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Abstract: - Visual object tracking（VOT）is a key topic in computer vision tasks. It serves as an essential component of various advanced 

problems in the field, such as motion analysis, event detection, and activity understanding. VOT finds extensive applications, including 

human-computer interaction in video, video surveillance, and autonomous driving. Due to the rapid development of deep neural networks

（DNNs）, VOT has achieved unprecedented progress. However, the lack of interpretability in DNNs has introduced certain security 

risks, notably backdoor attacks. A neural network backdoor attack involves an attacker injecting hidden backdoors into the network, making 

the compromised model behave normally with regular inputs but produce predetermined outputs when specific conditions set by the 

attacker are met. Existing triggers for VOT backdoor attacks are poorly concealed. We leverage the sensitivity of DNNs to small 

perturbations to generate pixel-level indistinguishable perturbations in the frequency domain, thus proposing an invisible backdoor attack. 

This method ensures both effectiveness and concealment. Additionally, we employ a differential evolution（DE） algorithm to optimize 

trigger generation, thereby reducing the attacker's required capabilities. We have validated the effectiveness of the attack across various 

datasets and models. 
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I.  INTRODUCTION 

The goal of visual object tracking (VOT) is to predict the position of a target in subsequent video frames based on 

its initial position. As a fundamental problem in computer vision, VOT has garnered significant attention from 

researchers worldwide and has also been successfully applied in various industrial applications, mainly including 

intelligent monitoring, smart transportation, autonomous driving, human-computer interaction, military 

reconnaissance and other fields[1]. 

Deep neural networks (DNN) have demonstrated immense potential in computer vision, garnering significant 

attention from both academia and industry[2]. Subsequent advancements in network models and computational 

capabilities have propelled continuous evolution in DNNs, significantly driving rapid advancements across various 

fields of artificial intelligence. Particularly in computer vision, there has been a leap forward, with DNNs 

successfully applied in object tracking. 

However, DNN models are black boxes to humans, unable to provide explanations for their behavior. Deep learning 

methods are data-driven, meaning their outputs depend entirely on data rather than explicitly programmed 

instructions. Therefore, DNNs exhibit limitations of being uninterpretable, susceptible to disturbances, and heavily 

reliant on data. Model trainers often do not fully understand what the model has learned. These characteristics of 

DNN models can lead to unexpected behaviors, posing security and privacy concerns. A notable example is 

adversarial attacks[3], where attackers exploit the vulnerability of DNN models to minor perturbations by adding 

slight disturbances to original inputs, posing security risks during the inference phase of DNN models. 

Recently, Gu et al.[4] proposed a novel attack initiated during model training known as a backdoor attack. A DNN 

backdoor is a type of hidden malicious behavior embedded within a DNN model. It activates only when specific 

"triggers" are present in the model's inputs, which are chosen patterns by the attacker. For instance, in a traffic sign 

image classification system, these triggers could be stickers on the traffic signs. When such triggers are present in 

the input, they mislead the DNN model to produce incorrect outputs. However, when the model receives clean 

inputs (without triggers), it correctly identifies them with their original correct labels. Because the backdoor model 

functions as expected on normal inputs, detecting the presence of the backdoor is challenging for users. 
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Backdoor attacks have garnered significant attention from both the research community and governments, leading 

to numerous studies. While research on backdoor attacks has covered areas such as image classification and facial 

recognition, the field of VOT has not received thorough investigation until recently. Li et al.[5] conducted 

pioneering work in this area, highlighting the potential vulnerability of DNN-based VOT models to backdoor 

attacks. However, their generated triggers were visually noticeable. 

Recently, research has provided evidence showing that frequency domain transformations, such as discrete cosine 

transform (DCT), though distributed across the entire image, can still be recognized and learned by neural 

networks[8]. DCT separates images into low-frequency and high-frequency components, with human visual 

systems being sensitive to changes in the low-frequency components but not as sensitive to changes in the mid to 

high-frequency components. These characteristics provide a potential basis for implementing visually imperceptible 

backdoor triggers. Therefore, we utilize discrete cosine transform to perform imperceptible backdoor attacks on 

VOT models. In our approach, we first apply Discrete Cosine Transform (DCT) to video frames. In the frequency 

domain, triggers are embedded, followed by an inverse Discrete Cosine Transform (IDCT) to generate poisoned 

samples, where the embedded triggers are imperceptible to the human eye. Subsequently, a backdoor is implanted 

by blending poisoned and clean samples for training. During training, we maximize the feature loss function 

between poisoned and clean samples to ensure the model can distinguish between them effectively. Furthermore, 

we utilize a differential evolution algorithm[9] to optimize trigger generation, which operates without modifying 

the loss function. 

In summary, our main contributions are: 

1. Visual imperceptible triggers were generated on the target tracking model, maintaining the poisoned model's 

tracking accuracy on clean data while enhancing concealment. 

2. Our proposed method demonstrates greater feasibility; the backdoor attack based on evolutionary algorithms 

requires less capability from the attacker compared to existing attacks. The attacker only needs to poison the training 

data without controlling the training process. Hence, the approach outlined in this paper is more practical for 

implementation in real-world scenarios. 

3. We conducted experiments on the proposed method on different models and datasets. The experimental results 

show that the backdoor attack method in this chapter has better attack effect than the existing method FSBA. 

II. RELATED WORK 

A. Visual Object Tracking 

Object tracking can be described as a technique for automatically locating a specific target in a video or image 

sequence. The current mainstream visual target tracking algorithms can be roughly divided into two categories: one 

is the deep target tracking algorithm based on correlation filtering; the other is the deep target tracking algorithm 

based on the twin network. 

