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Abstract: - Urban ecological quality (UEQ) suffers from dramatic changes due to influence factors from multiple sources such as intensified 

human activity and climate change. A comprehensive analysis of the driving mechanisms is imperative for targeted ecological management. 

However, existing studies lack a spatiotemporal perspective to explore the discrepancies in driving mechanisms among multiple factors in 

detail. To address this critical gap, we established a spatiotemporal sequence of remote sensing ecological index (RSEI) from 2000 to 2020 

in Shanghai and employed Geographically and Temporally Weighted Regression (GTWR) to meticulously investigate the multiple driving 

factors. Additionally, we utilized the K-Means clustering to uncover differentiation in the driving characteristics and mechanisms among 

different factors. Our findings revealed profound insights: 1) The overall RSEI exhibited a marginal decline from 2000 to 2005, followed 

by an improvement from 2005 to 2020 in Shanghai. The UEQ was mainly driven by the vegetation communities and also influenced and 

disturbed by a combination of abiotic factors including human activities, climate, soil, and topography. 2) The clustering of UEQ evolution 

in Shanghai is consistent with a certain urban-rural gradient. Multiple factors' driving roles and characteristics differ in distinct clustering 

areas, forming differentiated driving mechanisms that jointly influence the trajectory of UEQ spatiotemporal evolution. 3) Human activities 

play the largest negative inhibitory role among all drivers. Climatic factors show highly fluctuating time serial characteristics. This case 

study taking Shanghai as an example, not only depicts the evolutionary trajectory of UEQ in the last two decades but also analyzes and 

reveals in detail multifactorial discrepancies in the spatiotemporal driving mechanisms. Our research can provide references for 

environmental observations, targeted ecological management, and planning in Shanghai and other urban areas. 

Keywords: Remote sensing ecological index; Geographically and temporally weighted regression; Multi-factor; K-Means; 

Shanghai 

1 INTRODUCTION 

Ecological quality represents the inherent capacity of diverse interconnected environmental components to 

support human survival and facilitate sustainable development, comprehensively encapsulating the regional 
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holistic ecological state (Chen and Yang et al., 2022). Over 56.5% of the world's population resides in urban areas 

(https://databank.worldbank.org) today, and the swelling population is responsible for an ever-increasing 

ecological burden (Khan and Hou et al., 2021). Urban ecological quality (UEQ) also suffers from more acute 

multi-source ecological risks (Arfanuzzaman and Dahiya, 2019), including climate change (Wang and Fu et al., 

2023) and soil degradation (Toth and Dombos et al., 2023). Facing the urgent issue of enhancing ecosystem 

services and advancing human well-being for sustainable development (Knight and McClean et al., 2022), the 

United Nations has emphasized the need for a multi-level and comprehensive assessment of global ecosystems 

through initiatives such as the Sustainable Development Goals for 2030 (SDGs) and the Millennium Ecosystem 

Assessment Program (Komugabe-Dixson and de Ville et al., 2019). Therefore, a spatiotemporal investigation of 

the driving mechanisms of UEQ (Li and Wang, 2022), is one of the guarantees for identifying ecological problems 

and causes as well as developing appropriate adaptive mitigation strategies (Zhang and Yang et al., 2021), which 

is the departure point of the study. 

Researchers have devised various indices or frameworks to quantify UEQ, but not all of them reveal its 

spatiotemporal heterogeneity sufficiently at the regional scale. Evaluation frameworks incorporating economic 

and social variables with the coarse spatial resolution are generally appropriate only for macro-scale studies, 

examples including the ecological footprint (EFP) estimated through the STIRPAT model (Dogan and Ulucak et 

al., 2020), and the coordination of urbanization and ecological environment composite system (CUECS) (Wang 

and Liang et al., 2019). Due to the benefits of sufficient datasets and spatiotemporal continuity, remote sensing 

has provided an effective approach to focus on the ecological environment in detail and studied how external 

factors affect UEQ. Comprehensive remote sensing indices have become a focus for most scholars, as single 

remote sensing indices can only one-sidedly reflect the state of the ecosystem. The remote sensing ecological 

index (RSEI) is an efficient and generalized measure in large-scale UEQ studies (Ji and Wang et al., 2020), 

compared with other UEQ assessment index systems (Tang and Liu et al., 2023). Some researchers proposed 

enhancements to RSEI (Jiang and Zhang et al., 2021; Zheng and Wu et al., 2022; Wang and Chen et al., 2023). 

There is still little empirical support for these improved models, and their availability and dependability are still 

in doubt (Xu and Li et al., 2022). Nonetheless, the original RSEI is a reliable, efficient, and widely-utilized method 

for identifying interannual UEQ changes in urban areas (Hu and Xu, 2018), river basins (Yuan and Fu et al., 2021), 

and nature reserves (Jing and Zhang et al., 2020). 

