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Abstract: - In modern times, with the increasing prevalence of renewable energy sources and electric vehicle systems integrated into 

distribution networks, the operation to ensure power quality, optimization, and reliability of distribution networks has become more 

critical. The reconfiguration problem of the distribution network, aiming to reduce losses, optimize renewable energy sources, and 

regulate the charging/discharging process of electric vehicles, is a highly necessary task. The Particle Swarm Optimization (PSO) 

algorithm excels in exploitation but is less effective in exploration. In contrast, the Crow Search Algorithm (CSA) is simple and more 

random, will improve the speed and accuracy of optimization problems. Thus, this study proposes using a combination of the PSO 

algorithm and the CSA algorithm applied to the distribution network reconfiguration problem, considering renewable energy sources and 

electric vehicles. The research results, validated on the IEEE 33-bus system with various scenarios, show that the proposed method is 

accurate and reliable. 

Keywords: Reconfiguration distribution network, Power losse, Particle Swarm Optimization (PSO), Crow Search 

Algorithm (CSA), Renewable energy, Electric vehicle. 

 

I. INTRODUCTION 

The increasing demand for energy, coupled with the gradual depletion of fossil fuel reserves and severe climate 

change, has posed significant challenges to modern societies. In recent years, the development of renewable 

energy sources and the use of electric vehicles (EVs) have significantly increased due to their ability to reduce 

pollution and lower operating costs. Renewable energy sources (RES), such as photovoltaic (PV) systems, have 

played a vital role in reducing environmental pollution in recent years by mitigating the greenhouse effect [1]. As 

an advanced and widely used method of power generation, photovoltaic power production aligns with sustainable 

development strategies and the concept of safe electricity generation. With the rise of distributed generation 

(DG), PV can now operate at a smaller scale known as distributed renewable energy sources (RES). This form of 

PV is designed to be closer to electricity loads, using a decentralized investment model to reduce transmission 

losses [2]. 

However, PV systems are characterized by intermittent and instability. Solar radiation, cloud cover, the 

orientation of PV panels, dust diffusion, and other factors can significantly disrupt PV system operations [3]. 

Furthermore, high penetration of PV can lead to issues such as voltage rise, reverse current flow, and increased 

energy losses [4]. 

Distribution network reconfiguration (DNR) is an effective technique to enhance the integration of distributed 

generation (DG) and electric vehicles (EVs) into distribution networks, ensuring the target objectives and 
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technical conditions are met. In distribution networks, reconfiguration is performed through switching control of 

breakers (circuit breakers, isolating switches, etc.)[5]. During reconfiguration, the network's feeders are updated 

to achieve specific goals such as reducing power losses, minimizing operating costs, or enhancing reliability 

based on the switching status of switching devices. This process must also ensure operational constraints are not 

violated, maintaining power quality standards while avoiding isolating parts of the distribution network. 

Integrating DG and EVs into the grid brings significant improvements such as reducing power losses, peak 

shaving, and reducing voltage drops. However, due to the uncertainty and randomness of DG and EVs, changing 

the distribution network configuration is necessary [6]. Given the evident advantages of this process with the 

involvement of the aforementioned factors, its importance is emphasized. Therefore, many studies have focused 

on analyzing DNR with the combination of RES, EVs, and energy storage (ES) systems. 

Several studies have been conducted to reconfigure the power network in the presence of static Distributed 

Generators (DG). The Gravitational Search Algorithm (GSA) has been applied to solve the Distribution Network 

Reconfiguration (DNR) problem, aiming to improve reliability and reduce power losses [7]. GSA has also been 

used to enhance transient stability indices and reduce losses in DNR. Moreover, a combination of the Particle 

Swarm Optimization (PSO) algorithm and the Shuffled Frog Leaping Algorithm (SFLA) has been developed to 

improve voltage stability indices and reduce operating costs when solving DNR with the presence of DG units [8-

9]. Two population-based evolutionary optimization methods have been proposed to find the optimal placement 

of DG units, helping reduce losses and operating costs. 

Experimental studies show that most power outages occur in the distribution network across the entire electrical 

system due to the instability of new energy sources and electric vehicles [10]. Severe power outages pose 

significant problems in many countries, affecting the scale of the distribution network [11]. To improve reliability 

and reduce power losses, one approach is to leverage the characteristics of open-loop operation and the closed-

loop structure in the distribution network [11-12]. Distribution Network Reconfiguration (DNR) maintains 

substation voltage levels in the distribution network and enhances operational efficiency by changing the on/off 

status of tie switches [13]. Thus, maintaining normal operations and reducing power losses through DNR is 

essential, especially with the penetration of new energy sources and electric vehicles [14]. 

