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Abstract: - The demand for autonomous vehicles is driven by a combination of factors that are shaping the future of transportation. One 

significant aspect of the demand for autonomous vehicles comes from consumers who are increasingly interested in the potential benefits 

of self-driving technology. The convenience, safety, and potential cost savings associated with autonomous vehicles are appealing to many 

individuals, especially in urban areas where traffic congestion and parking challenges are prevalent. Consumers see autonomous vehicles 

as a way to improve their daily commute, reduce the stress of driving, and enhance overall mobility. Autonomous vehicles are incorporating 

a variety of sensors, including cameras, LiDAR, radar, and ultrasonic sensors, to improve perception capabilities. Sensor fusion techniques 

are being used to combine data from multiple sensors for more accurate and reliable object detection and tracking. Among these, the 

CARLA (Car Learning to Act) simulator has emerged as a leading open-source solution, offering a realistic and customized virtual 

environment for autonomous driving research. The increasing autonomy of vehicles necessitates a paradigm shift in testing methodologies. 

Traditional real-world testing is resource-intensive, time-consuming, and often constrained by safety concerns. Simulation offers a viable 

alternative, allowing researchers and developers to iterate and experiment rapidly in a controlled virtual environment. CARLA, as an open-

source and extensible simulator, provides a valuable platform to address these challenges. 
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I. INTRODUCTION 

The pursuit of autonomous vehicle technology has rev- olutionized the landscape of transportation, promising safer 

and more efficient roads through vehicles capable of nav- igating and making decisions without human intervention. 

The development of autonomous systems demands meticulous testing and validation, a process that is inherently 

complex and often impractical to conduct solely in the physical world. As a result, simulation platforms have 

become instrumental in advancing autonomous vehicle research, providing a controlled and adaptable environment 

for testing algorithms, training machine learning models, and validating control strategies. 

There are plenty of simulators to test the autonomous vehi- cle solutions having their pros and cons, such as 

CarCraft, Udacity, TORCS, and RRADS, etc. CarCraft offers a realistic driving experience with a focus on vehicle 

dynamics and control. It provides a platform for testing advanced driving algorithms. The disadvantage of CarCraft 

is that it has limited environment and scenario diversity compared to other simula- tors. It may not have as many 

features or sensors as some other simulators. Though Udacity provides a user-friendly interface and is often used 

for educational purposes in autonomous driving courses, Udacity has limited customization options and may not 

offer the same level of realism or complexity as more advanced simulators. TORCS is a well-established open-

source racing simulator with a large community of users. It offers a wide range of tracks and vehicles for testing. 

While TORCS is suitable for racing simulations, it may lack specific features required for autonomous driving 

research and development. RRADS is designed specifically for robotics research and development, including 

autonomous vehicles. It offers flexibility and customization options. But it has limited documentation and support 

compared to more widely used simulators like CARLA. It may require more technical exper- tise to set up and use 

effectively. 

CARLA simulator stands out among other autonomous vehicle driving simulators due to several key advantages. 

CARLA simulator offers distinct advantages that set it apart from other autonomous vehicle driving simulators. 
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One key advantage is its open-source nature, which allows for extensive customiza- tion and adaptation to specific 

research or development needs. This flexibility enables users to modify the software, integrate new features, and 

collaborate with the community to enhance the simulator’s capabilities continuously. This open approach fosters 

innovation and accelerates progress in autonomous driving research. Another significant advantage of CARLA is 

its high level of realism and fidelity in simulation. The simulator provides detailed graphics, accurate physics, and 

dynamic environments that closely replicate real-world driving conditions. This realism is essential for testing and 

validating autonomous driving algorithms, sensor systems, and decision-making processes in a safe and controlled 

virtual environment. Researchers and developers can conduct extensive experiments and scenario testing in 

CARLA, leading to more robust and reliable autonomous vehicle systems. 

In addition to its technical capabilities, CARLA’s active devel- opment and maintenance by a dedicated team ensure 

that the simulator remains up-to-date with the latest advancements in autonomous driving technology. Regular 

updates, bug fixes, and new features enhance the usability and effectiveness of CARLA for researchers, developers, 

and educators in the autonomous vehicle domain. This commitment to continuous improvement and innovation 

solidifies CARLA’s position as a leading autonomous vehicle driving simulator, driving progress and excellence in 

the field of autonomous driving research and development. 

 
Fig. 1. Project’s Pipeline 

II. ARCHITECTURE OF CARLA SIMULATOR 

The architecture of the autonomous vehicle consists of four major layers, as illustrated in Figure 3, that are sensor 

layer, perception layer, planning layer and control layer. 