Multiple dimensions including human activities (Frédéric and Jean-Marc, 2018), climate change (Braun and de 

Jong et al., 2019), soil quality (Arfanuzzaman and Dahiya, 2019), and topographic conditions (Geng and Yu et 

al., 2022), were considered as potential drivers of regional UEQ changes. In addition, excluding the growth of 

biotic communities after external disturbances, especially vegetation communities, has an irreplaceable function 

of improving UEQ. There are definite discrepancies in the driving mechanisms among different factors, mainly 

due to the spatiotemporal heterogeneity characteristics of the impacts (Wang and Liu et al., 2021), which has led 

researchers to recognize more rigorous standards when investigating driving mechanisms. Data requirements 

necessitate the collection of extensive and long-term datasets with high spatiotemporal resolutions (Sun and Li et 

al., 2022). Instead of constructing a continuous yearly or monthly series (Zhang and Fan et al., 2023), quantities 

of studies still rely on a limited number of samples at different time points (Zhang and Cai et al., 2022), which 

https://databank.worldbank.org/
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overlooks the temporal variability of effects and can result in biased conclusions. The traditional driving factors 

regression models, such as ordinary least squares regression (OLS) and autoregressive integrated moving average 

(ARIMA) (Bo and Li et al., 2022), ignore the mutual influence of the spatial locations, while temporal 

requirements still cannot be met by spatial regression models like Geographically Weighted Regression (GWR) 

and Geographically Weighted Detector (Lyu and Clarke et al., 2019). To address this issue, models that consider 

spatiotemporal effects, such as the Geographical temporal weighted regression model (GTWR) (Zou and Zhu et 

al., 2022) and spatial Durbin models (Li and Bi et al., 2022), have become utilized in some studies of ecological 

drivers, with more reliable results compared to conventional models. 

Furthermore, the spatiotemporal heterogeneity of both UEQ and driver influences tends to produce massive 

pixel samples, complicating the analysis of the driving mechanisms. From a spatiotemporal perspective, each 

pixel corresponds to a time series, and appropriate clustering can reflect the spatial difference distribution of 

evolution (Suominen, 2018). Some studies use the increase/decrease and trend significance (Xu and Wang et al., 

2019) to divide time series, emphasizing trend characteristics while ignoring other features such as contour and 

fluctuation. Another popular categorization and partitioning methods are the autocorrelation indices. But examples 

like the Global Moran's I, the Anselin Local Moran's I (Ren and Shang et al., 2020), and the local hotspots Getis-

Ord Gi* cannot fully capture the changes in the temporal dimension. Most of the existing studies are limited to 

the above schemes and are inaccessible to delve into the spatiotemporal differences between the driving 

mechanisms of multiple factors. For the above challenges, machine learning has been providing effective means 

for time series clustering, offering more suitable solutions for the various time series features. Dynamic time 

warping (DTW) and K-Means clustering (Viana-Soto and Aguado et al., 2020) are proven valid as machine 

learning techniques for time series clustering in ecological index research. By applying the K-Means, we can take 

into account both the contour and trend characteristics of the UEQ time series and avoid getting one-sided 

clustering results for driving pattern and mechanism analysis betterment.  

Based on the foregoing context, we pose the following significant scientific query: What are the 

discrepancies in the spatiotemporal driving mechanisms on UEQ from multi-factor, and how do reveal them? To 

address this issue, we selected Shanghai, a prototypical megacity that has undergone tremendous changes in UEQ 

and drivers during its rapid development and construction, as the typical research region. This study aims to 

explore the dynamics of Shanghai UEQ and drivers, dig deeper into the discrepancies in driving mechanisms of 

different factors, and summarize the possible universal patterns. This study will offer a reference for revealing the 

driving patterns of multiple factors on UEQ from a spatiotemporal perspective, provide a solid research foundation 

for targeted ecosystem management, and have potential significance for regional sustainable development. 

2 MATERIALS AND METHODS 

2.1 Study area 

Shanghai (120°51′09′′-121°58′17′′E, 30°41′28′′-31°51′56′′N) is a megacity located in the coastal region of 

China and the Yangtze River Delta, on the west coast of the Pacific Ocean, and at the east end of the Asian 

continent, as shown in Figure 1(a). The region has an approximate area of 6,791.41 km2. Shanghai is characterized 

by flat terrain with an average slope of 1.1° and an average elevation of 4.1 m above sea level 
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(https://tjj.sh.gov.cn/zrdl/index.html). The region has a subtropical monsoon climate, which results in hot, humid 

summers and cool, damp winters. The average annual precipitation and temperature are approximately 1,166.1 

mm and 16.0℃, respectively (https://data.cma.cn/). Over the past two decades, the urban area in Shanghai has 

experienced significant expansion, with impervious surface area, total population, and GDP continuing to increase, 

as shown in Figures 1(b), 1(c), and 1(d), indicating the regional ongoing urbanization and increasing human 

activities. As of 2021, the population of Shanghai has reached about 24.89 million, ranking it as the third-largest 

city in the world. The regional gross domestic product (GDP) in 2021 was 4,321.49 billion yuan 

(https://tjj.sh.gov.cn/). Construction land (42.69%) and cropland (41.50%) dominate the current land use/cover in 

Shanghai, as depicted in Figure 1(e), severely limiting the spatial scope of natural ecological systems such as 

forests and challenging the regional environment. 

 

Fig 1. (a) Shanghai location map; (b) Shanghai impervious surface area curve from 2000-2021; (c) 

Shanghai population curve from 2000-2021; (d) Shanghai GDP curve from 2000-2021; (e) Shanghai land 

use cover map in 2020 

2.2 Data source and processing 

The research process consists of several stages, including data collection and variable calculation, variable 

integration, time series clustering, and driving analysis. A detailed overview of the research process is depicted in 

Figure 2.  
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Fig 2. Technical flowchart of the methodology 

In this study, Table A1 presents the data sources and variables used. The 2021 Shanghai administrative boundary 

shapefile was employed to identify the study area. The Landsat Collection 2 dataset from the United States 

Geological Survey (USGS) provided by Google Earth Engine (GEE) was used to obtain surface reflectance data 

for 2000-2011 and 2013-2020, using corrected Landsat 5 TM and Landsat 8 OLI imagery, respectively. The 

growing season (June to September) of each year was selected to calculate the RSEI (Yang and Tian et al., 2021) 

while missing data for 2012 were estimated through temporal interpolation from neighboring years. We employed 

the GEE-provided cloud removal algorithm to remove clouds and shadows, based on QA_PIXEL (Li and Wang, 