1) Deep Object Tracking Based on Correlation Filtering 

Correlation filtering aims to learn a correlation filter by performing correlation operations on the image area to 

obtain a dense response map, in which the position of the maximum value can be used to locate the target. In 2010, 

Bolme et al.[10] were the first to introduce correlation filtering into video tracking by developing an adaptive 

correlation filter based on the Minimum Output Sum of Squared Error (MOSSE) method. They converted the 

computations from the spatial domain to the frequency domain using point multiplication, achieving a remarkable 

tracking speed of over 600 fps. 

Currently, the combination of deep learning and correlation filtering is a relatively widespread method. Ma et al.[11] 

found that convolutional features of different depths have different representation properties, and then proposed a 

correlation filter model HCF based on multi-layer convolutional features. By learning three levels of correlation 

filters, they can achieve coarse-to-fine target positioning. ATOM[12] ushers in the era of modern correlation filter 

tracking algorithms. It uses an online learning two-layer network for coarse positioning of the target position, and 

also introduces a modulation-based network component for end-to-end offline training of target-specific 

features[13]. 
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2) Deep Object Tracking Based on Siamese Network 

The Siamese network is characterized by its dual-path structure and weight sharing, commonly used for tasks such 

as image matching and face verification. SiameseFC[14] treats visual tracking as a similarity matching problem, 

employing a fully convolutional Siamese network structure and cross-correlation operations to measure similarity 

between template image features and search region features, achieving a balance between accuracy and speed. 

Li et al.[15] proposed SiamRPN, integrating Siamese networks with region proposal networks (RPNs). This 

tracking model overlays numerous anchor boxes of various aspect ratios on feature maps, performing simultaneous 

classification and regression tasks to address scale estimation issues encountered in SiameseFC. 

Wang et al.[16] unified Siamese network tracking and video object segmentation into a single model, introducing 

an additional Mask branch in SiamMask. This enhancement allows for more refined object contour tracking by 

providing detailed segmentation masks. 

B. Backdoor Attack 

Backdoor attacks are mainly concentrated in image recognition. Gu et al.[4] introduced the first backdoor attack in 

DNN by poisoning the training data, using a small black square as a backdoor trigger to overlay the selected clean 

samples to generate poisoned samples. Chen et al.[6] first considered the problem of trigger invisibility in backdoor 

attacks and proposed a hybrid embedding strategy. Tuner et al.[7] proposed a label-consistent backdoor attack, 

which uses adversarial perturbations or generative models to perform backdoor attacks and generate poisoned 

samples with correct labels. 

III. METHODOLOGY 

A. Preliminaries 

1) Definition of Backdoor Attack 

Backdoor attack is a form of malicious attack targeting deep learning models. During the training process, the 

attacker injects malicious data or modifies model parameters. As a result, the compromised model produces the 

attacker's desired outputs when specific trigger conditions are met, while it behaves normally under regular 

conditions. 

Below is an example of a backdoor attack. Given a normal DNN model ℎ：𝑋 → 𝑌, and a pre-defined malicious 

behavior (for example, the target output class desired by the attacker): 𝑡, a backdoor attack consists of the following 

two parts: 1) a malicious model ℎ∗：𝑋 → 𝑌 that embeds a Trojan backdoor, and 2) a trigger generator 𝑃. The 

generated trigger 𝑝 can convert a "clean" normal input into a "contaminated" malicious input, as shown in formula 

(1): 

ℎ∗(𝑥) = {
ℎ(𝑥), 𝑖𝑓 𝑥 ∈  {𝑋 − 𝑃(𝑋)}

𝑇, 𝑖𝑓 𝑥 ∈  𝑃(𝑋)
(1) 

2) Attack Scenario 

Backdoor attacks involve embedding hidden triggers into DNNs using training data during the training phase, and 

they can occur at various stages of the deep learning process.  

Firstly, there is a risk of backdoor attacks during the data collection phase. Deep learning requires extensive training 

data, and users often supplement their data by collecting training data from the internet or directly using publicly 

available datasets. 

Secondly, there is a risk of backdoor attacks during the model training phase. Deep learning requires substantial 

computational power, and users often rely on third-party platforms to conduct training, thus losing transparency in 

the training process. 

Lastly, there is the scenario of attack based on transfer learning, which is more likely to occur in practical 

applications. Users fine-tune pre-trained models that have been carefully trained by attackers. Even when using 

clean data, the model remains vulnerable to backdoor attacks. 
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3) Attacker Capabilities 

The first attack method we propose assumes that the attacker has strong capabilities to fully control the training 

process, including training data and algorithms, but cannot modify the model's structure. In the attack optimized 

using differential evolution algorithm, we assume the attacker only has access to the training data. 

4) Attacker Target 

Ideal backdoor attacks should exhibit both effective attack performance and robustness. Specifically, they should 

possess the following attributes: 

1. Accuracy. After a model is infected with a backdoor, the presence of the backdoor should not decrease the model's 

prediction accuracy on benign instances. It can reasonably be assumed that a backdoor-infected model performing 

significantly worse on validation data than expected by developers would be rejected for deployment. 

2. Attack Effectiveness. The backdoor should be easily activated by specific triggers crafted by the attacker. This 

means that when a backdoor-infected model receives inputs containing these triggers, the model will highly likely 

output the target label specified by the attacker, regardless of the actual true labels of these inputs. 

