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Abstract: - Feature selection serves as a crucial technique in data analysis, eliminating unnecessary elements from a dataset to enhance 

computational efficiency and improve the accuracy of machine learning models. This study introduces a novel method called Rotate Left 

and Complement (RLC) for feature selection, employing T statistics to identify informative genes. The RLC algorithm, based on the top 

m informative genes, presents a promising solution to refine feature sets. The accuracy of categorization is evaluated using the KNN 

method across three diverse datasets, demonstrating the effectiveness of the proposed approach in optimizing feature selection and 

contributing to the advancement of machine learning methodologies. 
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1. Introduction 

A distinctive and measurable characteristic of an entity is referred to as a feature, setting it apart from related 

entities. Feature selection involves the process of choosing a set of attributes that is most relevant or beneficial 

for a specific problem, either through automatic or manual methods. This practice is also known as variable 

selection or attribute selection. 

Recent technological progress has led to the widespread availability of extensive and highly dimensional 

datasets on the internet. Despite advancements in computational technology, deriving meaningful insights from 

these datasets remains a challenging task. The size of a dataset is often characterized by its number of features 

(N) and instances (P), both of which can be exceptionally large [1]. Particularly in the medical and healthcare 

domains, professionals face difficulties in rapidly interpreting such vast amounts of data to deliver timely 

diagnoses, prognoses, and treatment plans. Consequently, data mining has become indispensable in the fields of 

medical and healthcare. 

The presence of unnecessary attributes can lead modeling algorithms astray. Instance-based techniques such as 

k-nearest neighbor [2] rely on small neighborhoods in the attribute space to make classification and regression 

predictions. The inclusion of redundant attributes can significantly distort these predictions. Retaining 

superfluous attributes in the dataset may result in overfitting, where the model learns the training data too well, 

compromising its predictive accuracy and overall strength. Four categories of feature subsets have been 

identified: 

(a) Completely irrelevant and noisy features 

(b) Weakly relevant and redundant features 

(c) Weakly relevant and non-redundant features 

(d) Strongly relevant features[20] 

Computational molecular biology is an interdisciplinary field that integrates computer science, biology, and 

information technology [4]. The primary goal of this field is to enhance scientific discovery and develop 

innovative analytical tools for molecular biology. The emergence of DNA microarray datasets has sparked a 

new area of research in bioinformatics [5]. Microarrays, a relatively recent technology, are employed for treating 
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conditions like mouth lesions and conducting pharmacological studies on cancer. These devices consist of a 

microscope slide printed with thousands of tiny dots in precise locations, typically made from glass, silicon 

chips, or a nylon membrane. One specific type is the DNA microarray, also known as a gene chip, DNA chip, or 

biochip, which either monitors DNA or incorporates DNA into its detection mechanism. Each location on the 

array contains an organized gene or a recognized DNA sequence. 

To identify relevant genes, samples from both normal and malignant tissues of patients are collected, and the 

position and order of each location are recorded in a database. This database becomes a valuable resource for 

diagnostic tools, aiding in distinguishing between cancer types or identifying healthy and malignant tissues [6]. 

Typically, these databases contain fewer than 100 samples but encompass a vast number of features, ranging 

from 6000 to 60000 [5]. Numerous studies have indicated that a considerable portion of genes in DNA 

microarray experiments may not be pertinent for accurately classifying distinct groups of the problem [7]. 

Moreover, the utilization of this data with a classifier may lead to overfitting due to the presence of fewer 

samples compared to the number of genes in the dataset [8]. 

To address this challenge, a precise feature selection technique is employed to simplify the feature space and 

identify a set of highly distinctive genes before the classification process [9][10]. Research has demonstrated 

that a significant portion of genes assessed in DNA microarray experiments doesn't contribute significantly to 

enhancing classification accuracy across various classes [11].  

Hence, the inclusion of feature (gene) selection is crucial for the classification procedure to precisely analyze 

gene expression profiles [12]. In the context of gene expression data, the application of feature selection is 

sometimes termed gene selection. Gene selection becomes particularly vital for diagnosing primary tumors and 

cancer, ultimately contributing to improved medical care. 