2022), and calculated the median to synthesize high-quality multi-band images. Besides, we referred to other 

research results and numerous widely accepted data products as the foundation for extracting drivers. Population 

data came from WorldPop (https://www.worldpop.org/); GDP data (Chen and Gao et al., 2022), nighttime lights 

(Chen and Yu et al., 2021), and land use data (Yang and Huang, 2021) came from open-source research of other 

scholars. The land use data was validated by visual interpretation of high-resolution images from Google Earth 

(http://www.google.com/earth) and has a classification accuracy of over 85% for Shanghai, which meets the 

research needs. Other sources such as Terrain data from NASA DEM developed by SRTM imagery 

(https://lpdaac.usgs.gov/products/nasadem_hgtv001/), climate data from the CRU Ts4.0 (Harris and Osborn et al., 

2020), and soil data from the SoilGrids (Poggio and de Sousa et al., 2021) were also used as references. 

Table A2 illustrates the data processing procedures and calculations that yielded five categories of 16 distinctive 

variables. The remote sensing ecological indices used to describe the UEQ consist of the normalized difference 

vegetation index (NDVI), normalized difference build-up and soil index (NDBSI), land surface temperature (LST), 

and wetness index (WET). These indices were obtained from remote sensing image data by employing specific 

methods detailed in section 2.3.1. Human activity factors, including population density (POP), GDP density 
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(GDP), nighttime light (NL), and land use intensity (LUI), were incorporated into the analysis (Cheng and Liu et 

al., 2022). The climate variables, precipitation (PRE), and temperature (TEM) were computed from the total 

precipitation amount and the average temperature in Shanghai from June to September. The terrain variables 

include commonly used elevation (ELE), slope (SLO), and relief amplitude (RA). The soil variables considered 

were soil organic content (SOC), nitrogen (SN), and cation exchange capacity (CEC), which are widely accepted 

as indicators of soil fertility and quality (Paul and Saha et al., 2020). Although other variables showed annual 

variations, the terrain and soil data exhibited relatively little variation in site conditions, and thus single-year data 

were used. All variables underwent processing using ArcGIS Pro 2.5 geoprocessing, resampling, or spatial 

interpolation to maintain a consistent spatial resolution of 100m × 100m and were extracted by the study area 

boundary mask. The variance inflation factor (VIF) was used to detect multicollinearity among the variables, and 

it was observed that NL (7.530), GDP (9.340), SLO (9.329), and RA (9.163) had higher VIF values (>7.5), 

indicating significant collinearity issues. Thus, dimensionality reduction processing of the variables was necessary, 

as stated in section 2.3.2. 

2.3 Methods 

2.3.1 Remote sensing ecological index (RSEI) calculation 

Greenness, dryness, heat, and wetness are the four univariate indices that make up the RSEI. The greenness index 

is a crucial metric to reflect the development and coverage of vegetation. NDVI, the most widely used greenness 

index, is calculated as Equation (1): 

nir red

nir red

NDVI
 

 

−
=

+
                                    (1)  

Where: 𝜌𝑛𝑖𝑟  and 𝜌𝑟𝑒𝑑  represent the reflectance in the near-infrared and red bands of the image, respectively. 

NDBSI is synthesized using the Index-based Built-up Index (IBI) and the Soil index (SI) with equal weights, 

calculated as shown in Equation (2): 

( ) / 2NDBSI SI IBI= +                                  (2)                           

Where: IBI represents the degree of imperviousness of the ground surface, indicating the density of buildings and 

hard surfaces, and is calculated as shown in Equation (3). SI reflects the degree of bare ground and land 

degradation, calculated as shown in Equation (4). 
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Where: 𝜌𝑏𝑙𝑢𝑒  , 𝜌𝑔𝑟𝑒𝑒𝑛  , 𝜌𝑟𝑒𝑑  , 𝜌𝑛𝑖𝑟  , 𝜌𝑠𝑤𝑖𝑟1 , 𝜌𝑠𝑤𝑖𝑟2  indicate the reflectance of features in the blue, green, red, 
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near-infrared, short-wave infrared1, and short-wave infrared2 bands corresponding to the images, respectively. 

Applying a specific emissivity correction to the sensor temperature measurements results in the calculation of the 

Land Surface Temperature (LST) characterization heat index using remote sensing inversion (Guo and Fang et al., 

2020). Its formula is shown in Equation (5). 

1 ln

T
LST

T




=
 

+  
 

                                    (5)  

Where: λ is the central wavelength of thermal IR 6-band and 10-band, 11.435 μm, and 10.896 μm for both TM 

and OLI images, respectively; ρ is an adjustment factor with a value of 1.438×10-2mk; ε is the surface radiance, 

calculated according to the literature (Nichol, 2005). T is the sensor temperature value, which is calculated from 

the thermal IR 6-band and 10-band image elements at the radiation value 𝐿𝜆 at the sensor. The formulas of T and 

𝐿𝜆 are shown in Equations (6) and (7), respectively. 

2

1ln 1

K
T

K

L

=
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                                      (6)  

L gain DN bias =  +                                   (7)  

Where: the calibration parameters 𝐾1=606.09W/(m2·sr·μm), 𝐾2=1282.71K, 𝐷𝑁 is the grayscale number of the 

image element, and 𝑔𝑎𝑖𝑛 and 𝑏𝑖𝑎𝑠 are the gain and bias values of the corresponding band, respectively (Nichol, 

2005). The WET calculation based on Landsat 5 TM and Landsat 8 OLI remote sensing data are shown in 

Equations (8) and (9), respectively (Ariken and Zhang et al., 2020). 