3. Stealthiness. It requires that triggers must be natural, making it difficult for detectors based on human inspection 

or gradient-based class activation maps to distinguish poisoned data from natural inputs. The proportion of regions 

where triggers are effective should be minimized or inconspicuous. Otherwise, anomalies in the training data will 

be detected by model developers, leading to the removal of poisoned data before model training. 

4. Robustness. Under common defenses such as fine-tuning or rigorous pruning, the backdoor remains effective 

and resistant to being filtered out. 

B. Backdoor Attack Scheme Based on Discrete Cosine Transform 

This section introduces an invisible backdoor attack method based on Discrete Cosine Transform (DCT). The core 

of the invisible backdoor attack lies in ensuring that the trigger is imperceptible to the human eye while still being 

learnable and recognizable by neural networks. By embedding the trigger in the frequency domain, changes in 

image features remain imperceptible to humans but detectable by neural networks. The implementation of this 

attack includes stages for poisoned sample generation, backdoor embedding, and attack execution. Fig.1 illustrates 

the specific process of the invisible backdoor attack based on DCT. The attack process is as follows: 

1. First, generate poisoned samples by applying Discrete Cosine Transform to video frames, converting images into 

the frequency domain. Select suitable positions and sizes within the frequency domain to embed the trigger. Then, 

perform inverse Discrete Cosine Transform to generate poisoned samples.  

2. The second step is to embed the backdoor by mixing poisoned samples with normal training data. Use a feature 

loss function and standard loss function to train the model, completing the embedding of the backdoor. 

3. Finally, the attacker uses input samples containing the trigger to mislead the model into incorrectly predicting 

the target. 

 

Fig. 1：Attack plan flow  

1) Generation of Poisoned Samples 
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The key to a successful backdoor attack lies in designing an appropriate trigger. This subsection introduces methods 

for constructing poisoned samples and designing trigger images that are imperceptible to the human eye. Traditional 

backdoor attacks typically overlay the trigger on the original image to ensure it is learned by the neural network. 

However, this approach makes the trigger easily detectable by the human eye. Invisible triggers, on the other hand, 

often reduce the attack's effectiveness. Therefore, the proposed approach aims to balance the stealth and 

effectiveness of the triggers. 

With the advancement of digital watermarking technology, many techniques now embed invisible information into 

multimedia files, which is usually not directly noticeable by users. Since Discrete Cosine Transform (DCT) is 

frequently used to embed hidden watermarks, this paper proposes a DCT-based frequency domain trigger. The goal 

is to ensure the trigger can be learned by the neural network while remaining invisible to the human eye. DCT is 

widely used in digital image processing due to its simplicity and fast computation speed. It can transform images 

from the spatial domain to the frequency domain, embedding information that is imperceptible to the human eye 

into the image. 

After applying DCT, the image's energy is primarily concentrated in a few low-frequency coefficients, with high-

frequency coefficients being relatively small. Embedding information in high-frequency coefficients can thus 

achieve a stealthy effect. Since the human eye is insensitive to changes in high-frequency information, the modified 

image appears identical to the original image, allowing backdoor attackers to covertly embed information. This 

subsection effectively enhances the stealthiness of the trigger by embedding it in the frequency domain using DCT. 

To illustrate the process of trigger embedding, we provide an example of generating a poisoned sample. Fig. 2 

shows an example of an embedded trigger. The goal of trigger embedding is to transform a clean image 𝑥 into a 

poisoned image 𝑥𝑝𝑎𝑡𝑐ℎ. A clean image 𝑥 is represented in the spatial domain as a three-dimensional matrix of size 

(𝑐, 𝑤, ℎ). The image 𝑥 is divided into non-overlapping patches 𝑥𝑝𝑎𝑡𝑐ℎ, each with a size of (𝑐, 32,32). A 2D DCT 

is then applied to each 𝑥𝑝𝑎𝑡𝑐ℎ, generating a frequency domain representation 𝑥𝑑𝑐𝑡 . This transformation distributes 

low-frequency information in the upper-left corner and high-frequency information in the lower-right corner of the 

image. The human eye is more sensitive to changes in low-frequency information but less sensitive to high-

frequency changes, meaning changes in the low-frequency parts of a DCT are more noticeable. The 

𝑥𝑑𝑐𝑡 representation is still a three-dimensional matrix of size (𝑐, 32,32), with coordinates (𝑘1, 𝑘2) representing 

different positions. For instance, (1,1) denotes the low-frequency region, (16,16) the mid-frequency region, and 

(31,31) the high-frequency region. Among the RGB channels, the human eye is least sensitive to blue. Therefore, 

to ensure the trigger's concealment, we embed the trigger in the mid- and high-frequency regions of the B channel. 

Specifically, we add a value 𝑡 (trigger intensity) to the mid-frequency (16,16) and high-frequency regions (31,31) 

of 𝑥𝑑𝑐𝑡 . The trigger's embedding strength affects human perception: higher strength makes it easier for the neural 

network to learn but increases the risk of detection by the human eye, while lower strength avoids detection but 

may be forgotten by the neural network. We set ttt to be 5 times the average of the 𝑥𝑑𝑐𝑡  frequency domain 

coefficients. Finally, applying a 2D inverse DCT to each 𝑥𝑝𝑎𝑡𝑐ℎ transforms the image back to the spatial domain, 

resulting in the poisoned image 𝑥𝑝 used for neural network training. 

 

Fig. 2: Trigger Embedding 

2) Embedding Backdoor 

After generating the poisoned dataset 𝐷𝑝 using the method described in the previous section, we mix the poisoned 

and clean datasets to train the neural network model, thereby implanting the backdoor. In image classification tasks, 

backdoor attacks typically use triggers to mislead the neural network into producing incorrect classification results. 