A. Sensor Layer 

The sensor layer in the architecture of CARLA is responsible for simulating the various sensors that an autonomous 

vehicle typically uses to perceive its environment. These sensors provide crucial data for the perception module, 

allowing the vehicle to understand the surrounding world. 

CARLA simulates camera sensors that capture visual information. These cameras can be configured with different 

parameters, such as field of view, resolution, and position on the vehicle. Visual data is essential for tasks like object 

detection, lane keeping, and scene understanding. LiDAR sensors simulate laser-based devices that measure 

distances to objects in the environment. CARLA allows users to configure LiDAR sensors with different settings, 

such as the number of beams, rotation speed, and range. LiDAR data is valuable for creating detailed 3D maps of 

the surroundings and detecting obstacles. RADAR sensors are simulated to capture radio waves reflected off objects 

in the environment. CARLA provides radar sensors with adjustable parameters like range and field of view. 

RADAR data is useful for detecting objects and estimating their velocities, particularly in adverse weather 

conditions. The GPS sensor simulates the global positioning system, providing information about the vehicle’s 

geographic coordinates. GPS data is essential for localization, helping the autonomous system understand its 

position within the simulated environment. 

 
Fig. 2: Sensing modalities provided by CARLA. From left to right: normal image camera, ground depth, and ground semantic segmentation. 

Depth and semantic segmentation are pseudo-sensors that executes the role of perception. Additional sensor models can be plugged in via the 

API. 

B. Perception Layer 
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The perception layer in the architecture of CARLA is responsible for interpreting and understanding the data 

collected from simulated sensors. It processes the information captured by cameras, LiDAR, RADAR, and other 

sensors to extract relevant details about the environment. The goal is to generate a comprehensive representation of 

the surroundings, which can then be used by higher-level modules, such as planning and control, for decision-

making and action execution. 

Object detection algorithms in the perception layer analyze sensor data to identify and locate objects in the 

environment. This includes recognizing vehicles, pedestrians, cyclists, and other relevant entities. Object detection 

is fundamental for understanding the dynamics of the scene and predicting potential interactions. Lane detection 

algorithms process visual sensor data to identify lane markings on the road. This information is crucial for 

determining the vehicle’s position within the lane and aiding in tasks such as lane-keeping and lane-changing. 

Perception algorithms are designed to recognize and interpret traffic signs and signals. This includes identifying 

stop signs, traffic lights, speed limit signs, and other regulatory signs. Recognition of these elements is vital for 

obeying traffic rules and ensuring safe navigation. 

C. Planning Layer 

The planning layer in the architecture of CARLA is responsible for generating high-level plans and trajectories for 

the autonomous vehicle based on the information provided by the perception layer. This layer focuses on decision-

making, determining the optimal course of action for the vehicle to navigate its environment safely and efficiently. 

The planning layer often begins with route planning, where the system decides the overall path the vehicle should 

take to reach its destination. This involves considering factors such as map information, user-defined way-points, 

and dynamic changes in the environment. Behavior planning involves making high-level decisions about the 

vehicle’s actions. This includes determining whether the vehicle should change lanes, overtake another vehicle, 

make a turn at an intersection, or stop at a traffic light. The behavior planner considers the current situation and the 

desired destination. Path planning focuses on finding a collision-free path for the vehicle within the planned 

trajectory. This involves considering the vehicle’s physical constraints, such as its dimensions and turning radius, 

while avoiding obstacles and maintaining a safe distance from other objects in the environment. Decision-making 

algorithms in the planning layer take into account various factors, including the current state of the vehicle, traffic 

conditions, legal requirements, and user-defined preferences. These algorithms aim to generate plans that balance 

safety, efficiency, and compliance with traffic rules. 

D. Control Layer 

The control layer in the architecture of CARLA is respon- sible for executing the plans and trajectories generated 

by the planning layer. It translates the high-level commands into low-level control signals that directly manipulate 

the vehicle’s actuators, such as throttle, brake, and steering. The control layer ensures that the vehicle physically 

follows the planned trajectory while considering real-time feedback from sensors. The control layer models the 

dynamics of the vehicle, in- cluding its acceleration, braking, and steering behavior. The output of the planning 

layer is a high-level plan or trajectory, specifying the desired path and behavior of the vehicle. The control layer 

translates this high-level plan into low-level control commands that directly influence the vehicle’s motion. These 

commands typically include throttle, brake, and steering inputs. Throttle control involves adjusting the engine 

power to control the vehicle’s speed. Brake control regulates the braking force applied to the vehicle. Steering 

control determines the steering angle necessary to follow the planned path. 

