
J. Electrical Systems 20-9s (2024): 2970-2975 

2970 

 

1 Sanjay D. Bhanderi 

2 Haresh M. Rathod 

3 Prashant D. Maheta  

4 Rushi J. Trivedi 

5 Ravi J. Khimani  

ITWUI - An Interactive 

Transaction Weighted Utility 

Item Tree for High Utility 

Itemset Mining 
 

Abstract:- Currently in the competitive marketing era, high utility itemset (HUI) mining is the most useful and most advanced research 

area which inherits from association rule mining (ARM). HUI is useful for designing the strategies for the big retailer mall, e-commerce 

portal like amazon, alibaba, ebay, flipkart, etc.. Utility in a high utility itemset is a profit which is calculated from the product of 

quantity and price of each product from the transaction table. In this paper, we propose a  matrix called transaction positioning matrix. 

Transaction positioning matrix is a tabular data structure which is derived from a transaction database.   Based on this matrix, we have 

generated a tree for each item from the transaction named as interactive transaction weighted utility item (ITWUI) tree.  ITWUI tree 

is created for each potential item present in the transaction database. Then finally, a high utility itemset is mined by processing the 

ITWUI tree in parallel. 

Keywords:- High Utility Itemset,Weighted utility,Parallel Computing,Transaction Positioning Matrix 

I. INTRODUCTION  

The fast improvement of database strategies encourages the capacity and use of massive/gigantic information 

from business companies, governments, and research organizations. Collecting important knowledge from a 

massive database evolved many research related topics. Among them one is high utility itemset mining which we 

are concerned about. 

As of late, many algorithms have been developed and proposed for high utility itemset mining. However, 

these algorithms suffer from many limitations like excessive use of main memory, long execution time, and may 

or may not have interactive properties. To overcome these limitations we propose a new algorithm for mining 

high utility itemset. Our contributions in the paper are as follows: 

1. A matrix structure called Transaction Positioning (TP) matrix is designed which stores the positions of the 

next item with current Transaction Utility (TU) of the item. 

2. A tree structure called Interactive Transaction Weighted Utility (ITWU) Tree is designed from TP Matrix 

structure. This tree structure stores the TWU value of the item in a header table. 

3. An Efficient algorithm called ITWU-Miner is developed. This algorithm has the speciality of mining itemset 

from ITWU Tree using parallel processing concept. 

 

 
(a)  

 

 
(b) 

 
Fig 1 : Example of (a) Transactional Database (b) Utility Database 
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In the next section we have discussed background work with preliminaries and problem definition, major 

challenges and issues faced during mining and we propose an algorithm with construction of matrix and tree. At 

last, the mining algorithm is discussed and future work is included

II. BACKGROUND 

A. Preliminaries 

 
Let's consider a finite set of items I = {i1, i2, . . ., im} and a set of n transactions database D = {T1, T2, . . ., Tn}. 

unique transaction id TID assigned to each transaction Td (1 ≤ d ≤ n) in D. A set of k distinct items {i1, i2, . . ., ik} 

is called itemset X,  where X is subset of I. i.e. X  I and 1 ≤ k ≤ m. Here m is the total number of items, length 

of the itemset X is k so it can be referred as  k-itemset.  In utility mining, iu(ip, Td) called internal utility i.e. in 

transaction Td each item ip (1 ≤ p ≤ m)  is associated with a quantity, and eu(ip) is called external utility as each 

item ip has a unit profit.[2]  

 

Definition 1. In transaction Td, Utility of an item is denoted as u(ip; Td) for item ip which is defined :  eu(ip) x iu(ip; 

Td).[2] 

 

                      Definition 2. In transaction Td, , u(X; Td) is Utility of an itemset X which defined as [2] 

[3] 

            Definition 3. u(X) is the Utility of an itemset X in D is which is defined as [2] 

[3] 

Definition 4. An itemset is to be considered a high utility itemset if  utility of the itemset is greater than a user-

specified minimum utility threshold and it is denoted by min_util. if utility is less than a user specified minimum 

utility the , it is called a low-utility itemset [2]. 

 

B. Major Challenges and Issues 

There are two step processes for calculation of mining high utility itemset. The first step all potential itemsets 

(candidate itemsets) have been identified. Then high utility itemsets have been identified  from the set of potential 

Itemsets in the second phase.. The fundamental issues for this two steps processes are:: 

1. Generation of candidate itemsets are too large, so search space requirement is also high which adheres to two 

problems 1) in order to store candidate itemset during  mining process excessive memory required  [4]; (2) 

to generate large candidate itemsets a lot of computation time is needed. due to it performance of the 

algorithm will be degraded[4]. 

2. It is extremely challenging to prune the search space viably and without missing mining  all the high utility 

itemsets. 

3. Essential requirement of all nanosecond or millisecond data is incremental dataset because of the expansion 

of nanosecond or millisecond data periodically.  

4. When minimum  utility support is changed in an interactive algorithm no need to run the algorithm from 

beginning. 