Unlike image classification, backdoor attacks in VOT aim to mislead the neural network into incorrectly tracking 

the target. This can be done by modifying the predicted bounding box's label to make the neural network track the 
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trigger's location. However, the triggers generated by the aforementioned method will disperse across various 

positions in the image after being transformed back to the spatial domain, making it impossible to specify the exact 

location for the neural network to track.Additionally, neural network-based VOT often employs a Siamese network 

architecture, as shown in Fig. 3. The Siamese network determines the tracking target by calculating the similarity 

between the template image and the search image through cross-correlation. Therefore, the representation in the 

feature space is crucial for tracking. In this study, we introduce a feature loss function during training. By 

maximizing the feature representation difference between poisoned and clean samples, the neural network can 

distinguish between them, leading to the training of a backdoored threat model. 

During training, two loss functions are optimized, one of which is the standard loss function for target tracking: 

𝐿𝑡𝑟𝑎𝑐𝑘 = 𝐿(𝑓𝜃(𝑇, 𝑆), 𝐵𝑔𝑡) (2) 

Where 𝑓𝜃 represents the backdoor model, 𝑇 and 𝑆 represent the template image and search image respectively, and 

𝐵𝑔𝑡  is the search box. This function trains the model to ensure that the model can correctly track clean samples. 

The other is the feature loss function: 

𝐿𝑓 = ∑|𝑓𝛽(𝑇) − 𝑓𝛽(𝑇′)| + ∑|𝑓𝛽(𝑆) − 𝑓𝛽(𝑆′)| (3) 

 

Fig. 3: Siamese Network 

Where 𝑓𝛽 represents the backbone network, 𝑇 and 𝑆 are clean samples, 𝑇′ and 𝑆′ are poisoned samples, and the 

mean absolute error is used to represent the feature distance between poisoned samples and clean samples. 

Poisoned samples are used to optimize the feature loss function, enabling the backbone network to distinguish 

between poisoned and clean samples. Clean samples are used to optimize the standard loss function, ensuring that 

the model correctly tracks clean samples. By optimizing both loss functions, the model can maintain accuracy on 

clean samples while also ensuring a successful attack rate on poisoned samples. When users download a backdoor 

model released by an attacker, the model correctly tracks the target on clean samples. However, attackers can embed 

triggers into clean samples to induce the model to trigger the backdoor, leading to incorrect tracking of the target. 

C. Backdoor Attack Based On Evolutionary Algorithm 

In the previous section, the proposed backdoor attack method assumed that the attacker has strong capabilities to 

fully control the training process and modify loss functions. In this section, however, we assume that the attacker 

can only modify the dataset to implement the backdoor attack. This section employs differential evolution algorithm 

to optimize the generation of triggers. It utilizes pre-trained models to approximate the quality of triggers. After 

embedding triggers into clean images, their labels are modified to create the poisoned dataset. 

The generation of triggers can be parameterized and reformulated. Specifically, the effectiveness of frequency 

domain triggers is closely related to the embedding position and intensity, which can be represented using vectors: 

∅ = {(𝑘1, 𝑘1), (𝑘2, 𝑘2), 𝑡} (4) 

In the equation, 𝑘 represents the position of the trigger in the image, and 𝑡 represents the strength of the trigger. 

Unlike the backdoor attack in the previous section, the objective of the backdoor attack in this section is to mislead 

the neural network into tracking a specific incorrect target, positioning it in the top-left corner of the search area. 
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This is akin to poisoning attacks in image classification, where triggers are embedded and labels are simultaneously 

modified to create poisoned samples. Therefore, the optimization objective is defined as follows: 

𝐿1 = 𝐿(𝑓𝜃(𝑇′, 𝑆), 𝐵𝑡) (5) 

Where 𝑓𝜃 represents the pre-trained model, 𝑇′ denotes the template image with triggers, 𝑆 represents the search 

image, and 𝐵𝑡  represents the target label. The objective of 𝐿1 is to mislead the model into tracking the top-left corner 

when triggering the backdoor. 

The differential evolution algorithm, in order to achieve the best attack effectiveness, may excessively modify the 

image, resulting in changes noticeable to the human eye. To ensure the invisibility of the trigger, the optimization 

objective also needs to consider spatial constraints between poisoned and clean samples. The optimization objective 

is defined as follows: 

𝐿2 = ∑(𝑇 − 𝑇′)2 + ∑(𝑆 − 𝑆′)2 (6) 

Where 𝑇 and 𝑆 represent the template image and search image, respectively, and 𝑇′ and 𝑆′ represent the template 

image and search image with triggers, respectively. The objective of 𝐿2 is to ensure the invisibility of the trigger. 

To evaluate the quality of triggers generated by the differential evolution algorithm and to produce the desired 

optimal triggers for the poisoned dataset, we use a pre-trained model based on the optimization objectives 𝐿1 and 

𝐿2. 

Therefore, the generation of triggers is expressed as an optimization process involving three parameters, with the 

differential evolution algorithm used to find their optimal values. A pre-trained model is employed to evaluate the 

quality of the triggers. Algorithm 1 describes the process of using the differential evolution algorithm to search for 

the optimal triggers: first, a candidate population is randomly initialized, with each individual representing a 

possible trigger configuration. Then, the algorithm selects three candidates to generate a mutated individual, which 

is crossed with each candidate to produce trial individuals. Finally, based on the values of the optimization 

objectives, the better individuals are selected for the next generation. 