1 20.0315 0.0201 0.3102  0.1594 0.680 0( 6 .61) 09blue green red nir swir swirW T TME      + + + − −＝        (8)  

1 20.1511 0.1973 0.3283 0.3407 0.7117 0.4559( ) blue green red nir swir swirWET OLI      + + + − −＝        (9)  

Where: 𝜌𝑏𝑙𝑢𝑒  , 𝜌𝑔𝑟𝑒𝑒𝑛  , 𝜌𝑟𝑒𝑑  , 𝜌𝑛𝑖𝑟  , 𝜌𝑠𝑤𝑖𝑟1 , 𝜌𝑠𝑤𝑖𝑟2  are the wavelength reflectance of blue, green, red, NIR, 

SWIR1, and SWIR2, respectively. 

2.3.2 Principal component analysis (PCA) 

We built several composite indices using PCA: the RSEI for ecological quality, the HAI for human activity 

intensity, the SQI for soil quality, and the TCI for topographic conditions. Through linear transformation and 

sequential vertical axes rotation, PCA reduces the number of components that make up information on multiple 

variables. To avoid the weight imbalance, probably from the non-uniformity of the magnitudes, the variable 

factors should be studentized before PCA, as Equation (10) shows. 

( ) ( )min max min/i iNI I I I I= − −                                ( )10  
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Where: 𝑁𝑖 is the studentized result of the 𝑖th pixel of a variable; 𝐼𝑖is the variable value at the ith pixel; 

𝐼𝑚𝑎𝑥 is the maximum value of the variable among all pixels; 𝐼𝑚𝑖𝑛  is the minimum value of the variable among 

all pixels. Equations (11-14) show the composite indices constructed by PCA.  

( ), , ,iRSEI PCA f NDVI NDBSI LST WET=                           ( )11  

( ), , ,iHAI PCA f GDP POP NL POW=                             ( )12  

( ), ,iSQI PCA f SOC SN CEC=                                 ( )13  

( ), ,iTCI PCA f ELE SLO RA=                                  ( )14  

As shown in Table A3, all four composite indices passed the Kaiser-Meyer-Olkin (KMO) test (KMO>0.6, 

p<0.001), and the eigenvalue load shares of the first principal component exceeded 70%, proving the applicability 

and suitability of PCA. In addition, PRE and TEM had low correlations and failed the test to extract a valid single 

maximum principal component, so they were considered separately as driver variables. For comparability, the 

indices were further studentized through Eqs. (8). Subsequently, we tested the covariance of the variables, and the 

VIF values of the driver variables were calculated as HAI (2.509), PRE (1.111), TEM (1.436), SQI (1.787), and 

TCI (1.417), all of which met the requirement of <7.5, indicating no significant covariance between the variables. 

2.3.3 Geographical temporal weighted regression (GTWR) model 

GTWR is an extension of GWR that addresses the non-smoothness in parameter estimation caused by 

spatiotemporal distance. The weight matrix utilized in GTWR is developed by taking into account the differences 

in spatiotemporal data, which allows for a more flexible and comprehensive analysis of complex spatiotemporal 

data (Hu and Zhang et al., 2022). The GTWR model expression is shown in Equation (15) (Huang and Wu et al., 

2010). 

( ) ( )0

1

, , , ,
p

i i i i k i i i ik i

k

Y u v t u v t X  
=

= + +                         ( )15  

Where: 𝑌𝑖 is the dependent variable of the 𝑖th spatiotemporal sample, which is the RSEI value in this study; 

𝑋𝑖𝑘 is the 𝑘th explanatory variable of the 𝑖th sample. p is the total number of explanatory variables, and a total 

of five explanatory variables, HAI, PRE, TEM, SQI, and TCI, are considered in this study. 𝑢𝑖, 𝑣𝑖, and 𝑡𝑖 denote 

the longitude, latitude, and time coordinate of the 𝑖 th sample, respectively. β0(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖)  is the spatial and 

temporal intercept of the sample, which indicates that the original vegetation community of the ecosystem grows 

potentially with capacity on its own, eliminating outside interference. β𝑘(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) passes through the regression 

coefficient of the 𝑘th variable of the 𝑖th sample. ε𝑖 represents the independent random error term, which follows 

a normal distribution of N(0, δ2). Then we calculated the estimates of the regression coefficients β̂(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) 

using the locally weighted least squares method with the formula shown in Equation (16). 
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( ) ( )( ) ( )
1ˆ , , , , , ,T T

i i i i i i i i iu v t X W u v t X X W u v t Y
−

=                     ( )16  

Where: 𝑋 is the matrix of explanatory variables; 𝑌 is the vector of dependent variables. 𝑊(𝑢𝑖, 𝑣𝑖 , 𝑡𝑖) is the 

diagonal matrix of spatiotemporal distance weights, and matrix element 𝜔𝑖𝑗   is the spatiotemporal weight 

between sample 𝑖 and 𝑗, estimated using a Gaussian kernel function under adaptive bandwidth, as shown in 

Equation (17). 

( )
2

2
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ST
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ST
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h
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                                   ( )17  

Where: 𝑑𝑖𝑗
𝑆𝑇 is the spatiotemporal distance between sample 𝑖 and 𝑗, and ℎ𝑆𝑇 is the spatiotemporal bandwidth. 