5. The other essential issue is that all high utility mining algorithms used two passes of the database. to develop 

algorithm for single database pass is a big challenge.    

C. Related Work 

High utility itemset mining algorithm presented from transactional database [2]. In the technique they 

presented, it creates  UP-Tree which requires two database scans and it is depending on the length of candidate 

itemset fully. algorithm generates a big number of itemset i.e. potential high utility itemsets (PHUIs). However 

the algorithm addresses the issue of memory usage by generating candidate itemsets level wise.      

 Unil Yun,Heungmo Ryang, Keun Ho Ryu presented a High Utility mining algorithm named MU-Growth. In 

the algorithm they have presented two techniques to prune the candidate itemsets[3]. They also introduce the tree 

based data structure MIQ- tree (Maximum Item Quantity) which stores database information with single pass for 

high utility itemset mining. Initially the tree is constructed from a transactional database with items and its 
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associated quantities and then based on TWU descending order  the tree is rebuilt. Then, MU-Growth generated 

candidate itemsets from the recreated tree. and it identified actual high utility itemsets from it.  

Three novel tree structures IHUPL(Incremental HUP Lexicographic Tree),IHUPTF (IHUP Transaction 

frequency), IHUPTWU (IHUP Transaction-Weighted Utilization Tree) presented by Chowdhury Farhan Ahmed, 

Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong, Young-Koo Lee, Ho-Jin Choi et al [5].. They work on the 

concept of  “Build once Mine many '' property which means no need to create a tree once it is created even though 

the threshold value has been changed but algorithms have to perform all the steps from the first step. so it can 

work for any threshold value to mine high utility itemsets after tree construction. IHUPL-Tree arranges items in 

lexicographic order in the first database scan then creates a branch by inserting it into the tree.compact  IHUPTF-

Tree is created from IHUPL-Tree by using descending order of transaction frequency and then based on 

descending order of twu value IHUPTWU-Tree is created. At the end, based on bubble sort, using a path adjusting 

method restructuring operation is performed and  the candidate itemsets are identified and form it  mining high 

utility itemset performed. 

 Ming-Yen Lin,Tzer-Fu Tu,Sue-Chen Hsueh et al proposed a two phase- the maximal phase and utility phase- 

UMMI(Utility Mining using Maximal Itemset property) algorithm  to find high utility itemsets[6]. To 

computational complexity and search space, in the maximal phase they only searched maximal high TWU itemset 

in place of high TWU itemsets. In the utility phase the MLexTree structure is created  to effectively identify high 

utility items. In order to store transaction utilities of itemsets in ascending order HTP (High TWU Pattern) tree is 

created in the maximal phase. then recursively, from minimum TWU value to the maximum TWU value  from 

the mining HTP tree and constructing a conditional tree of the MTWU itemsets. MLexTree (Maximal 

Lexicographic Tree) constructed from MTWU In Utility Phase. The MLexTree joins  the  similar prefixed items’s 

itemsets and then  all MTWU itemsets store the itemset in lexicographic order.. Then the database is updated with 

scanning the database, and it will select those nodes whose utility is not less than min_util by  mining MLexTree.  

Interactive and incremental single-pass mining algorithm for mining weighted frequent pattern proposed by 

Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong, Young-Koo Lee, Ho-Jin Choi et 

al.[8]. They presented two novel tree data structures: Incremental weighted frequent pattern tree based on weight 

ascending order(IWFPTFD) and Incremental weighted frequent pattern tree based on descending 

order(IWFPTFD). algorithm guaranteed that to speed up the prefix tree, in any branch non-candidate itemset not 

appear before candidate itemset. it also ensures the interactive and incremental weighted frequent pattern itemset 

mining with single database scan.              

III.PROPOSED ALGORITHM 

A. Construction of Transaction Positioning Matrix 

Construction of Transaction Positioning Matrix performed in two phases. In phase one, two I/O scans of the 

database are required, For each item Transaction Frequency(TF) and TWU is calculated during the first scan of 

the database and  using bubble sort TWU is sorted. Then based on TWU value the transaction positioning matrix 

is generated. As shown in fig. 3, there are  three columns in the matrix: location which is to identify the item , 

index that stores TWU value along with item name  and transactional array store the pointer for the next item in 

particular transaction with TU. 

In the proposed work, for each item,  we have first calculated TWU and using the bubble sort, sorted it in 

ascending order. 

 
              Fig 2 : Example of (a) Transactional Database (b) Utility Database 

 

Transaction Positioning matrix is generated after sorting in ascending order. First, according to the transaction 

‘s TWU value, sort the item. Then transactions are inserted one by one based on the ascending order of TWU 

value of item. For example transaction T1 is inserted as D,B,C and E as per the ascending order of the TWU value 

of the respective item. As n total number of items and m is the maximum transaction frequency so size of the 

matrix is n x m. To insert the item in the matrix, after the sorting, see the first item as in our case in transaction 
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T1, it is D, start with insert in the row of D,  see the next item after D, it is B, search the free position in the matrix 

that is (2,1) and store it along with the its TU value of B. same as B will search the free position in the matrix for 

next item C, that is (4,1), and store its poison along with its TU value. This process is for the last item of the 

transaction, as there will not next item available, then stores  (Ф,Ф) along with the TU, that is in our case first 

position of item E. similarly transactional positioning matrix is generated for all transactions in the database. 