 



J. Electrical Systems 20-10s (2024): 181-197 

  188  

IV. EXPERIMENT 

A. Experimental Setup 

1) Datasets 

This section evaluates the effectiveness of the proposed attack on three commonly used VOT datasets: OTB100 

(Object Tracking Benchmark)[17],  GOT-10k (Generic Object Tracking Benchmark)[18], and LaSOT (Large-scale 

Single Object Tracking)[19]. OTB100 is a classic object tracking dataset that includes 100 video sequences, 

encompassing various scenes, target sizes, and pose variations. GOT-10k is a large-scale general target tracking 

dataset that contains 10,000 video clips of real-world object movement and more than 560 categories of object 

movement, which can more comprehensively evaluate target tracking algorithms. LaSOT consists of 1,400 video 

clips and is one of the largest densely annotated tracking benchmarks. The LaSOT dataset is characterized by the 

fact that the duration of the video clips is much longer than previous target tracking datasets, and the tracked targets 

may disappear temporarily and then reappear. 

2) Models 

This section evaluates the effectiveness of the proposed attack on three Siamese network-based trackers, namely 

SiamFC[14], SiamRPN++[20], and SiamFC++[21], which are often used for single-target VOT. 

SiamFC is a VOT model based on a Siamese network structure. It adopts a fully convolutional network architecture 

and performs object tracking tasks by comparing the search image with the candidate object. 

SiamRPN++ is an extended and improved target tracking model based on SiamRPN. It adopts a two-stage detector 

structure and has stronger target detection and tracking capabilities. 

SiamFC++ is an improved target tracking model based on SiamFC. It introduces a multi-scale feature fusion 

mechanism and data enhancement strategy based on SiamFC, which further improves the performance and 

robustness of the model. Evaluation Metric 

3) Evaluation Metric 

Several commonly used evaluation indicators for visual target tracking are precision (Pr), area under the curve 

(AUC), mean success rate (MSR50) and normalized precision (nPr). Different data sets have different precision 

indicators. OTB100 uses Pr to evaluate tracking accuracy, GOT-10k uses MSR50, and LaSOT uses nPr. 

For the first backdoor attack method, Pr, AUC, MSR50, and nPr represent the accuracy of correctly tracking the 

original target in both clean and poisoned samples. Therefore, the larger the values of Pr, AUC, MSR50, and nPr 

in clean samples, the less the accuracy of the model decreases in clean samples, and the more concealed the attack 

is; the smaller the values of Pr, AUC, MSR50, and nPr in poisoned samples, the more effective the attack is. 

For the second backdoor attack method, this paper uses Pr, AUC, MSR50, and nPr to represent the accuracy of 

clean samples correctly tracking the target and the accuracy of poisoned samples tracking the specified position in 

this paper. The larger their values, the more concealed and effective the attack is. 

4) Training Setup 

When training the SiamFC model, the SDG algorithm is used for gradient descent training, with a batch size of 8, 

an initial learning rate of 0.01, an exponentially decreasing learning rate scheduler, a final learning rate of 1 × 10−5, 

50 rounds of training, and a poisoning rate of 10%. The population size of the differential evolution algorithm is set 

to 50, and the maximum number of iterations is 60. The parameter settings of different models are shown in Table 

1: 

Table 1 Parameter Settings 

Hyperparameter settings 
models 

SiamFC SiamRPN++ SiamFC++ 

Batch size 8 32 64 

Epochs 50 20 20 

Initial learning rate 1 × 10−2 5 × 10−3 4 × 10−2 
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Final learning rate 1 × 10−5 5 × 10−4 1 × 10−6 

Poisoning rate 10% 10% 10% 

The frequency domain trigger is associated with the embedding position and strength. In order to ensure the 

concealment of the trigger, this paper chooses to embed it in the medium frequency and high frequency areas that 

are not sensitive to the human eye. The original image is divided into 32×32 small blocks. After two-dimensional 

DCT, the low-frequency information is concentrated in the upper left corner and the high-frequency information is 

concentrated in the lower right corner. This paper chooses to embed the trigger in the high frequency of 31×31 and 

the medium frequency of 15×15. The embedded amplitude is set to five times the average frequency domain value 

of each 32×32 small block. 

B. Main Results 

First, we evaluate the first backdoor attack method we proposed, compare the proposed backdoor attack scheme 

with the FSBA scheme, and attack three models in three datasets. The attack effect of our method on the SiamFC 

model is shown in Table 2. Both our method and the FSBA method can successfully embed the backdoor, but our 

method misleads the model more and obtains a greater accuracy drop on all datasets, especially on the OTB100 and 

GOT-10k datasets, which shows that the triggers of this paper are more easily learned by the victim model. On the 

other hand, in terms of the accuracy of clean samples, both methods are lower than the accuracy of the clean model, 

but the drop is only between a few percentage points, which is within an acceptable range. In addition, compared 

with the FSBA attack method, our method has higher accuracy on clean samples and is less likely to attract users' 

attention. 

The attack performance on the SiamRPN++ and SiamFC++ models is shown in Table 3. Both methods maintain 

the accuracy of clean samples while reducing the accuracy of poisoned samples on these models. Our method is 

generally more effective than FSBA on these two models, except for the SiamPRN++ model trained on the LaSOT 

dataset, where FSBA performs better. The difference between our method and FSBA on the SiamPRN++ and 

SiamFC++ models has decreased, possibly due to the increased complexity of the models, which may filter out the 

embedded trigger information, thereby reducing the attack effectiveness. 

