
J. Electrical Systems 20-9s (2024): 2970-2975

2970

1 Sanjay D. Bhanderi

2 Haresh M. Rathod

3 Prashant D. Maheta

4 Rushi J. Trivedi

5 Ravi J. Khimani

ITWUI - An Interactive

Transaction Weighted Utility

Item Tree for High Utility

Itemset Mining

Abstract:- Currently in the competitive marketing era, high utility itemset (HUI) mining is the most useful and most advanced research

area which inherits from association rule mining (ARM). HUI is useful for designing the strategies for the big retailer mall, e-commerce

portal like amazon, alibaba, ebay, flipkart, etc.. Utility in a high utility itemset is a profit which is calculated from the product of

quantity and price of each product from the transaction table. In this paper, we propose a matrix called transaction positioning matrix.

Transaction positioning matrix is a tabular data structure which is derived from a transaction database. Based on this matrix, we have

generated a tree for each item from the transaction named as interactive transaction weighted utility item (ITWUI) tree. ITWUI tree

is created for each potential item present in the transaction database. Then finally, a high utility itemset is mined by processing the

ITWUI tree in parallel.

Keywords:- High Utility Itemset,Weighted utility,Parallel Computing,Transaction Positioning Matrix

I. INTRODUCTION

The fast improvement of database strategies encourages the capacity and use of massive/gigantic information

from business companies, governments, and research organizations. Collecting important knowledge from a

massive database evolved many research related topics. Among them one is high utility itemset mining which we

are concerned about.

As of late, many algorithms have been developed and proposed for high utility itemset mining. However,

these algorithms suffer from many limitations like excessive use of main memory, long execution time, and may

or may not have interactive properties. To overcome these limitations we propose a new algorithm for mining

high utility itemset. Our contributions in the paper are as follows:

1. A matrix structure called Transaction Positioning (TP) matrix is designed which stores the positions of the

next item with current Transaction Utility (TU) of the item.

2. A tree structure called Interactive Transaction Weighted Utility (ITWU) Tree is designed from TP Matrix

structure. This tree structure stores the TWU value of the item in a header table.

3. An Efficient algorithm called ITWU-Miner is developed. This algorithm has the speciality of mining itemset

from ITWU Tree using parallel processing concept.

(a)

(b)

Fig 1 : Example of (a) Transactional Database (b) Utility Database

1,2,3,4,5 Assistant Professor, Computer Engineering Department, Government Engineering College, Rajkot, Gujarat, India.

Copyright © JES 2024 on-line : journal.esrgroups.org

J. Electrical Systems 20-9s (2024): 2970-2975

2971

In the next section we have discussed background work with preliminaries and problem definition, major

challenges and issues faced during mining and we propose an algorithm with construction of matrix and tree. At

last, the mining algorithm is discussed and future work is included

II. BACKGROUND

A. Preliminaries

Let's consider a finite set of items I = {i1, i2, . . ., im} and a set of n transactions database D = {T1, T2, . . ., Tn}.

unique transaction id TID assigned to each transaction Td (1 ≤ d ≤ n) in D. A set of k distinct items {i1, i2, . . ., ik}

is called itemset X, where X is subset of I. i.e. X I and 1 ≤ k ≤ m. Here m is the total number of items, length

of the itemset X is k so it can be referred as k-itemset. In utility mining, iu(ip, Td) called internal utility i.e. in

transaction Td each item ip (1 ≤ p ≤ m) is associated with a quantity, and eu(ip) is called external utility as each

item ip has a unit profit.[2]

Definition 1. In transaction Td, Utility of an item is denoted as u(ip; Td) for item ip which is defined : eu(ip) x iu(ip;

Td).[2]

 Definition 2. In transaction Td, , u(X; Td) is Utility of an itemset X which defined as [2]

[3]

 Definition 3. u(X) is the Utility of an itemset X in D is which is defined as [2]

[3]

Definition 4. An itemset is to be considered a high utility itemset if utility of the itemset is greater than a user-

specified minimum utility threshold and it is denoted by min_util. if utility is less than a user specified minimum

utility the , it is called a low-utility itemset [2].

B. Major Challenges and Issues

There are two step processes for calculation of mining high utility itemset. The first step all potential itemsets

(candidate itemsets) have been identified. Then high utility itemsets have been identified from the set of potential

Itemsets in the second phase.. The fundamental issues for this two steps processes are::

1. Generation of candidate itemsets are too large, so search space requirement is also high which adheres to two

problems 1) in order to store candidate itemset during mining process excessive memory required [4]; (2)

to generate large candidate itemsets a lot of computation time is needed. due to it performance of the

algorithm will be degraded[4].

