬c), attraction 

(¬f), and distraction (¬e) variables are crucial for striking this balance between exploration and exploitation. 

Exploiting potential regions and conducting sufficient investigation of the solution space are ensured by 

prioritising values that support both exploration as well as exploitation. This promotes convergence towards the 

global optimum and delays the premature convergence to suboptimal solutions. In addition, parameter values 

are customised based on the features of the data, including its size, variability, and complexity. To highlight 
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exploiting and refining solutions effectively, for instance, larger numbers are preferable in settings with well-

defined patterns or abundant data, whereas smaller values may be chosen in situations with significant 

variability or scant data to encourage additional exploration. 

5. Experimental analysis: 

The simulation operates on a 2.5 GHz personal computer outfitted with an Intel Core i5 processor, 8 GB of 

RAM, and RAM, using the Simulink version of MATLAB-2017. Initially, VFT is connected to a doubly-fed, 3-

phase, asynchronous machine with a rated speed of 1500 rpm, 15.1 kVA, 400 V, and 50 Hz. A three-phase 

series R-load is then connected. By means of its stator windings, a DC motor isolates R-Load linked to WRIM 

and modifies the SG speed. In this section, we perform simulations to illustrate the relationships between the 

average EV arrival, average cost, average cost upper bound, and average EV queue duration. We consider 

different capacities and numbers of charge points of the battery used for renewable energy storage in interim. In 

the simulations, "energy block" has a size of E = 10 and a period length of 1. In simulations, we employ radical 

policy. For A, Ea, and P, we consider i.i.d. cases. The probability of A taking 0 and 2A is equal. With the 

probability of 1, 0, and 0, EA accepts the numbers 0, 50, and 100. With the probability of 0, 2, and 0.5, P 

accepts the numbers 5, 10, and 20. Performance has been averaged across 105 periods. M = 50 and M = 8 are 

the numbers of charge sites that we have set. Plotted are the curves for various storage battery capacities, 

including Emax = 100, Emax = 300, and limitless capacity. But when A is large (say, A 10), cost increases 

quickly as A increases, essentially following a linear relationship. This is such that when A is tiny, the battery 

can supply energy and the necessary energy is equally little. Consequently, there won't be any costs and no 

consumption of grid power. When A surpasses a predetermined threshold and the needed energy exceeds energy 

in batteries, grid power is used. Since M is huge, we have k = minq, M = q with a high probability, meaning that 

the performance will not be impacted by the constraint on the number of charge sites. The power consumption 

on grid will rise in tandem with an increase in A. Moreover, grid power takes over as the primary energy source 

when A is high. We conclude from (5) that there is roughly a linear link between the cost and A. Power 

consumption is evaluated using equation (3), where br and θr are set to 137 mW/Mbps and 132.9 mW, 52 

mW/Mbps, 1288 mW for LTE and WIFI. After path r's energy consumption is equal to product of Pr and during 

T, we can calculate the machinery's total energy consumption by adding energy consumption of each interface. 

Table-1 Comparative based on EV charging power range 

Cases Techniques MAPE Accuracy Robustness 
Power 

consumption 

Energy 

efficiency 

137 

mW/Mbps 

and 132.9 

mW 

ELM 78 74 73 75 79 

PSWO 73 76 78 79 83 

UCSFC_GGWKHO 70 88 80 84 89 

52 

mW/Mbps 

and 1288 

mW 

ELM 79 85 81 83 92 

PSWO 62 89 87 90 95 

UCSFC_GGWKHO 54 97 92 95 98 

Table-1 shows comparative for EV charging power ranges. the proposed technique analysed based on 137 

mW/Mbps and 132.9 mW, 52 mW/Mbps, 1288 mW in terms of MAPE, Accuracy, Robustness, power 

consumption, energy efficiency. 
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(a) MAPE 

 
(b) Accuracy 

 
(c) Robustness 

 
(d) power consumption 

 
(e) energy efficiency 

Figure-3 Comparative for 137 mW/Mbps and 132.9 mW in terms of (a) MAPE, (b) Accuracy, (c) 

ROBUSTNESS, (d) power consumption, (e) energy efficiency. 

Figure- 3 shows comparative for137 mW/Mbps and 132.9 mW. proposed technique attained MAPE of 70%, 

Accuracy of 88%, ROBUSTNESS of 80%, power consumption of 84%, energy efficiency of 89%, ELM 

attained MAPE of 78%, Accuracy of 74%, Robustness of 73%, power consumption of 75%, energy efficiency 

of 79%, PSWO attained MAPE of 73%, Accuracy of 76%, Robustness of 78%, power consumption of 79%, 

energy efficiency of 83%. for 52 mW/Mbps and 1288 mW proposed technique attained MAPE of 54%, 

Accuracy of 97%, Robustness of 92%, power consumption of 95%, energy efficiency of 98%, ELM attained 

MAPE of 79%, Accuracy of 85%, Robustness of 81%, power consumption of 83%, energy efficiency of 92%, 

PSWO attained MAPE of 62%, Accuracy of 89%, Robustness of 87%, power consumption of 90%, energy 

efficiency of 95%. 

Simplifying the method is siginificant in order to lessen the computational load of DP. The power output of EM 

is control variable, while energy stored in battery is dynamic state. Backward DP algorithm assesses cost of each 

permitted torque split at a specific time instant and uses kinematical equations to compute the power demanded 

by driver based on vehicle velocity. Ultimately, trajectory that minimises fuel consumption from initial to the 

ultimate state of charge yields optimal solution, or series of power values that EM must supply. Due to 

discretization of state variable, which is set between SOCmin = 0.6 and SOCmax = 0.8, SOC requirement is 

automatically satisfied. Accurate power demand data is difficult to come by because vehicle movement is 
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influenced by a number of variables, including traffic and driving habits. Formulates an immediate optimisation 

problem for a battery-UC HESS power split problem in order to solve an EM problem without future operating 

knowledge available. To make the best use of the UC, it must be charged or discharged appropriately. Given the 

difficulty in predicting future power consumption profiles, the UC SoC can be adjusted with a straightforward 

method depending on vehicle speed (Vs): In order for UC to produce stored energy that can meet peak power 

during accelerations, it is recommended that UC be run in a high SoC range whenever Vs is low. In contrast, 

due of regenerative power during decelerations, the UC SoC must be low if Vs is high. Specifically, whenever 

the Vs rises from zero, the electric machine often needs a lot of power. 

6. Conclusion: 

Based on the infrastructure for charging electric vehicles, this study offers a revolutionary method for 

optimising and increasing energy efficiency. The energy management system for this EV is based on an 

ultracapacitor solar fuel cell, and the Gaussian grey whale Krill Herd optimisation model was used to optimise 

the energy use. Fuel consumption is somewhat reduced at fixed state discretization when action discretization is 

increased, but the benefit is negligible above a certain point. Conversely, fuel consumption increases with 

increasing state discretization at the fixed action discretization. However, after a certain discretization threshold, 

the rate of fuel consumption increase becomes negligible. The MPG increases to a certain point and then starts 

to decline when both states and action discretization increase simultaneously. Following the classification of a 

particular traffic state, the ideal control levels for various driving situations will be called online. Finally, a 

simulation-based evaluation is carried out to confirm the improved energy-saving performance of the suggested 

solutions under various driving scenarios. Future iterations of the model will account for other factors like traffic 

circumstances, driver behaviour, and auxiliary loads. Examining the effectiveness of sophisticated deep learning 

methods and rigorous optimisation would also be beneficial. 
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