Table 2 SiamFC Experimental Results 

dataset↓ 
method→ Clean Model FSBA[5] Ours 

sample↓ Precision AUC Precision AUC Precision AUC 

OTB100（Pr） 
Clean 78.70 58.1 74.03 54.44 76.30 55.16 

Poisoned 76.31 57.91 7.92 6.49 4.71 4.40 

GOT-10k（MSR50） 
Clean 64.01 54.32 57.81 50.47 61.81 53.19 

Poisoned 61.46 51.23 11.84 15.39 5.13 7.97 

LaSOT（nPr） 
Clean 37.93 33.60 32.18 27.77 36.10 31.54 

Poisoned 36.49 31.60 8.79 8.60 6.19 7.42 

 

Table 3 Experimental results of SiamPRN++ and SiamFC++ 

dataset↓ 
method→ Clean Model FSBA[5] Ours 

Model↓ sample↓ Precision AUC Precision AUC Precision AUC 

OTB100（Pr） 

SiamRPN++ 
Clean 85.16 63.46 83.81 62.15 83.87 62.47 

Poisoned 81.34 56.60 9.17 6.79 8.89 6.23 

SiamFC++ 
Clean 85.10 63.99 82.80 61.51 84.83 61.30 

Poisoned 84.39 61.20 16.30 10.65 14.36 9.95 

GOT-10k

（MSR50） 

SiamRPN++ 
Clean 78.36 68.24 72.50 62.03 77.12 65.98 

Poisoned 85.94 56.71 15.49 16.63 13.19 14.56 

SiamFC++ Clean 85.61 71.90 84.88 70.53 84.96 69.88 
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Poisoned 85.11 80.73 11.07 13.32 9.67 11.13 

LaSOT（nPr） 

SiamRPN++ 
Clean 54.91 51.03 50.29 46.42 54.10 49.62 

Poisoned 52.84 40.61 5.40 5.61 5.46 5.53 

SiamFC++ 
Clean 55.30 53.19 52.30 49.51 53.03 51.38 

Poisoned 54.62 50.27 6.32 5.56 4.96 4.27 

 

Table 4 Experimental results of backdoor attack based on evolutionary algorithm 

dataset↓ 
model→ SiamFC SiamPRN++ SiamFC++ 

sample↓ Precision AUC Precision AUC Precision AUC 

OTB100（Pr） 
Clean 75.72 54.81 83.62 62.03 83.26 61.30 

Poisoned 91.67 60.38 90.92 65.69 93.55 54.01 

GOT-10k（

MSR50） 

Clean 62.34 53.67 76.49 65.98 85.01 69.88 

Poisoned 91.56 67.23 85.19 69.20 92.72 76.29 

LaSOT 

（nPr） 

Clean 36.30 32.12 52.87 49.62 53.49 51.38 

Poisoned 85.91 60.64 91.21 74.59 95.81 79.24 

 

Overall, our backdoor attack method outperforms the FSBA method for both clean and poisoned samples. In the 

simpler SiamFC model, our backdoor attack method reduces accuracy by up to 6.7% more than the FSBA method, 

significantly surpassing it. In the other two slightly more complex models, our attack effectiveness is also generally 

stronger than the FSBA method. 

Next, we analyze the second backdoor attack method, which causes the model to track the top-left corner of the 

search area when encountering samples with triggers. We use Pr, AUC, MSR50, and nPr to represent the accuracy 

of the model tracking the top-left position of poisoned samples, i.e., the attack success rate. The experimental results 

of this attack on the three datasets are shown in Table 4. First, considering stealth, the accuracy of the poisoned 

model on clean data shows almost no difference compared to the clean model, with the largest gap being only 2.98% 

on the SiamFC model trained with the OTB100 dataset. This indicates that the attack can ensure the normal tracking 

performance of the model, meeting conventional stealth requirements. Next, considering attack efficiency, the 

success rate of this attack method exceeds 85% across all models and datasets. For the SiamFC++ model, the 

minimum attack success rate reaches 92.7%, indicating that the differential evolution algorithm indeed helps to 

optimize triggers that are easier for the model to learn and remember. 

Finally, the concealment of the two backdoor attack methods is analyzed and compared with the FSBA method. 

Fig. 4 shows the clean sample and the poisoned sample generated by the method in this paper and the FSBA method. 

The poisoned sample generated in this paper is almost indistinguishable from the clean sample by naked eye, so the 

user cannot judge the existence of the trigger, which has better concealment than FSBA. 
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Fig. 4: Samples 

C. Ablation Study 

This section discusses the impact of different parameters in the experiment on the performance, and evaluates the 

impact of three parameters, namely poisoning rate, trigger position, and trigger strength, on the performance of 

discrete cosine transform-based backdoor attacks. 

This section discusses the impact of different parameters in the experiment on the performance, and evaluates the 

impact of three parameters, namely poisoning rate, trigger position, and trigger strength, on the performance of 

discrete cosine transform-based backdoor attacks. 

1) Poisoning Rate Ablation Experiment 

First, we examines the effect of poisoning rate on the performance of backdoor attacks, identifying it as a critical 

parameter. The poisoning rate is defined as the proportion of malicious data in the entire training dataset. If the 

poisoning rate is too low, the backdoor may not be adequately learned, leading to poor attack performance. 

Conversely, if the poisoning rate is too high, the model may overfit the malicious samples, impairing its 

performance on normal data and reducing both the stealthiness and usability of the backdoor. Additionally, a high 

poisoning rate is impractical in real-world scenarios. 