Feature selection serves various purposes, including minimizing measurement costs, enhancing classifier 

accuracy, reducing complexity, lowering associated computational expenses, and improving accuracy by 

eliminating redundant and unnecessary information. A crucial step in data preparation involves feature selection 

to decrease the dataset's dimensionality [3]. Therefore, implementing feature selection on a dataset offers the 

following key benefits: 

(a) It speeds up algorithm training. 

(b) It simplifies and facilitates the interpretation of a model by reducing its complexity. 

(c) It improves the accuracy of a model if the right subset is chosen. 

(d) It lessens overfitting since there are less duplicate data points, which decrease the chance of making noise-

based conclusions. 

Enhancing the accuracy of classification error estimation can be achieved by utilizing a restricted set of features. 

Consequently, a pivotal aspect in establishing a robust tumor classification system based on gene expression is 

the reduction of dimensionality in the gene expression data [13]. 

2. Preliminaries 

In this discussion, we have briefly covered the fundamental concepts of diverse feature selection methods, 

Microarray Gene expression data, the T-Statistics measure, and the KNN classifier. 

2.1 Methods of Feature Selection 

Numerous methods exist for feature selection, including Information Gain [14], Relief [15], Fisher Score [17], 

Chi Squares [16], and Lasso [18]. Among the numerous independent variables, or features, defining a data 

instance (e.g., a patient who may have cancer), tumor markers play a crucial role and are detected in bodily 

fluids like blood, urine, or stool. These datasets may also include a response variable, or label, indicating the 

patient's tumor type—whether benign or malignant. In "supervised" feature selection, every data instance in the 

collection has a known response value. If only certain instances have known response values, it is termed "semi-

supervised," posing a unique challenge in feature selection. On the other hand, "unsupervised" feature selection 
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is employed when no data instance has a response value [19]. 

Supervised feature selection methods are deemed more effective than unsupervised ones as they leverage 

labeled data [21]. However, many real-world scenarios involve a substantial amount of unlabeled data along 

with a limited amount of labeled data. In such cases, semi-supervised feature selection techniques come into 

play, considering both labeled and unlabeled data [22]. Semi-supervised techniques can be further classified into 

filter, wrapper, and embedding approaches. 

2.1.1 Filter Method 

Feature selection using filter approaches involves choosing features, irrespective of any machine learning 

model, based on their statistical characteristics and their correlation with the target variable. The Chi-Squared 

Test [16] [33] is a useful tool for assessing the independence between features and the target. Mutual 

Information [34] is a method that selects features with high mutual information scores. In Variance Threshold 

method [35] features with low variance are removed because they contribute little information. Correlation 

Coefficient method selects [36] features based on their correlation with the target variable, highlighting those 

with strong linear or monotonic relationships. The ANOVA F-test [37] finds significant characteristics for 

numerical data by comparing variances within and between groups. The ReliefF Algorithm [15] [38] assesses 

feature importance based on its capacity to discern between nearby instances, Information Gain [14] [39] 

calculates the reduction in entropy from data partitioning based on a given feature, and feature importance 

scores from tree-based models like Random Forests, which can rank features according to their contribution to 

the model, are additional helpful techniques. Furthermore, feature selection is accomplished using L1-based 

feature selection (Lasso), [18] which penalises some coefficients to zero. By concentrating on the most 

informative features, these strategies can cut computational costs, improve model performance, and reduce the 

complexity of datasets.  

In 1992, Kira and Rendell introduced the Relief algorithm, employing a filter approach for feature selection. In 

this method, features are ranked through evaluation, and the best ones are selected by assessing each feature 

independently from the classifier [23]. Filter approaches determine a feature's relevance based on its intrinsic 

characteristics, leading to the elimination of low-scoring features. The resulting set of features is then provided 

as input to the classification algorithm. Filter approaches offer several advantages, including speed and 

simplicity in computation, scalability to high-dimensional datasets, and independence from the specific 

classification algorithm used. Consequently, feature selection is a one-time process, allowing the assessment of 

multiple classifiers thereafter [10]. Due to their lack of reliance on any particular learning methodology, filter 

methods can provide versatile solutions applicable to a variety of classifiers. 