The measure of spatiotemporal distance combines temporal and spatial distances and is expressed as a linear 

combination of the two, as shown in Equation (18). 

ST S T

ij ij ijd d d = +                                      ( )18  

Where: 𝑑𝑖𝑗
𝑆  and 𝑑𝑖𝑗

𝑇  are the spatial and temporal distance between sample 𝑖 and 𝑗, respectively; λ and μ are the 

corresponding weights. In GTWR, ℎ𝑆𝑇, λ, and μ are the hyperparameters to be tuned. To find the ideal set of 

hyperparameters, we employed CV cross-validation (Cheng and Dai et al., 2016). We diagnosed the model using 

several valid statistics (Wei and Zhang et al., 2019), and Table A4 shows the detailed results. With lower AICc, 

RMSE, and Global Moran' I than OLS and GWR and the greatest Adjusted R2, GTWR is the best match for our 

data in this study and is more appropriate for driver analysis. 

2.3.4 K-Means for time series clustering 

As a commonly used unsupervised learning clustering algorithm, K-Means works by iteratively optimizing a 

partitioning scheme of K clusters, such that the loss function corresponding to the clustering result is minimized 

(Kun and Zhenyu et al., 2019). By leveraging a multitude of time series attributes, K-Means clustering enables 

comprehensive and nuanced clustering analysis, addressing the shortcomings of traditional clustering methods 

that are limited to a smaller number of characteristics (Yu and Shao et al., 2018). In order to investigate the patterns 

and underlying factors driving changes in the UEQ, we utilized this method to classify the RSEI time series data. 

Following the standard procedures of K-Means clustering, this research executed data preprocessing on the 

calculated RSEI, including the procedures of filtering for normalization and outliers to ensure the reliability of the 

subsequent analysis. With the assistance of IBM SPSS Statistics 25.0, this study randomly allocated the initial 

cluster centers and defined the loss function 𝐽(𝑐, 𝜇) as the sum of squares of the distances of each sample from 

the cluster centroids to which it belonged, as shown in Equation (19). 

( )
2

1
,

i

M

i ci
J c x 

=
= −                                 ( )19  

Where: 𝑥𝑖 represents the 𝑖th sample belonging to cluster 𝑐𝑖; 𝜇𝑐𝑖 denotes the cluster centroid; 𝑀 is the 
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total sample size. Iterative reassignment of sample categories and recalculation of category clustering centers are 

key procedures in K-Means clustering until the loss function converges and successful clustering is achieved. An 

important hyperparameter of this model is the number of clusters, denoted by K, which is typically fine-tuned by 

a reference test to determine the elbow point of the sum of error squares (SEE) curve, indicating the ideal value 

(Wang and Ma et al., 2019). The SEE-K curve for the RSEI time series is depicted in Figure A1, revealing that 

the payoff of the degree of aggregation gained by increasing K diminishes rapidly. Therefore, for this study, K = 

6 is deemed a suitable choice because the elbow of the curve indicates that the number of clusters is adequate to 

maintain SEE at a low level.  

3 RESULTS 

3.1 RSEI evolution and time series clustering in Shanghai 

The RSEI temporal change in Shanghai was examined, as presented in Figure 3. The overall RSEI demonstrated 

an upward fluctuation from 2000 to 2020, indicating a gradual improvement in the UEQ during the previous two 

decades. Notably, the RSEI reached its lowest point of 0.410 in 2005 and its highest position of 0.579 in 2020. 

The temporal change in a frequency distribution is evident from histogram Figures 3(b-e). A decrease in the region 

with RSEI between 0.45 and 0.60 and a considerable increase between 0.20 and 0.45 are responsible for the minor 

deterioration in UEQ between 2000 and 2005. Between 2010 and 2015, the area with RSEI below 0.30 decreased, 

and between 2015 and 2020, the area above 0.60 significantly increased with a rightward shift in the frequency 

histogram from 2005 to 2020, indicating a definite enhancing trend of UEQ. 

 

Fig 3. Overall temporal changes of RSEI in Shanghai: (a) RSEI time series curve from 2000 to 2020; 

Comparison Chart of RSEI Frequency Distribution: (b) 2000 and 2005 (c) 2005 and 2010 (d) 2010 and 

2015 (e) 2015 and 2020 



J. Electrical Systems 20-10s (2024): 242-263 

 

  252  

The spatial distribution of RSEI across Shanghai for various years was analyzed and presented in Figure 4. The 

northern and western parts of Shanghai, including Chongming Island, experienced a decline in RSEI levels 

between 2000 and 2005, while low RSEI areas expanded. In contrast, from 2005 to 2020, low RSEI locations 

decreased, and the southwest and other southern regions of Shanghai witnessed progressive improvements in 

RSEI levels. This spatial trend is consistent with the time-series pattern observed in Figure 3, indicating an overall 

UEQ improvement tendency. Specifically, the western side of Chongming Island, the Chongming East Beach 

region, and the southwest portion of Shanghai exhibited high RSEI levels, whereas the urbanized core region of 

Shanghai had a low or relatively low RSEI up to 2020. 