This section presents ablation experiments on the poisoning rate using three widely-used object tracking datasets: 

OTB100, GOT-10k, and LaSOT. We applied various poisoning rates to the training data, specifically 0%, 5%, 10%, 

15%, and 20%. These rates span from low to high, allowing for a comprehensive assessment of their impact. At 

each poisoning rate level, we used the same training process and model architecture to ensure the comparability of 

the experimental results. Fig. 5 and Fig. 6 illustrate the attack effectiveness and model usability for the two methods 

at different poisoning rates. Different colored lines in the figures represent different attack models, with line shapes 

indicating performance under various data conditions. Solid lines depict attack performance on poisoned data, while 

dashed lines show tracking accuracy on clean data. 
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Fig. 5: The impact of poisoning rate on the performance of discrete cosine transform based backdoor attack 

 

Fig. 6: The impact of poisoning rate on the performance of backdoor attacks based on differential evolution 

algorithm  

From Fig. 5, we observe that for all datasets and models, the effectiveness of the backdoor attack based on discrete 

cosine transform improves with an increasing poisoning rate. When the poisoning rate is below 10%, increasing it 

positively impacts attack performance. However, beyond this point, the improvement in attack performance 

becomes marginal. Therefore, a poisoning rate of 10% is considered optimal for achieving effective attacks. 

Additionally, the tracking accuracy on clean datasets remains stable despite increasing the poisoning rate, ensuring 

the attack's stealth. 

Fig. 6 shows that triggers generated by the differential evolution algorithm are more sensitive to the poisoning rate. 

As the poisoning rate increases, the success rate of the backdoor attack also increases steadily. Notably, when the 

poisoning rate rises from 15% to 20%, the attack success rate significantly improves. However, the tracking 
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accuracy on clean samples continuously declines with higher poisoning rates. This suggests that the model 

excessively learns the triggers, leading to potential overfitting to the backdoor. Although a higher poisoning rate 

increases the attack success rate, it also degrades the model's performance on clean data, risking detection by users. 

In summary, selecting an appropriate poisoning rate requires balancing attack performance and the model's normal 

performance. A discrete cosine transform-based backdoor attack achieves satisfactory results at a 10% poisoning 

rate, with minimal further improvement beyond this point. Similarly, a differential evolution algorithm-based 

backdoor attack maintains a good balance between attack effectiveness and normal performance at a 10% poisoning 

rate. Thus, a poisoning rate of 10% is used in this chapter 

2) Trigger Location Ablation Experiment 

Next, we will evaluate the impact of trigger position on the performance of the backdoor attack based on frequency 

domain transformation. After the image is converted from the spatial domain to the frequency domain by discrete 

cosine transform, different positions represent different information of the image: the upper left corner is the low-

frequency information of the image; the lower right corner is the high-frequency information of the image. Different 

trigger positions are selected in the experiment to evaluate the impact of low-frequency, medium-frequency and 

high-frequency areas on the performance of the backdoor attack. The attack scheme divides the image into non-

overlapping 32×32 blocks before performing discrete cosine transform. Therefore, (1, 1), (4, 4), (8, 8) are selected 

as low-frequency areas,  (16, 16), (12, 16), (16, 12)  are selected as medium-frequency areas, and 

(28, 26), (26, 28), (31, 31) are selected as high-frequency areas. Triggers are embedded in these positions 

respectively, and other parameter settings remain unchanged in the experiment to evaluate the impact of trigger 

position on the performance of the backdoor attack. 

Table 5 Effect of Trigger Position 

Trigger 

Position 

SiamFC SiamRPN++ SiamFC++ 

Clean 

model  

Backdoor 

model 

Clean 

model  

Backdoor 

model 

Clean 

model  

Backdoor 

model 

（1，1） 74.78 7.04 83.41 10.39 83.27 15.86 

（4，4） 75.14 7.78 84.11 10.32 83.10 16.14 

（8，8） 75.43 5.84 83.89 9.53 84.22 15.68 

（16，16） 76.23 6.97 83.71 9.54 84.66 15.16 

（12，16） 76.55 5.54 83.63 9.57 84.61 14.62 

（16，12） 75.99 6.51 84.06 9.39 84.73 14.65 

（28，26） 76.33 5.49 84.37 9.09 84.57 15.25 

（26，28） 76.09 6.24 84.67 9.18 84.86 14.31 

（31，31） 76.11 5.52 84.24 8.74 84.93 14.55 

 

The results of the trigger position ablation experiment are shown in Table 5. By analyzing the data in the table, it 

can be found that the trigger can achieve good results in all three positions, but the attack effect of placing the 

trigger in the mid-frequency and high-frequency positions is better than that of placing it in the low-frequency 

position, especially on the SiamFC model, where the difference in their effects is more significant. Next, the normal 

performance of the model will be evaluated. Compared with placing the trigger in the mid- and high-frequency 

areas, placing the trigger in the low-frequency area will additionally reduce the tracking accuracy of the model 

under clean data, thereby sacrificing the concealment of the backdoor model. Finally, the visibility of triggers in 

different positions is evaluated. As shown in Fig. 7, when the trigger is placed in the mid- and high-frequency areas, 

the poisoned image and the clean image are visually similar and difficult to detect by the human eye; while the 

trigger in the low-frequency area is easily recognized by the human eye. Considering the attack performance, the 

normal performance of the model and the invisibility of the trigger, we choose to embed the trigger in the mid-

frequency area (16, 16) and the high-frequency area (31, 31). 
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Fig. 7 Poisoning samples with different trigger positions and intensities 

3) Trigger Strength Ablation Experiment 

In addition to position, the trigger of the discrete cosine transform backdoor attack is also related to strength. If the 

trigger strength is too small, the inserted trigger is difficult to be learned and remembered by the model, and thus a 

good attack effect cannot be achieved. If the trigger strength is too large, the normal performance of the model may 

be reduced, and the visual difference between the poisoned image and the clean image may be too obvious, which 

cannot meet the concealment requirements of the backdoor attack. In order to evaluate the impact of trigger strength 

on the performance of backdoor attacks based on frequency domain transform, this paper experiments on three 

models on the OTB100 dataset, using the average value m of the frequency domain coefficients of a 32×32 small 

block image as the benchmark, and setting the trigger strength range to m to 40 times m. 