2.1.2 Wrapper Method 

In order to integrate feature selection with model training, wrapper techniques for feature selection use a 

predictive model to assess the combination of features and choose the best subset based on model performance. 

Wrapper methods take into account feature interactions, which can result in higher prediction accuracy than 

filter approaches. Usually, the procedure entails employing techniques like forward selection, backward 

elimination, or recursive feature elimination (RFE) [40] to search throughout the space of feature subsets. While 

backward elimination begins with all characteristics and iteratively removes the least significant ones, forward 

selection begins with an empty model and adds features one by one that most improve the model's performance. 

The process of Recursive Feature Elimination (RFE) [41] entails fitting the model and iteratively eliminating the 

least significant features until the target feature count is attained. Because these techniques involve numerous 

model training cycles to evaluate each subset of characteristics, they can be computationally demanding, 

particularly for big datasets. However, wrapper approaches [42] frequently produce better feature subsets 

appropriate to the chosen machine learning algorithm, improving model resilience and accuracy by taking 

feature dependencies into account and employing cross-validation to prevent overfitting. 

Wrapper Methods generate multiple feature subsets, and each subset is employed to construct a model and train 

the learning algorithm. The algorithm undergoes testing to identify the optimal subset. Various criteria are 

employed to select features for these subsets [24]. The most discriminative feature subset is determined by 
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minimizing the prediction error of a specific classifier. This method often yields superior performance outcomes 

compared to the filter method, as it takes into account feature dependencies and introduces bias directly into the 

learning algorithm. However, it is less universal than the filter approach, requiring repetition when applying a 

different learning algorithm [25]. 

2.1.3 Embedded Method 

An "embedded method" occurs when feature selection and classifier design are intricately interconnected [26]. 

In essence, embedded approaches integrate feature selection with the learning algorithm, assessing not only the 

relationships between individual input features and the output feature but also locally searching for features that 

enhance discrimination in specific areas. These methods identify optimal subsets for a given cardinality based 

on independent criteria [27]. Using the model's performance metrics, embedded feature selection techniques 

evaluate and choose features at the same time, integrating the feature selection process directly into the model 

training phase.  

By being less computationally demanding than wrappers and taking feature interactions into account more 

successfully than filters, these approaches combine the benefits of both filters and wrappers. Regularisation 

techniques like as Lasso [18] (L1 regularisation), Ridge (L2 regularisation), and Elastic Net are examples of 

embedded methods. These techniques penalise the regression coefficients by pushing some of them to zero, 

hence performing feature selection during the model fitting process. Decision tree-based algorithms [43] such as 

Random Forest [44] and Gradient Boosting [45] also provide embedded feature selection by naturally ranking 

features based on their importance to the model's predictive performance. The process typically involves 

assessing the contribution of each feature to the model’s prediction accuracy, allowing the model to focus on the 

most relevant features while disregarding the less informative ones. By integrating feature selection within the 

model training, embedded methods [46] offer a more streamlined approach that tends to be more efficient and 

effective, producing models that are not only simpler and faster but also potentially more accurate due to the 

simultaneous optimization of feature selection and model fitting. 

2.2 Microarray Gene Expression Data 

In the medical domain, microarrays play a crucial role in generating molecular profiles of patient tissues, 

offering insights into both healthy and diseased conditions. These profiles contribute to a deeper understanding 

of various diseases and play a pivotal role in enabling more accurate diagnosis, prognosis, therapy planning, and 

the discovery of medications [4]. 

Microarrays [49] are sophisticated laboratory instruments capable of simultaneously identifying hundreds of 

genes and their expressions. Specifically, DNA microarrays [48] consist of microscope slides that are printed 

with numerous microscopic dots at predetermined locations, each corresponding to a known gene or DNA 

sequence. These slides are commonly referred to as DNA chips or gene chips. Gene expression, also known as 

the transcriptome, involves the collection of messenger RNA (mRNA) transcripts expressed by a specific set of 

genes. This gene expression is detected by using the DNA molecules affixed to each slide as probes. 