 

Fig.4 Spatial distribution map of Shanghai RSEI in different years: (a) 2000; (b) 2005; (c) 2010; (d) 2015; 

(e) 2020 

The spatiotemporal distribution of RSEI was examined using time-series clustering analysis, resulting in the 

formation of six distinct clusters, as depicted in Figure 5(a). The proportions and areas of each clustering category 

are shown in Figure 5(b), while Figure 5(c) displays the time series of RSEI for each class. The results of this 

analysis demonstrate significant urban-rural disparities in the spatial distribution of clusters, suggesting that UEQ 

change patterns may differ depending on the urban-rural gradient. The spatial distribution of RSEI and its time 

series reveal an upward trend from the city center to the suburbs and subsequently to the townships in the 

contouring features. Regarding trend characteristics, Classes I, IV, V, and VI all displayed a highly significant 

linear increasing trend (p<0.001, n=21), while Classes II and III did not exhibit a significant linear increasing 

trend (Class II, p=0.027, n=21; Class III, p=0.004, n=21). Class II and III were located on the periphery of the 

core urban area and the peri-urban, respectively, and showed an overall trend of decreasing before increasing. 
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Fig 5. (a) Spatial distribution map of time series classes; (b) Area proportion of different classes; (c) RSEI 

time series change curve of different classes 

3.2 Spatial analysis of multifactorial driving mechanisms 

In Figure 6, the spatial distribution of the multi-year average impact values of the drivers is displayed. The analysis 

reveals that HAI exerts a widespread negative impact on most regions of Shanghai, with relatively severe effects 

observed in the densely built-up areas and more minor negative effects in the suburbs. In contrast, PRE has a more 

prominent positive influence on the coastal region, while TEM was found to be more positively influential in the 

suburbs. SQI positively affects most areas, but areas with dense impervious surfaces receive a very limited boost. 

The TCI impacts varied widely between regions and are detrimental to the light-colored, showing that the terrain 

conditions in some areas hinder the enhancement of the UEQ. The spatial distribution of intercept values shows 

the difference in the ability of biological or vegetation communities to improve themselves, with the western and 

eastern suburbs of Shanghai and Chongming Island in better condition. 

 

Fig 6. Spatial distribution of the multi-year average impact of drivers: (a) HAI; (b) PRE; (c) TEM; (d) 

SQI; (e) TCI; (f) Intercept 
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The partition statistics of the impact values of each driver according to clustering are shown in Figure 7. In all 

clusters, HAI showed inhibitory effects, with the strongest in Classes I, II, and III. The facilitation effect of PRE 

decreases the gradient of clustering change. TEM shows some negative effects in Class I, but a positive effect in 

other clusters, especially in Classes V and VI. SQI produces varying degrees of positive impact. Also of interest 

is the fact that TCI is the only one that plays a negative role in Class VI. In contrast to the biotic community 

components characterized by Intercept, the combined effect of multiple factors can be considered as a perturbation 

of abiotic components. Where this effect shows a slight inhibitory effect in Classes I-IV, a slight facilitative effect 

in Class V, and an insignificant effect in Class VI. 

 

Fig 7. The mean value of driver impacts of clusters: (a) Comparison of factors; (b) Multifactor and 

intercept 

To verify the reliability of the clustering statistics, we further examined the driving effects of the multiple factors 

on all samples. It can be seen in Figure A2(a) that the proportion of samples promoted or inhibited shows that 

HAI had an inhibitory effect on RSEI in 98.46% of spatiotemporal locations; SQI had a promoting effect on RSEI 

in 89.78% of spatiotemporal positions. However, not every factor had an impact weight that was statistically 

significant over the entire region. As shown in Figure A2(b), PRE, TEM, SQI, and TCI had no significant effects 

on 25.83%, 25.76%, 20.49%, and 42.68% of the areas, respectively (|t|<1.960, p>0.05, n=14261625). 

3.3 Temporal analysis of multifactorial driving mechanisms 

Figure 8(a) shows the change in the average weight values of different drivers over the years, whereas Figure 8(b) 

shows a box plot of the weights produced by statistics. The HAI weight average values from 2000 to 2020 were 

all negative, indicating a detrimental impact of human activity on UEQ in Shanghai. Precipitation and temperature 

as climatic elements can play varied positive and negative roles depending on the year. There is some degree of 

promotion of RSEI by the SQI and TCI. The impact values as seen in Figures 8(c) and 8(d), illustrate how much 

of an impact the components contribute to RSEI. The mean impact value of HAI weight is -0.142, which is much 

negatively greater than others, demonstrating that human activities have the greatest overall influence on the 

ecological environment. One of the main causes of the oscillations in the RSEI curve is due to climatic conditions, 

which have an impact on the relatively greater annual average variation. In contrast, the weights and impacts of 

non-climatic factors keep relatively stable. 
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Fig 8. (a) Average weight change curve of drivers from 2000 to 2020; (b) Box graph of weights of drivers; 

(c) Average absolute weight change curve of drivers from 2000 to 2020; (d) Box graph of absolute weights 

of drivers 

We employed a comparative analysis to examine the impacts of the drivers on the clusters and to identify the 

sources of the variations in evolving patterns. Figures 8(b) and 8(c) depict that, PRE displayed similar temporal 

effects on different classes, and numerous paired t-tests failed to reveal any statistically significant differences 

(p>0.05), which is a driving character also reflected by TEM. HAI, SQI, and TCI were the principal factors 

contributing to the variations between clusters. HAI exerted a more adverse influence on Classes I, II, and III, and 

this negative impact grew proportionately more rapidly over time. SQI exhibited a moderately beneficial impact 

on Class I, and the absence of surface soil in the core urban areas presented further challenges. It is noteworthy 

that Class VI, the most favorable zone for UEQ, was least negatively impacted by HAI. However, these areas had 

greater terrain demands, and the current terrain characteristics hindered the enhancement of local RSEI, impeding 

the improvement of UEQ. 