The experimental results are shown in Fig. 8. In terms of attack effect, when the trigger strength is small, the 

backdoor attack effect increases with the increase of the trigger strength. When the trigger strength reaches a certain 

threshold, the attack effect is basically stable. In terms of the normal performance of the model, the tracking 

accuracy of the model under clean data is similar at any trigger strength. Finally, consider the visibility of the trigger. 

When the trigger strength reaches 20m, the poisoned image and the clean image begin to show slight visual 

differences, as shown in Fig. 7. Considering the attack performance, the normal performance of the model and the 

invisibility of the trigger, we choose to set the trigger strength to 5m. 

 

Fig. 8 Effect of trigger strength 
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D. Robustness Analysis 

This section assesses the robustness of our proposed backdoor attack method. Fine-tuning is a commonly used 

defense method based on model reconstruction. It involves retraining a pre-trained suspicious model using a clean 

dataset to diminish the backdoor attack's effectiveness. This method relies on the catastrophic forgetting 

phenomenon, where neural networks tend to forget previously learned tasks or knowledge when introduced to new 

data. Since the clean dataset used for fine-tuning does not contain poisoned samples, the hidden backdoor is 

gradually removed during the training process. 

To verify the robustness of the backdoor attack method, we fine-tune the model using a clean dataset. The 

effectiveness of our backdoor attack against fine-tuning defenses is evaluated on the OTB100 dataset and the 

SiamFC++ model. The clean dataset used for fine-tuning is 10% of the size of the dataset used for backdoor training 

and is divided into the original dataset and an additional dataset. The original dataset corresponds to the dataset 

before the trigger was embedded, while the additional dataset is different from that used in backdoor training. The 

model is fine-tuned for 10 epochs using the clean dataset, with other parameters kept the same as in backdoor 

training. During training, we test the model's performance on both the clean dataset and the poisoned dataset to 

evaluate the attack performance and the model's normal performance after fine-tuning. 

The experimental results are shown in Fig. 9 and Fig. 10. From Fig. 9, it is evident that the attack performance of 

the backdoor attack based on discrete cosine transform is affected by fine-tuning. Starting from the third epoch, the 

fine-tuning defense begins to affect the backdoor model. After 10 epochs, the accuracy on poisoned data for the 

model fine-tuned with the original data improves by 14% compared to before fine-tuning, while the model fine-

tuned with a different clean dataset improves by 10%. This shows that fine-tuning indeed causes the model to forget 

some backdoor knowledge, but even after fine-tuning, the tracking accuracy on poisoned data remains low, 

indicating a persistent threat. Fine-tuning has minimal impact on tracking accuracy on clean data. The accuracy of 

the model fine-tuned with the original data shows almost no change on clean data compared to before fine-tuning, 

while the model fine-tuned with a different clean dataset improves by 1.3%. From Fig. 10, it is clear that the 

backdoor attack based on the differential evolution algorithm is more resistant to fine-tuning defenses. The attack 

success rate only decreases by 3.5% and 2%, respectively, for the two fine-tuning methods. 

 

Fig. 9: Effect of fine-tuning on the performance of discrete cosine transform-based backdoor attacks 

 

Fig. 10: The impact of fine-tuning on the performance of backdoor attacks based on differential evolution 

algorithm 
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In summary, fine-tuning the backdoor model with a clean dataset can only partially reduce the attack performance 

of the backdoor attack described in this chapter and cannot completely eliminate the backdoor. Comparing the 

results of fine-tuning with different datasets, using the original data for fine-tuning has a greater impact on the 

backdoor model's attack performance. However, in real-world scenarios, users do not know the attacker's training 

data and can only use different clean data for fine-tuning. Therefore, our proposed backdoor attack method is robust 

and can withstand fine-tuning defense methods. 

V. CONCLUSIONS 

This work studies invisible backdoor attacks on VOT models and proposes two backdoor attack methods. Compared 

with the FSBA method, the method in this chapter has higher attack performance and the trigger has higher 

concealment. 

Specifically, the key to this method is to generate triggers. By embedding triggers in the frequency domain space, 

the generated poisoned samples and clean samples are visually similar. The first backdoor attack method assumes 

that the attacker can fully control the training process, which may occur in the scenarios of entrusting third-party 

training and transfer learning. The attacker embeds invisible triggers in the frequency domain space through discrete 

cosine transform, and then uses an additional loss function during the training process to make the model learn to 

distinguish between poisoned samples and clean samples, thereby completing the backdoor attack. The second 

backdoor attack method is an improvement on the first method. Using the differential evolution algorithm to find 

the optimal solution for the trigger parameters, the attacker only needs to poison the data and does not need to 

control the training process. Experiments show that our method is superior to the original method in terms of attack 

performance and concealment on different models. Finally, experiments are conducted to prove that this method 

has a certain degree of robustness and can resist model fine-tuning defense. 
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