A high-dimensional dataset necessary for genomics and biomedical research is produced using microarray gene 

expression data, [47] which measures thousands of genes' expression levels at once. The process of analysing 

this data involves multiple important steps: preprocessing, which includes background correction, normalisation, 

and log transformation to guarantee comparability between arrays; feature selection, which uses t-tests, fold-

change analysis, and more sophisticated methods like filter, wrapper, or embedded methods because of the high 

dimensionality and usually small sample sizes; and biological interpretation, which involves mapping the 

selected genes to known pathways and databases to comprehend their roles in biological processes or disease 

mechanisms. 

2.3 T-statistics 

The T-statistic is a valuable tool for feature selection, particularly in contexts like microarray gene expression 

data analysis, where the goal is to identify which genes (features) are differentially expressed between two 

groups. For each feature (e.g., each gene in a microarray dataset), the T-statistic [50] is calculated to compare 
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the means of the feature between two groups (e.g. cancerous or tumor vs. non-cancerous or normal). 

Genes that exhibit significantly distinct expressions in tumor and normal tissues can be considered for selection. 

To determine the extent of gene expression variation between normal and tumor tissues, a straightforward T-

statistic measure is employed, as stated in (1) [28]. To be included in the discriminant analysis are the top m 

genes with the greatest T-statistic. 

𝑡 =
𝑥1̅̅̅̅ −𝑥2̅̅̅̅

√
𝑣1

𝑛1
+
𝑣2

𝑛2

 (1) 

Here 

𝑥1̅̅ ̅- Mean of Normal samples  

𝑥2̅̅ ̅- Mean of Tumor samples  

n1 - Normal Sample size 

n2 - Tumor Sample size 

v1 - variance of Normal samples 

v2 - variance of Tumor samples 

 

2.4 k Nearest Neighbor (kNN) Classifier 

The kNN classifier is an instance-based model that functions on the principle that unknown instances can be 

classified by comparing them to known examples using a distance or similarity metric. In the instance space 

defined by an appropriate distance function, instances that are farther apart are less likely to belong to the same 

class compared to instances that are in close proximity. 

During the learning phase, the kNN algorithm does not extract information from the training data, deferring 

generalization until the categorization phase. The classification process involves finding the closest neighbor in 

the instance space and assigning the unknown instance the same class label as the known neighbor. This 

approach is commonly referred to as a nearest neighbor classifier [51]. Due to their high local sensitivity, 

nearest neighbor classifiers are particularly prone to noise in the training set. To create robust models, 

determining the value of k, where k > 1, and relying on a majority vote for class labeling outcomes becomes 

essential. If k=1, the object is simply assigned to the class of its closest neighbor. Increasing the value of k 

results in a less sensitive, smoother function. 

Closeness is determined using normal distance measurements, with the distance metric sometimes calculated as 

one minus the correlation value. For continuous variables, Minkowski, Manhattan, and Euclidean distances are 

employed, while Hamming distance is applied when dealing with categorical variables. In this context, the 

distance measure used is the Euclidean distance [29]. 

 

2.5 Support Vector Machine (SVM) Classifier 

Strong supervised machine learning algorithms like Support Vector Machine (SVM) [52] are usually employed 

for classification problems. In a high-dimensional space, it operates by determining the best hyperplane to 

divide data points belonging to various classes. The support vectors are the data points that are closest to the 

hyperplane, which was selected to maximise the margin between the classes. The kernel trick is a technique that 

allows SVM [54] to handle both linearly and non-linearly separable data. It works by implicitly mapping the 

input data into a higher-dimensional space where it can be separable linearly. 

In support vector machines (SVM), [53] the optimisation task is to discover the hyperplane that minimises a cost 
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function. This usually requires making a trade-off between maximising margin and minimising classification 

errors. Given that it is a convex optimisation issue, methods like gradient descent and quadratic programming 

are frequently used to solve it. Applications for SVM are numerous and span a variety of fields, including 

banking, bioinformatics, image recognition, and text categorization. Its popularity has grown as a result of its 

good generalisation to new data and its efficiency in processing high-dimensional data with limited training 

datasets. 