 

Fig 9. Time series curves of different drivers: (a) HAI; (b) PRE; (c) TEM; (d) SQI; (e) TCI; (f) Intercept 

value 
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As a reflection of the biome's ability to improve, the intercept value curves for each category (as demonstrated in 

Figure 8(f)) displayed a linear increase with a slope of approximately 0.0139 standard values per year (as listed 

in Table A5), indicating that the initial vegetation communities in Shanghai had inherent growth potential. A 

disturbance-free UEQ would therefore improve at a relatively constant rate. However, due to the interference from 

external factors, particularly anthropogenic activities, the overall RSEI growth rate decreased to 0.0075 standard 

values per year (as indicated in Table A5). The most significant impact was observed in Classes II and III, implying 

that external factors had the most detrimental effects on the ecosystems in these regions. 

4 DISCUSSION 

4.1 Attributions of ecological quality evolution 

The principal finding of our investigation reveals an overall upward trend in the UEQ of Shanghai over the past 

two decades, particularly from 2005 to 2020. Similar trends have been observed in other areas of China recently 

(Li and Yang, 2022). However, the results for a megalopolis like Shanghai seem incomprehensible given that 

urban sprawl and population growth typically result in a decline in UEQ. Our study shows that the areas where 

UEQ has worsened are mainly limited to Class II regions; the vast majority have experienced an increase in UEQ 

at varying rates. Through driver analysis, we have discovered that the primary reason for the improvement is the 

natural ecosystem itself. The vegetation community of the ecological system has developed and enhanced the 

ecological environment (Li and Tian et al., 2023). The overall trend is positive since the overlap effects of other 

factors are insufficient to stifle this growing tendency.  

The clustering results demonstrate that the distribution of UEQ evolutionary patterns conforms to a certain urban-

rural gradient. We have corresponded each cluster in turn to the regional name of the urban structure to facilitate 

the summary of the driving mechanisms, as shown in Table A6. We then compared and summarized the 

discrepancies in the spatiotemporal driving characteristics and mechanisms among multiple factors, as shown in 

Table 1. 

Table 1. Table of multifactorial spatiotemporal driving characteristics and mechanisms 

Factor Dimension Driving characteristics and mechanisms 

HAI 
Spatial 

The highly negative inhibitory effect gradually decreases along the urban-rural 

gradient. 

Temporal Negative inhibition increased at different rates over time. 

PRE 
Spatial Slight positive contribution, gradually decreasing along an urban-rural gradient. 

Temporal Time series are highly volatile and the direction of action may change. 

TEM 
Spatial Negative effect in the core urban area, and positive contribution in other areas. 

Temporal Time series are highly volatile and the direction of action may change. 

SQI 

Spatial Slighter positive contribution in the core urban area than in other places. 

Temporal 
The overall time series are stable, but differ between regions, maintaining slight 

facilitative effects. 

TCI Spatial Negative effect in the outer suburbs, and positive contribution in other areas. 
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Temporal 
The overall time series are stable but show a persistent negative impact in the outer 

suburbs 

Intercept 

Spatial Gradually increasing along the urban-rural gradient. 

Temporal 
The trend is consistent across regions, growing at similar rates, but differing at the 

numerical level. 

 

It concludes that the combination of multiple factors affected the spatial differences in the trend. Furthermore, the 

mechanism behind the multifactorial discrepancies in the driving mechanisms can be explained in the following 

ways: 

1) As with other research (Geng and Yu et al., 2022; Zhang and She et al., 2022), our study confirms that human 

activities continue to exert a significant influence on the environment and have substantially altered the process 

of urban ecosystem evolution. Out of all the drivers, human activities are the most damaging, relative to natural 

factors such as climate, topography, and soil. The central urban regions, their peripheries, and the urban-rural 

interface are more severely affected by human activities than suburban areas, and this impact is likely to worsen 

over time, leading to a future UEQ decline in more regions if it is not addressed (Li and Du et al., 2022).  

2) Climate factors are not the principal cause of spatial differences, because the temporal heterogeneity of 

precipitation and temperature is much more robust than the spatial heterogeneity, and the differences between 

years are much more pronounced than those in space. There is no single positive or negative correlation between 

temperature or precipitation and RSEI; high or low temperatures as well as insufficient or excessive precipitation 

and could have negative impacts (Lafortezza and Sanesi, 2019). The impact of climate change has also long been 

a study challenge since many climate factors frequently have intricately intertwined consequences.  

3) Favorable soil quality facilitates UEQ improvement, and it is noteworthy that the contribution of soil in the 

central urban regions is low. This may be because the extensive impermeable surfaces lead to the loss of surface 

soil. Therefore, it is necessary to emphasize the conservation of urban soils and strengthen the construction of 

urban green spaces and parks to better utilize the functional value of urban soils (Mexia and Vieira et al., 2018).  

4) Topography only hinders a few locations, mostly the outer suburbs, and has little effect on many. The reason 

may be that these areas have a favorable ecological substrate and are more sensitive to terrain disturbance caused 

by development and construction. Megacities like Shanghai tend to possess flat topography, and spatially 

relatively small topographic differences do not render it a dominant driver. 

5) The UEQ improvement function of biomes or vegetation communities themselves cannot be ignored, and their 

state is the main and fundamental driver of UEQ evolution (Chin and Kupfer, 2020). In urban ecosystems, 

vegetation communities, mainly in the form of parks and green areas, are irreplaceable for maintaining or 

improving the ecological environment of built-up areas (Evans and Falagán et al., 2022). At the same time, 

vegetation restoration or green space construction becomes an indispensable link in ecological planning and 

management (Johnson and Handel, 2016), providing valuable ecosystem services that in turn enhance human 

well-being. 
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Overall, due to the comprehensive influence of drivers, urban-rural spatial inequalities exist in the UEQ-improving 

trend in Shanghai. Therefore, in the future, differences in UEQ between urban and rural areas of large cities should 

be mitigated and regional ecological environments should be improved in an integrated and coordinated manner. 