2. It is extremely challenging to prune the search space viably and without missing mining all the high utility

itemsets.

3. Essential requirement of all nanosecond or millisecond data is incremental dataset because of the expansion

of nanosecond or millisecond data periodically.

4. When minimum utility support is changed in an interactive algorithm no need to run the algorithm from

beginning.

5. The other essential issue is that all high utility mining algorithms used two passes of the database. to develop

algorithm for single database pass is a big challenge.

C. Related Work

High utility itemset mining algorithm presented from transactional database [2]. In the technique they

presented, it creates UP-Tree which requires two database scans and it is depending on the length of candidate

itemset fully. algorithm generates a big number of itemset i.e. potential high utility itemsets (PHUIs). However

the algorithm addresses the issue of memory usage by generating candidate itemsets level wise.

 Unil Yun,Heungmo Ryang, Keun Ho Ryu presented a High Utility mining algorithm named MU-Growth. In

the algorithm they have presented two techniques to prune the candidate itemsets[3]. They also introduce the tree

based data structure MIQ- tree (Maximum Item Quantity) which stores database information with single pass for

high utility itemset mining. Initially the tree is constructed from a transactional database with items and its

J. Electrical Systems 20-9s (2024): 2970-2975

2972

associated quantities and then based on TWU descending order the tree is rebuilt. Then, MU-Growth generated

candidate itemsets from the recreated tree. and it identified actual high utility itemsets from it.

Three novel tree structures IHUPL(Incremental HUP Lexicographic Tree),IHUPTF (IHUP Transaction

frequency), IHUPTWU (IHUP Transaction-Weighted Utilization Tree) presented by Chowdhury Farhan Ahmed,

Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong, Young-Koo Lee, Ho-Jin Choi et al [5].. They work on the

concept of “Build once Mine many '' property which means no need to create a tree once it is created even though

the threshold value has been changed but algorithms have to perform all the steps from the first step. so it can

work for any threshold value to mine high utility itemsets after tree construction. IHUPL-Tree arranges items in

lexicographic order in the first database scan then creates a branch by inserting it into the tree.compact IHUPTF-

Tree is created from IHUPL-Tree by using descending order of transaction frequency and then based on

descending order of twu value IHUPTWU-Tree is created. At the end, based on bubble sort, using a path adjusting

method restructuring operation is performed and the candidate itemsets are identified and form it mining high

utility itemset performed.

 Ming-Yen Lin,Tzer-Fu Tu,Sue-Chen Hsueh et al proposed a two phase- the maximal phase and utility phase-

UMMI(Utility Mining using Maximal Itemset property) algorithm to find high utility itemsets[6]. To

computational complexity and search space, in the maximal phase they only searched maximal high TWU itemset

in place of high TWU itemsets. In the utility phase the MLexTree structure is created to effectively identify high

utility items. In order to store transaction utilities of itemsets in ascending order HTP (High TWU Pattern) tree is

created in the maximal phase. then recursively, from minimum TWU value to the maximum TWU value from

the mining HTP tree and constructing a conditional tree of the MTWU itemsets. MLexTree (Maximal

Lexicographic Tree) constructed from MTWU In Utility Phase. The MLexTree joins the similar prefixed items’s

itemsets and then all MTWU itemsets store the itemset in lexicographic order.. Then the database is updated with

scanning the database, and it will select those nodes whose utility is not less than min_util by mining MLexTree.

Interactive and incremental single-pass mining algorithm for mining weighted frequent pattern proposed by

Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong, Young-Koo Lee, Ho-Jin Choi et

al.[8]. They presented two novel tree data structures: Incremental weighted frequent pattern tree based on weight

ascending order(IWFPTFD) and Incremental weighted frequent pattern tree based on descending

order(IWFPTFD). algorithm guaranteed that to speed up the prefix tree, in any branch non-candidate itemset not

appear before candidate itemset. it also ensures the interactive and incremental weighted frequent pattern itemset

mining with single database scan.

III.PROPOSED ALGORITHM

A. Construction of Transaction Positioning Matrix

Construction of Transaction Positioning Matrix performed in two phases. In phase one, two I/O scans of the

database are required, For each item Transaction Frequency(TF) and TWU is calculated during the first scan of

the database and using bubble sort TWU is sorted. Then based on TWU value the transaction positioning matrix

is generated. As shown in fig. 3, there are three columns in the matrix: location which is to identify the item ,

index that stores TWU value along with item name and transactional array store the pointer for the next item in

particular transaction with TU.