SVM has limitations despite its strength, such as choosing the right hyperparameters for the kernel parameters 

and the regularisation parameter (C). Large datasets can also provide a scaling challenge, while methods like 

parallelization and stochastic gradient descent can assist lessen this. In the machine learning arsenal, SVM is 

still a popular and adaptable algorithm that strikes a compromise between performance, adaptability, and 

simplicity. 

3. Proposed Technique 

In this study, we introduce a novel approach for feature selection, presenting an algorithm that is both rapid and 

suitable for highly distributed and parallel environments. 

The algorithm initiates with an initial population of unique solutions. As it progresses, each generation 

consistently yields a distinct population of solutions, and this iterative process continues until the entire search 

space is covered. Importantly, no point appears more than once, optimizing execution time. Additionally, the 

algorithm consistently discovers unique points in the search space, thereby enhancing the likelihood of 

achieving favorable results. 

In our proposed searching technique, the complete search space is divided into several subsets. The number of 

subsets is determined by the length of the search space. For instance, if the length of the string to be searched is 

three, resulting in a search space size of 103=1000, we divide this space into 170 subsets. Among these, 165 

subsets contain six elements each, while the remaining five subsets contain two elements each. The approach to 

dividing the search space into subsets is explained later. Consequently, the element search is conducted from 

170 different search points, allowing the parallel execution of the search process. 

The initial search points commence with a series of n zeros. For example, if the search space size is 103, the 

starting search point (referred to as the Generator later) is 000. Subsequent initial search points are derived using 

a defined algorithm. 

The crucial aspects involve determining the starting search points and selecting operators to obtain distinct 

solutions. This section outlines an illustrative example that provides insights into the investigative work carried 

out throughout the paper. 

The notations used are as below: 

Si = String of length n 

D = Total search Space = 10n 

G = Total number of Normal Generators 

E = Total number of Exceptional Generators 

αk = Maximum value of normal generator for k digit decimal string 

A decimal coded string of length n is used as a representation of each search point. Each string S in the search 

space D is of the form S= (d1, d2… dn), where di € {0, 1, 2…9}, ∀ i.  The total number of strings in decimal 

representation is 10n. We propose to find the optimal string(s) among these strings. A finite and distinct sample 

of initial solutions, each of length n, is drawn from D (10n) to form the initial population P. To incorporate 

variation within the solutions, a Rotate Left and Complement operator (RLC) has been used [30] [31] [32]. The 

RLC operator is described below: 
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Suppose we have a solution si of length is 5 (n = 5) at instance t. Let it be si = 09715. Using the RLC operator, it 

is possible to generate 2 × n = 2 × 5 = 10 different solutions (including si) from a single solution si. 

The string 09715 produces 97159 using RLC operator. The underlined portion of the string is shifted 1 position 

to the left and 9’s complement of the left most digit of the old string is placed at the unit position of the new 

string. Thus the generated strings are 97159, 71590, 15902, 59082, 90284, 02840, 28409, 84097, 40971 over 

(2*n-1) iterations. The process of generating strings is stopped when the initial string comes back. Thus from a 

search string of length n, we can obtain (2*n-1) new distinct search strings using the RLC operator. The string 

02341 is called a Normal Generator, as it can generate (2*n-1) number of distinct strings. If RLC operator is 

applied on a string generated from the normal generator, then the same strings are generated which have already 

been generated from the normal generator. For any particular value of n, there are a fixed number of normal 

generators. A string is said to be an Exceptional Generator if it does not produce (2*n − 1) different strings by 

successive application of RLC operator. 

We may express the maximum value of the Normal Generator for a string of length n as a function of both the 

string length (n) and the maximum value of the Normal Generator for a string of length n-1.  