 
Fig.3 : Transaction Positioning Matrix. 

B. Construction of ITWU Tree 

 ITWUI tree and header table are constructed from TP Matrix which lead to candidate itemsets. Header table 

stores the information like item name and TWU of respective item. ITWUI tree is constructed for each item which 

is independent of each other and can be implemented using the parallel processing concept. Mining can be done 

independently on each tree which makes this algorithm efficient from other algorithms. To construct an ITWUI 

tree for a particular item we have to start from the first column and make the tree according to its position defined 

in the Matrix. In this tree we have to include the TWU and TF with the item name. In our case suppose we want 

to make ITWUI tree for D then we have to start from (1,1) position which has value like (2,1,87) so we have to 

traverse to next item  at location (2,1) and in similar way we have to create tree until (Ф,Ф) appears as shown in 

fig. After that we have to go to (1,2) and traverse through the full path, in a similar way we have to draw the tree 

till the next pointer is present.. 

C. ITWUI-Miner Algorithm 

 ITWUI-Miner algorithm identifies the candidate itemset from ITWUI tree during its generation. One more 

database scan needed to search high utility itemset from candidate itemsets. While generation of the item tree is 

completed it directly finds a candidate itemset based on TWU value from the header table. If the min_utility 

threshold is less than  the TWU values of header table’ items   then candidate itemset is considered for that item. 

For the items the minimum utility is greater than the TWU value can be pruned. Database is scanned and candidate 

itemset’s utility is calculated and minimum utility is less than that utility then that particular candidate itemset is 

considered high utility itemset. In fig consider for item ‘D’ then from header table we can directly prune item ‘A’ 

and ‘E’ for min_util=129.75, so candidate itemset are ‘DBC’(165,2),‘DB’(226,3) and ‘D’(226,3).Considering all 

other items, we get candidate itemset like BC (165,2), B(282,4), A (318,5), AE (210,3), CE (204,3), C(328,5) and 

E(333,5).From this candidate itemset we got A:135,AE:158,CE:164 and BCD:149 as high utility itemset. 

 
Fig.4 :High Utility Itemset Mining from ITWUI tree 
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IV. RESULT ANALYSIS 

A. Dataset used 

 In the Proposed algorithm, during the implementation phase we have selected the Chain Store Dataset as our 

main dataset as it contains more transactions and more distinct items so that we can work on a large number of 

items. Chain Store Dataset is downloaded from NU-MineBench 2.0 which contains two files. The first file is 

named as “real_data_aa.txt” and it contains 11,12,949 transactions and each transaction has a list of item ids 

which are bought by the customer. The other file named “product_price.txt” contains 46,086 distinct items 

available at the store with its profit per item and 7.26 items is the average transaction length. 

B. Result and Analysis 

We have analyzed proposed algorithms with different three algorithms, Two-Phase algorithm, HUI-Miner and 

IHUP algorithm. Experiments were performed on a Macbook computer system  equipped with Apple  M1 chip 

having 8-core CPU,8-core GPU and 16-core neural engine, running 64-bit Sonara operating system. 

For different minimum thresholds, execution time is calculated and results are noted as shown in fig 4. 
 

Min_util ITWUI Two-phase HUI-Miner IHUP 

200000 49.593 1090.485 467.139 223.693 

400000 22.603 345.439 119.043 77.673 

600000 11.872 176.872 50.622 73.274 

800000 10.857 110.744 32.153 47.159 

1000000 9.623 78.371 22.714 33.54 

1200000 8.393 59.946 14.43 28.299 

1400000 8.128 48.857 11.154 25.662 

1600000 7.441 39.451 8.658 20.467 

1800000 7.551 38.751 7.831 19.235 

2000000 7.285 34.664 7.02 17.02 

2200000 7.083 30.467 6.973 15.538 

2400000 7.035 28.549 7.036 14.071 

2550000 6.864 28.44 6.879 13.51 

2700000 6.957 28.377 6.723 13.994 
     Fig.4 :  Execution time Comparison 

 
Fig .5 : Execution time comparison chart 
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As shown in fig. 4 and fig 5, as the value of min_ulit has increased, the size of the branch in ITWUI tree 

decreases and due to it the execution time also decreases.  

V. CONCLUSION 

In the proposed work we have presented a novel algorithm interactive transaction weighted utility item 

(ITWUI) tree algorithm for high utility mining. Result shows the effectiveness of the algorithm in the application 

of high utility mining.  

In recent years, for voluminous data, big data  and cloud computing have emerged as a research topic. so our 

plan is to develop the parallel and distributed ITWUI algorithm for a huge dataset. 
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