 
Fig. 3. Architecture of CARLA. 
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III. OBJECT DETECTION 

Object detection is a critical component in autonomous vehicle driving systems as it allows the vehicle to identify 

and locate various objects in its environment, such as pedestrians, vehicles, and obstacles. In CARLA, object 

detection is typically part of the perception layer, which processes data from simulated sensors to understand the 

surroundings. 

The YOLO (You Only Look Once) architecture revolutionized object detection by introducing a single-stage 

approach that significantly improved speed without compromising accuracy. Unlike traditional two-stage detectors 

that first propose regions of interest and then classify those regions, YOLO performs both tasks simultaneously. 

This unique design enables YOLO to achieve real-time performance, making it ideal for applications requiring 

rapid processing, such as autonomous vehicles, surveillance systems, and interactive systems. 

At its core, YOLO divides the input image into a grid and predicts bounding boxes and class probabilities for each 

grid cell. This grid-based approach allows YOLO to efficiently cover the entire image and detect objects at different 

locations and scales. By leveraging convolutional neural networks (CNNs) for feature extraction, YOLO captures 

rich representations of the input image, enabling robust detection across various environments and object types. 

Furthermore, YOLO incorporates anchor boxes and multiple scales to improve detection accuracy. Anchor boxes 

are predefined bounding boxes with different aspect ratios, which help YOLO handle objects of various shapes and 

sizes. By predicting offsets and scales relative to these anchor boxes, YOLO achieves precise localization of objects, 

even in cluttered scenes or when objects are partially occluded. 

The architecture of YOLO typically consists of convolutional layers for feature extraction followed by fully 

connected layers for predicting bounding boxes and class probabilities. Through training on large datasets and 

iterative refinement, YOLO has evolved through multiple versions, each enhancing performance and addressing 

specific challenges. These improvements include better handling of small objects, improved localization accuracy, 

and increased robustness to environmental variations. 

During training, YOLO requires a labeled dataset with annotated bounding boxes and class labels. The network is 

trained using a combination of classification and regression loss functions. The classification loss measures the 

accuracy of the predicted class probabilities, while the regression loss measures the accuracy of the predicted 

bounding box coordinates. 

Non-maximum suppression (NMS) is a fundamental post-processing technique widely used in object detection to 

refine the output of detection models. Its primary purpose is to address the issue of duplicate or redundant bounding 

box detections that may occur when an object is localized by multiple overlapping bounding boxes. NMS operates 

by iteratively selecting the bounding box with the highest confidence score among a group of overlapping boxes 

and suppressing (i.e., removing) all other boxes that have significant overlap with the selected box. 

A. Training 

 
Fig. 4. Object Detection 

The training phase involves feeding the annotated and pre-processed dataset into the configured YOLO model. 

During training, the model learns to detect objects by adjusting its weights based on the disparity between predicted 

bounding boxes and ground truth annotations. This iterative process continues for multiple epochs, with 

performance monitored on the validation set to prevent over fitting. 

Following training, the model’s performance is evaluated on the test set using metrics like mean Average Precision 

(mAP) to assess its accuracy, precision, and recall. If necessary, the trained model can undergo fine-tuning to 

address any deficiencies observed during evaluation. Finally, the trained YOLO model is deployed to the Carla 
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simulator, enabling vehicles to detect and respond to objects and obstacles in real-time during simulated driving 

scenarios. 

Training a YOLO model for object detection in the context of simulating vehicle driving using the Carla simulator 

involves several sequential steps. Firstly, data collection is paramount. A diverse dataset of images representing 

different driving scenarios within the Carla simulator needs to be collected. These scenarios should encompass 

various environmental factors such as different lighting conditions, weather variations, road types, and traffic 

densities. Additionally, the dataset should cover a wide range of objects pertinent to driving simulations, including 

vehicles, pedestrians, traffic signs, and obstacles commonly encountered on roads. 

Once the dataset is collected, the next step is annotation. Each image in the dataset needs to be annotated with 

bounding boxes around objects of interest. These bounding boxes should precisely delineate the objects and be 

accompanied by corresponding class labels. Annotation tools like LabelImg or VIA are typically employed for this 

task, facilitating the marking of bounding boxes and assignment of class labels. 

Following annotation, the dataset undergoes preprocessing to ensure compatibility with the YOLO architecture. 