Assume that the maximum value of the normal generator is maxn, where n is the string's length. The string has a 

minimum length of 1 and a maximum length of 9. The following formula is used to determine the maximum 

value normal generator: 

• maxn = 10* maxn-1 + 4  When n>2 and n is an Odd number  

• maxn = 10* (maxn-1 +1) + 4  When n>2 and n is an Even number 

 

Here is some example: 

• max0 = 0 

• max1 = 10* max0 + 4 = 10*0 + 4 = 4 

• max2 = 10* max1 + 4 = 10*4 + 4 = 44 

• max3 = 10* max2 + 4 = 10*44 + 4 = 444 

• max4 = 10* (max3 +1) +4 = 10*(444 + 1) + 4 = 4454 n>3 and n is an even number 

• max5 = 10* max4  +4 = 10*4454 + 4 = 44544  

• max6 = 10* (max5 +1) +4 = 10*(44544 + 1) + 4 = 445454  n>3 and n is an even number 

 

3.1 Feature Selection based on RLC 

In the initial stage, T-Statistics Measure was applied to three distinct Microarray gene expression cancer datasets 

to identify genes deemed relevant and highly informative. Subsequently, a set of n top-ranked features was 

selected to represent chromosomes, with each gene encoded as a decimal number within the range of 0 to 9. 

Genes with positional values greater than or equal to 5 were retained for classification purposes, while those 

below 5 were disregarded. The candidate solution, as depicted in Figure 1, underwent Rank-Level Combination 

(RLC) technique application, resulting in the generation of 2n-1 alternative solutions, contingent upon the string 

length, i.e., the number of genes represented by n. The initial population was initialized by the first generator. 

Each population derived through RLC underwent evaluation using a k-Nearest Neighbors (kNN) classifier to 

ascertain its classification accuracy within the context of cancer gene expression analysis. 
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Figure 1: Chromosome Representation

 

From the above representation G4, G5, G6, ….., Gn−1 will be selected for classification. 

Proposed feature Selection Algorithm: 

1. Top scored features are obtained from microarray dataset by applying T-statistics measure. 

2. N numbers of informative genes or features are taken as chromosome representation where genes are 

encoded by decimal numbers. 

3. RLC is applied on initial generator to get 2n-1 number of different population. 

4. Each population is applied on kNN classifier when gene value is greater than or equal to 5 to get accuracy 

for each feature subset. 

5. Steps 3 to 4 are repeated until maximum value of normal generator is reached or accuracy is reached to 

100%. 

6. Best feature subset is found when accuracy is most high. 

4. Experimental Results 

In the initial phase of experimentation, the proposed approach is implemented with the objective of achieving a 

minimal feature set while maintaining acceptable classification accuracy across three distinct cancer datasets, 

each comprising samples from two classes. The process commences with the application of T test on the 

datasets, facilitating the extraction of the most pertinent genes deemed relevant for classification. Diverging 

from conventional feature selection methodologies, the subsequent step employs Rank-Level Combination 

(RLC) to further refine the gene pool, effectively reducing the number of features. This strategic reduction aims 

to enhance classification accuracy by focusing on the most discriminative genes within the dataset. Overall, the 

approach seeks to strike a balance between feature reduction and classification performance, thereby optimizing 

the efficiency of cancer classification models. 

1. The dataset for colon cancer comprises 62 samples or individuals; of which 22 are normal (non-cancerous) 

and 40 are tumor tissues (cancerous). There are 2000 genes in the samples. Gene expression numbers are 

compiled into a 62*2000 matrix, and column indexes are used to identify individual genes. 

2. We tested the Prostate Cancer dataset in matrix form (102*12600) further. There are 50 normal (non-

cancerous) samples and 52 tumor (cancerous) samples in the collection. 

3. We have also tested Leukemia dataset of 72*7129 matrix shape. The 72 samples in the dataset include 25 

cases of acute myelogenous leukemia (AML) and 47 cases of acute lymphoblastic leukemia (ALL). 

Here 50% of the samples are considered as training data and remaining 50% as test data for all cancer datasets. 

Table 1 shows three cancer datasets of two- class. 