In the proposed work, for each item, we have first calculated TWU and using the bubble sort, sorted it in

ascending order.

 Fig 2 : Example of (a) Transactional Database (b) Utility Database

Transaction Positioning matrix is generated after sorting in ascending order. First, according to the transaction

‘s TWU value, sort the item. Then transactions are inserted one by one based on the ascending order of TWU

value of item. For example transaction T1 is inserted as D,B,C and E as per the ascending order of the TWU value

of the respective item. As n total number of items and m is the maximum transaction frequency so size of the

matrix is n x m. To insert the item in the matrix, after the sorting, see the first item as in our case in transaction

J. Electrical Systems 20-9s (2024): 2970-2975

2973

T1, it is D, start with insert in the row of D, see the next item after D, it is B, search the free position in the matrix

that is (2,1) and store it along with the its TU value of B. same as B will search the free position in the matrix for

next item C, that is (4,1), and store its poison along with its TU value. This process is for the last item of the

transaction, as there will not next item available, then stores (Ф,Ф) along with the TU, that is in our case first

position of item E. similarly transactional positioning matrix is generated for all transactions in the database.

Fig.3 : Transaction Positioning Matrix.

B. Construction of ITWU Tree

 ITWUI tree and header table are constructed from TP Matrix which lead to candidate itemsets. Header table

stores the information like item name and TWU of respective item. ITWUI tree is constructed for each item which

is independent of each other and can be implemented using the parallel processing concept. Mining can be done

independently on each tree which makes this algorithm efficient from other algorithms. To construct an ITWUI

tree for a particular item we have to start from the first column and make the tree according to its position defined

in the Matrix. In this tree we have to include the TWU and TF with the item name. In our case suppose we want

to make ITWUI tree for D then we have to start from (1,1) position which has value like (2,1,87) so we have to

traverse to next item at location (2,1) and in similar way we have to create tree until (Ф,Ф) appears as shown in

fig. After that we have to go to (1,2) and traverse through the full path, in a similar way we have to draw the tree

till the next pointer is present..

C. ITWUI-Miner Algorithm

 ITWUI-Miner algorithm identifies the candidate itemset from ITWUI tree during its generation. One more

database scan needed to search high utility itemset from candidate itemsets. While generation of the item tree is

completed it directly finds a candidate itemset based on TWU value from the header table. If the min_utility

threshold is less than the TWU values of header table’ items then candidate itemset is considered for that item.

For the items the minimum utility is greater than the TWU value can be pruned. Database is scanned and candidate

itemset’s utility is calculated and minimum utility is less than that utility then that particular candidate itemset is

considered high utility itemset. In fig consider for item ‘D’ then from header table we can directly prune item ‘A’

and ‘E’ for min_util=129.75, so candidate itemset are ‘DBC’(165,2),‘DB’(226,3) and ‘D’(226,3).Considering all

other items, we get candidate itemset like BC (165,2), B(282,4), A (318,5), AE (210,3), CE (204,3), C(328,5) and

E(333,5).From this candidate itemset we got A:135,AE:158,CE:164 and BCD:149 as high utility itemset.

Fig.4 :High Utility Itemset Mining from ITWUI tree

J. Electrical Systems 20-9s (2024): 2970-2975

2974

IV. RESULT ANALYSIS

A. Dataset used

 In the Proposed algorithm, during the implementation phase we have selected the Chain Store Dataset as our

main dataset as it contains more transactions and more distinct items so that we can work on a large number of

items. Chain Store Dataset is downloaded from NU-MineBench 2.0 which contains two files. The first file is

named as “real_data_aa.txt” and it contains 11,12,949 transactions and each transaction has a list of item ids

which are bought by the customer. The other file named “product_price.txt” contains 46,086 distinct items

available at the store with its profit per item and 7.26 items is the average transaction length.

B. Result and Analysis

We have analyzed proposed algorithms with different three algorithms, Two-Phase algorithm, HUI-Miner and

IHUP algorithm. Experiments were performed on a Macbook computer system equipped with Apple M1 chip

having 8-core CPU,8-core GPU and 16-core neural engine, running 64-bit Sonara operating system.

For different minimum thresholds, execution time is calculated and results are noted as shown in fig 4.