This includes tasks such as resizing images to a consistent resolution, normalizing pixel values, and converting 

annotations into a format suitable for YOLO training, such as the Darknet annotation format. Furthermore, the 

dataset is divided into training, validation, and test sets to facilitate model training, hyper-parameter tuning, and 

performance evaluation, respectively. 

With the dataset prepared, the YOLO architecture is configured for training. The appropriate YOLO version, such 

as YOLOv3 or YOLOv4, is selected, and its architecture is configured with parameters like the number of 

convolutional layers, anchor box sizes, and optimization parameters. Additionally, the loss function, typically a 

combination of classification loss and localization loss, is defined to guide the model’s training process. 

 

Fig. 5. Training Dataset 

IV. COLLISION AVOIDANCE 

Achieving collision avoidance in autonomous vehicle driving using CARLA (Car Learning to Act) involves a series 

of steps that integrate perception, planning, and control algorithms. The first step is perception, where sensor data 

from cameras, LiDAR, and RADAR is utilized to perceive the surrounding environment. This data is processed to 

detect and track objects such as vehicles, pedestrians, and obstacles. 

The next step is planning, where a high-level plan is generated to determine the desired trajectory and behavior of 

the autonomous vehicle. This plan takes into account the current state of the vehicle, the detected objects, and the 

road conditions. Path planning algorithms are used to generate a safe and collision-free trajectory for the vehicle to 

follow. Traffic rules, speed limits, and other constraints are incorporated into the planning process to ensure 

compliance and safety. 

Control algorithms come into play to execute the planned trajectory and ensure the vehicle follows the desired path. 

Feedback control techniques are employed to adjust the vehicle’s steering, acceleration, and braking commands. 

The vehicle’s state is continuously monitored, and adjustments are made to maintain stability and safety. The 

dynamics of the vehicle and its limitations are considered to ensure smooth and safe control. 

To achieve collision avoidance, collision avoidance algorithms are integrated into the planning and control modules. 

The system continuously assesses the risk of collision with detected objects. If a potential collision is detected, 

appropriate actions are triggered to avoid it. These actions may involve adjusting the trajectory, decelerating, or 
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even stopping the vehicle if necessary. Predicted motion of the detected objects and their potential future trajectories 

are taken into account to make informed decisions. 

Testing and validation are crucial to ensure the effectiveness and safety of the collision avoidance system. CARLA’s 

simulation environment provides a platform for extensive testing. Various scenarios, including different traffic 

situations, pedestrian interactions, and complex road conditions, are simulated. The performance of the collision 

avoidance system is evaluated in terms of safety, efficiency, and compliance with traffic rules. Based on the results 

of testing and validation, the algorithms are iterated and refined to enhance their performance and robustness. 

V. INTEGRATION OF OBJECT DETECTION AND 

Collision Avoidance 

The integration of object detection and collision avoidance techniques within the CARLA simulator is a crucial 

step in simulating realistic driving scenarios. Object detection techniques are responsible for identifying and 

localizing objects of interest in the simulated environment. These techniques utilize deep learning algorithms to 

analyze sensor data and classify objects into predefined categories, such as pedestrians, vehicles, and obstacles. The 

output of the object detection module provides valuable information about the surrounding environment, which is 

essential for collision avoidance. 

Collision avoidance algorithms, on the other hand, utilize the object detection results to make decisions and control 

the vehicle’s behavior. These algorithms aim to predict potential collisions and take appropriate actions to avoid 

them. They can be rule-based systems that follow predefined rules and heuristics, or machine learning-based 

approaches that learn from data to make decisions. Sensor fusion techniques can also be employed to combine 

information from multiple sensors, such as cameras, LiDAR, and RADAR, to improve the accuracy and reliability 

of collision avoidance. 

The integration of object detection and collision avoidance involves feeding the output of the object detection 

module into the collision avoidance algorithm. The object detection results provide the necessary inputs, such as 

the positions, velocities, and types of detected objects, to the collision avoidance algorithm. Based on this 

information, the collision avoidance algorithm determines the appropriate actions to be taken by the simulated 

vehicle, such as braking, steering, or accelerating, to avoid potential collisions. 

One of the key challenges in this integration process is ensuring the synchronization and real-time performance of 

both components. The object detection module should provide timely and accurate results to the collision avoidance 

algorithm to enable quick decision-making. Additionally, the collision avoidance algorithm should respond 

promptly to the detected objects to ensure the safety of the simulated driving scenario. 

Another consideration is the scalability and adaptability of the integrated system. The object detection and collision 

avoidance techniques should be capable of handling various driving scenarios, including different road conditions, 

traffic densities, and object types. The system should be able to generalize well and adapt to new and unseen 

situations. 