Dataset Number of genes or 

features 

Samples Class 

Colon 2000 62 
40 Tumor 

22 Normal 

Prostate 12600 102 
52 Tumor 

50 Normal 

Leukemia 7129 72 
47 ALL 

25 AML 

Table 1: Cancer Datasets 
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Table 2 shows the informative and relevant genes from T- Statistics measure. 

Datasets Top Features* 

Colon 493, 1423, 249, 377, 765, 245, 267, 66, 14, 822, 1772, 175 

Prostate 6185, 10138, 3879, 7520, 4365, 9050, 205, 5654, 3649, 12135, 728, 7768 

Leukemia 6854, 758, 1685, 2354, 5171, 5501, 4973, 1909, 4211, 804, 1144, 4680 

* The genes or features are identified by the column number 

Table 2: Best features using T Statistics 

The best relevant genes are taken as initial generator where each gene has been encoded by decimal number that 

is 0 to 9. We have applied RLC to get (2*n-1) different populations. Each population has been applied on  kNN 

classifiers where value of k is 5. 

Table 3 shows the number of genes or features selected by RLC approach and the classification accuracy on 

three different cancer datasets. The outcome shows that the characteristics our algorithm chose can achieve the 

desired greater accuracy with the fewest possible features. 

Dataset Features selected (Index or column number of features) Accuracy (%) 

Colon 

1 (1423) 83.87 

2 (245, 822) 83.87 

3 (765, 377, 822) 83.87 

Prostate 

1 (6185) 85.29 

2 (3879, 10138) 85.21 

3 (6185, 3879, 12153) 91.16 

Leukemia 

1 (4211) 91.66 

2 (5501, 1909) 94.44 

3 (6854, 1909, 4211) 97.22 

Table 3: Selected features and Accuracy 

Finally, Table 4 depicts the comparative study of the results obtained by applying genetic algorithm with 

different classifiers (using 10 features) [29] and the result acquired by applying RLC with kNN classifier (using 

3 features). 

Dataset Methodology Accuracy (%) 

Colon 

GA + KNN 75 

GA + SVM 75 

RLC + KNN 83.87 

Prostate 

GA + KNN 78.04 

GA + SVM 78.04 

RLC + KNN 91.16 

Leukemia 

GA + KNN 72.72 

GA + SVM 72.72 

RLC + KNN 97.22 

Table 4: Comparison of RLC+KNN classification accuracy with GA 

5. Conclusion and Future Scope 

In our research, we integrated the Rank-Level Combination (RLC) approach with the k-Nearest Neighbors 

(KNN) classifier to analyze relevant genes identified through T statistics across three diverse datasets. Our 

investigation encompassed datasets representing Colon cancer, Prostate cancer, and Leukemia. Notably, our 

findings demonstrate compelling results wherein the utilization of just one feature yielded notable accuracies. 

Specifically, for Colon cancer, employing column number 1423 resulted in an accuracy of 83.87%. Similarly, in 

the context of Prostate cancer, a single feature (column number 6185) achieved an accuracy of 85.29%, while 
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for Leukemia, column number 4211 exhibited remarkable accuracy, reaching 91.66%. These outcomes 

underscore the efficacy of our approach in pinpointing highly discriminatory genes crucial for accurate 

classification across different cancer types, thus offering valuable insights for further research and clinical 

applications. 

The findings, succinctly presented in Table 4, underscore the superior performance achieved through the Rank-

Level Combination (RLC) approach coupled with the k-Nearest Neighbors (KNN) classifier, particularly in the 

context of feature reduction, when contrasted with the genetic algorithm in tandem with both KNN and Support 

Vector Machine (SVM) classifiers. Notably, our methodology showcases promising potential for extension to 

various other feature selection models, including but not limited to F-Test, Information Gain, and Signal-to-

Noise Ratio (SNR). Furthermore, our approach lends itself well to further exploration through integration with 

SVM classifiers, offering avenues for enhanced classification accuracy and robustness. These insights highlight 

the versatility and efficacy of our approach in facilitating comprehensive and efficient cancer classification, thus 

paving the way for continued advancements in this critical domain of research and clinical practice. 
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