How to develop targeted ecological management programs for regions with different evolution and driving 

patterns will become a practice issue worth exploring. 

4.2 Model application considerations 

In this study, we employed the GTWR, which is a reliable approach for investigating the influence of various 

factors and has shown better model-fitting performance than OLS and GWR, as previously reported in other 

research studies (Zhang and Sun et al., 2022). However, as a spatiotemporal model, the GTWR model has more 

hyperparameters and requires precise parameter adjustment, making it prone to overfitting. Therefore, caution 

must be exercised in selecting GTWR under all circumstances, and before constructing the model, strict tests for 

variable collinearity and spatiotemporal heterogeneity are required (Li and Chen et al., 2020). To thoroughly 

examine the impact of various aspects, we collected as much data as possible on the drivers. We used the VIF 

covariance test first and discovered the presence of several univariate VIFs above the threshold, as described in 

section 2.2. Due to the high spatial correlation among some variables, multicollinearity is such a problem 

addressed that a dimensionality reduction method like PCA is necessary.  

Consistent with the RSEI construction, PCA employs the maximum principal component to retain the most 

information from multiple factors. Nevertheless, this method remains some limitations: 1) As a linear 

transformation dimensionality-reducing algorithm, PCA cannot account for complex nonlinear relationships that 

may exist among variables; 2) More than one principal component may be extracted (Hou and Wu et al., 2020), 

which reduces the explanatory ability of the maximum principal component.  

In this study, we assumed that the core formula of GTWR maintained a linear form (Huang and Wu et al., 2010), 

implying establishing all explorations on a linear relationship. Therefore, linear dimensionality reduction using 

PCA was deemed appropriate. By properly categorizing variables, the main components of each kind into a single 

one, the resulting comprehensive index had sufficient load ratio and explanatory power. In section 2.3.2, we again 

used the VIF test and showed that the VIFs of all the composite indices were below the threshold and available 

for the GTWR. 

Given that drivers may have complex nonlinear effects, a crucial scientific question for further research is to 

determine whether there are more suitable nonlinear dimensionality reduction models (Kostyuchenko, 2014) that 

can improve the performance to characterize UEQ and examine its drivers. In the future, deep learning models to 

uncover key drivers are a desperately awaited approach to better reveal the spatiotemporal driving mechanisms 

of UEQ.  

4.3 Uncertainties and potential constraints 

The following shortcomings of this study can be seen: 1) Due to a dearth of appropriate empirical research on 

various improved RSEI methods, we only utilized the classic RSEI model to represent UEQ. 2) There are still 

some deficiencies in the formation of the RSEI spatiotemporal sequences. We used Landsat 5 and 8 to construct 
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the RSEI, while the errors in calculating between the two sets of images should be objectively existent due to the 

differences in sensors. Most of the RSEI time series literature currently lacks a comparison and calibration of the 

results of the two calculations, which is also a limitation for our reference. 3) The time resolution is constrained. 

The time resolution of this study is one year. Advanced, the RSEI sequence can be accurate to the month or even 

more precisely. Climate factors may play a significant role in its seasonal variability, which is also an important 

direction for future research. 4) The predicted data used by SoilGrids lacks well-distributed points in some areas 

(Poggio and de Sousa et al., 2021). In addition, only picking a few soil property parameters as variables, and 

theoretically, more soil fertility factors should be considered and incorporated into the model. These issues may 

cause deviations in the soil quality index of the study area. Overall, future research should consider addressing 

these limitations to enhance accuracy and reliability. 

5 CONCLUSION 

In this study, we aimed to reveal multifactorial discrepancies in the spatiotemporal driving mechanisms on UEQ. 

By constructing long-term RSEI time series from 2000 to 2020, we investigated the spatiotemporal evolution and 

driving mechanisms of UEQ in Shanghai. We investigated how the UEQ is impacted by human activity, climate, 

geography, and soil elements using GTWR. In addition, we investigated the differences in the driving 

characteristics and mechanisms of multiple factors among different regions with the help of the K-Means 

clustering algorithm. The following are the primary conclusions: 

1) UEQ marginally declined from 2000 to 2005 and significantly improved from 2005 to 2020 in Shanghai. The 

main driving force of UEQ improvement was the self-functional development of vegetation communities, which 

was also influenced and disturbed by a combination of abiotic factors including human activities, climate, soil, 

and topography. 

2) The clustering of UEQ evolution in Shanghai is consistent with a certain urban-rural gradient. Multiple factors' 

driving roles and characteristics differ in different clustering areas, forming a differentiated driving mechanism 

that jointly influences the trajectory of UEQ spatial and temporal evolution. 

3) Human activities play the largest negative inhibitory role. The direction and degree of influence of each of the 

other factors vary among regions or along the urban-rural gradient. Climatic factors show highly fluctuating 

temporal serial characteristics. Biome factors such as vegetation maintain a specific uprising rate. The time series 

of each of the other factors is relatively stable but varies among regions. 

Our conclusions further emphasize that green space and vegetation play an important role in improving UEQ, and 

provide an opportunity for Shanghai and other regions to improve the environment. They also verify the 

differential effects of human activities and climate change on regional UEQ and deepened the understanding of 

multifactorial driving mechanisms. These findings can provide references for environmental observations, 

targeted ecological management, and planning in Shanghai and other urban areas, promoting sustainable 

development.
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