Min_util ITWUI Two-phase HUI-Miner IHUP

200000 49.593 1090.485 467.139 223.693

400000 22.603 345.439 119.043 77.673

600000 11.872 176.872 50.622 73.274

800000 10.857 110.744 32.153 47.159

1000000 9.623 78.371 22.714 33.54

1200000 8.393 59.946 14.43 28.299

1400000 8.128 48.857 11.154 25.662

1600000 7.441 39.451 8.658 20.467

1800000 7.551 38.751 7.831 19.235

2000000 7.285 34.664 7.02 17.02

2200000 7.083 30.467 6.973 15.538

2400000 7.035 28.549 7.036 14.071

2550000 6.864 28.44 6.879 13.51

2700000 6.957 28.377 6.723 13.994
 Fig.4 : Execution time Comparison

Fig .5 : Execution time comparison chart

J. Electrical Systems 20-9s (2024): 2970-2975

2975

As shown in fig. 4 and fig 5, as the value of min_ulit has increased, the size of the branch in ITWUI tree

decreases and due to it the execution time also decreases.

V. CONCLUSION

In the proposed work we have presented a novel algorithm interactive transaction weighted utility item

(ITWUI) tree algorithm for high utility mining. Result shows the effectiveness of the algorithm in the application

of high utility mining.

In recent years, for voluminous data, big data and cloud computing have emerged as a research topic. so our

plan is to develop the parallel and distributed ITWUI algorithm for a huge dataset.

REFERENCES

[1] Alva Erwin, Raj P. Gopalan, and N.R.Achutan, “Efficient Mining of High Utility Itemsets from Large Datasets”, Springer-

verlag Berlin Heidelberg,pp.554-561.

[2] Vincent Tseng,Bai-En Shie,Cheng-Wei Wu and Philips S. Yu,Fellow,IEEE, “Efficient Algorithms for Mining High Utility

Itemsets from Transactional Databases.” IEEE Transactions on Knowledge and Data Engineering, vol 25 No, 8,August

2013,pp.1772-1786

[3] Unil Yun, Heungmo Ryang, Keun Ho Ryu, “High utility itemset mining with techniques for reducing overestimated utilities

and pruning candidates“, Expert Systems with Applications(Elsevier), vol 41,2014,pp.3861-3878.

[4] Mengchi Liu,Junfeng Qu, ”Mining High Utility Itemsets without Candidate Generation” CIKM’12,USA,ACM 2012,pp.55-

64.

[5] C.F.Ahmed,S.K.Tanbeer,B.-S.Jeong,Y.-K.Lee, “Efficient Tree Structures for High utility for High Utility Pattern Mining in

Incremental Databases” IEEE Transactions on Knowledge and Data Engineering,Vol.21,No.12,December 2009,pp.1708-

1721.

[6] M.-Y.Lin,T.-F.Tu,S,-C.Hsueh, “High utility pattern mining using the maximal itemset property and lexographic tree

structures” Informational Sciences 215(2012),Elsevier,pp.1-14.

[7] C.-W.Lin,G.-C.Lan,T.-P.Hong,”An Incremental mining algorithm for high utility itemsets” Expert Systems with applications

39 (2012) pg.7173-7180.

[8] Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, Byeong-Soo Jeong, Young-Koo Lee a,Ho-Jin Choi(2012) “Single-

pass incremental and interactive mining for weighted frequent patterns” Expert Systems with Applications 39,ELSEVIER

2012, pp.7976–7994.

[9] Ahmed CF,Tanbeer SK,Jeong B-S, Lee Y-K (2011) , “HUC-Prune: An Efficient Candidate Pruning Technique to mine high

utility patterns” Appl Intell, Springer,2009, PP: 181–198.

[10] Y.Liu, W.K. Liao and A. Choudhary,”A two phase algorithm for fast discovery of high utility itemset.” Cheng, D. and Liu.

H. PAKDD, LNCS-2005,PP: 689-695

[11] Alva Erwin, Raj P. Gopalan, and N.R.Achutan,”CTU-mine:An Efficient High Utility Itemset Mining Algorithm using the

Pattern Growth Approach” Seventh International Conference on Computer and Information Technology,Aizu

Wakmatsu,Japan,2007.

[12] Philipee Fournier-Viger,Cheng-Wei Wu,Souleymane Zida,Vincent S.Tseng, “FHM:Faster High Utility itemset mining using

Estimated Utility Co-occurrence Pruning” ISMIS,Springer,LNAI-2014,pp.83-92.

[13] Wei Song,Yu Liu,Jinhong Li,”Mining high Utility Itemsets by Dynamically Pruning the Tree Structure” Appl Intell,Springer

Science,2013,pp29-43.