Overall, the integration of object detection and collision avoidance techniques within the CARLA simulator is 

crucial for creating realistic and safe driving simulations. It enables the evaluation and validation of ADAS systems 

by simulating complex driving scenarios and assessing the performance of the integrated system in avoiding 

potential collisions. 

VI. EXPERIMENTAL RESULTS 

This research paper has presented a comprehensive study on simulating vehicle driving using the CARLA simulator 

with integrated object detection and collision avoidance techniques. The objective of this research was to enhance 

the realism and accuracy of simulated driving scenarios, ultimately contributing to the development and evaluation 

of advanced driver assistance systems (ADAS) and autonomous driving technologies. 

Through the integration of object detection techniques with a collision avoidance algorithm, the proposed system 

demonstrated promising results. The object detection module exhibited high accuracy in identifying and localizing 

various objects, including pedestrians, vehicles, and obstacles. The collision avoidance algorithm effectively 

utilized the object detection results to make timely and appropriate decisions, successfully avoiding potential 

collisions in different driving scenarios. 

The research findings highlight the significance of integrating object detection and collision avoidance techniques 

within driving simulators. By accurately representing real-world driving scenarios, the CARLA simulator with the 

proposed system enables the evaluation and validation of ADAS systems in a safe and controlled environment. 
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In conclusion, the integration of object detection and collision avoidance within the CARLA simulator offers a 

valuable tool for simulating and evaluating vehicle driving scenarios. This research contributes to the advancement 

of ADAS technologies and paves the way for safer and more efficient autonomous driving systems in the future. 

 
Fig. 6. Experimental Result 

 
Fig. 7. Collision Avoidance 

VII. RELATED WORK 

Prior studies have explored various aspects of CARLA simulator, such as environment modeling, vehicle dynamics, 

and sensor simulation. These works provide foundational knowledge and techniques for integrating advanced 

functionalities like object detection and collision avoidance. Research on object detection algorithms, including 

YOLO (You Only Look Once) variants like YOLOv7, has been extensively conducted. Understanding the strengths 

and limitations of these algorithms is crucial for implementing efficient and accurate object detection within the 

simulation environment. Some research endeavors have explored similar integrations within different simulators or 

environments. These studies provide valuable insights into the challenges and strategies involved in combining 

object detection with collision avoidance for simulated vehicle driving. Research on transfer learning techniques 

can be relevant for this project, particularly for bridging the gap between simulation and real-world deployment. 

By leveraging transfer learning, models trained in simulation environments can be fine-tuned to perform effectively 

in real-world scenarios. 

VIII. CONCLUSION 

CARLA simulator marks a significant milestone in advancing the capabilities of autonomous vehicle simulation. 

This fusion of cutting-edge technologies enables more accurate perception and proactive decision-making, fostering 

safer and more realistic driving scenarios. 

With YOLOv7, the simulator can efficiently detect and classify objects in the environment with remarkable speed 

and accuracy. This real-time detection capability enhances the vehicle’s awareness of its surroundings, enabling it 

to respond promptly to dynamic changes in the environment, such as the presence of pedestrians, vehicles, or 

obstacles. 



J. Electrical Systems 20-10s (2024): 44 -52 

 

 

51 

Furthermore, the incorporation of collision avoidance mechanisms adds an extra layer of safety by enabling the 

simulated vehicle to anticipate and mitigate potential collisions. By continuously analyzing the environment and 

predicting potential hazards, the vehicle can navigate complex scenarios with greater confidence and reliability. 

IX. FUTURE WORK 

In the realm of simulating vehicle driving using CARLA simulator with object detection using YOLOv7 and 

collision avoidance, there exist several promising avenues for future exploration and enhancement. One direction 

for future work involves delving deeper into the realm of object detection algorithms. While YOLOv7 provides 

impressive real-time performance and accuracy, continued research into more advanced algorithms could further 

improve detection capabilities, particularly in complex scenarios with occlusions or varying lighting conditions. 

Exploring novel architectures or integrating multiple detection models for different object classes could potentially 

enhance the overall perception system within the simulator. 

Additionally, future efforts could focus on advancing collision avoidance strategies within the simulated 

environment. While the current implementation employs proactive measures to mitigate potential collisions, further 

research could explore predictive modeling techniques to anticipate the behavior of other vehicles and pedestrians. 

By incorporating predictive capabilities into collision avoidance algorithms, simulated vehicles could make more 

informed decisions in dynamic and unpredictable scenarios, ultimately enhancing safety and adaptability. 
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