A new meta-heuristic algorithm, sin-cosine, has been used to reconfigure the distribution network with 

simultaneous DG allocation [15]. An effective meta-heuristic method, Tabu Search (TS), has also been modified 

to quickly find optimal solutions [16]. 

In this study, the Particle Swarm Optimization (PSO) algorithm excels in exploitation but is less effective in 

exploration. In contrast, the Crow Search Algorithm (CSA) is simple and more random. This study introduces a 

new crow swarm optimization algorithm (CSO) that combines the strengths of PSO and CSA. The new algorithm 

allows individuals to explore unknown regions by following the guidance of a randomly chosen individual. The 

simulation results are conducted on the IEEE 33-bus test system with various scenarios, such as considering load 

variation, the output power of RES sources, and based on the load profile of EV loads. In addition to the general 

introduction, Section 2 presents the problem model, Section 3 discusses the proposed method, Section 4 includes 

the simulation on the test grid, and Section 5 provides an evaluation and conclusion. 

II. PROBLEM FORMULATION 

A. Optimal objective function 

1) The function power loss: 

Reconfiguration of the distribution network is a challenging combinatorial optimization problem. When 

considering multiple objective functions, the network's various performance metrics include minimizing load 

deviation, voltage deviation, and system power losses [10]. 

F1 = min∑ kiRi
n
i=1

Pi
2+Qi

2

Ui
2            (1) 
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where n represents the aggregate number of branches; ki denotes the switch position (with ki = 0 indicating open 

and 1 indicating closed); Ri is the overall resistance of the ith branch; and Pi, Qi, and Ui correspond to the 

terminal active power, reactive power, and node voltage at the termination of branch i, respectively [11], [12]. 

2) The function voltage deviation 

     F2 = min∑ (
Uj−Ujs

Ujs
)2n

j=1               (2) 

where n is the total number of nodes; Uj is the actual voltage of node j; Ujs is the rated voltage of node j. 

3) The variance of the function load 

F3 = min∑ (
Si

Simax
)2m

i=1                    (3) 

where m is the total number of closed branches; Si and Simax respectively represent the actual value and the 

maximum value of the complex power on branch i. 

4) Objective function normalization 

The method of random weight allocation has been employed to normalize the objective function.  

ωi =
randi

∑ randi
n
i=1

                      (4) 

    F = min(ω1
F1

f1
+ ω2

F2

f2
+ ω3

F3

f3
)             (5) 

where ωi represents the random weight coefficient assigned to the ith objective function, rand generates random 

numbers within the interval [0,1], and Fi is the minimum value achieved by the ith objective function in each 

iteration. 

B. The DG mathematical model 

1) Solar photovoltaic modeling 

The following formula can be used to calculate solar power output power [13]: 

PPV = ηPrate
A

As
[1 + αp(T − TSTC )]         (6) 

where η denotes the power factor, Prate refers to the rated power, A indicates the actual light intensity, As is the 

light intensity in standard test conditions, αp represents the power temperature coefficient, T is the present 

surface temperature of the photovoltaic cell, and TSTC is the temperature of the photovoltaic cell during standard 

test conditions. 

2) Wind turbine modeling 

The main factor influencing wind energy's output power is wind speed, which is best explained as follows:  

Pt(v) =

{
 

 
0,              0 ≤ v ≤ Vci
av3 − bPr,    vci ≤ v ≤ vr
Pr,             vr ≤ v ≤ vco
0,                    vco ≤ v

        (7) 

where Pr represents the rated power, and vci, vr, and vco denote the minimum, rated, and maximum wind speeds 

for power generation, respectively, while v stands for the current wind speed. The output from distributed 

generation (DG) is often simplified and handled as a 'negative load,' being treated as a series of continuous 

variables. When the active power and power factor of a DG are known, it can be considered as a P, Q node. 

   {
P = −Ps
Q = −Qs

         (8) 
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where Ps and Qs indicate, respectively, active power and reactive power of DG. 

C. Technical binding conditions 

1) Power balance restrictions [14] 

{
PG − Pi − Ui∑ Ui(Gi−jcosθi−j + Bi−jsinθi−j) = 0n

j=1

QG − Qi − Qi∑ Ui(Gi−jcosθi−j + Bi−jsinθi−j) = 0
n
j=1

      (9) 

where PG and QG refer to the active and reactive power injected at the DG node, respectively, while Pi and Qi 

indicate the active and reactive power at the load node. 

2) Operational constraints 

{

Umin ≤ Ui ≤ Umax
Imin ≤ Ii ≤ Imax
Si ≤ Simax
PG ≤ PGmax

                    (10) 

where Umin and Umax represent the voltage limits at node i, setting the minimum and maximum thresholds, 

respectively. Imin and Imax define the lowest and highest current limits for branch i. Si refers to the complex 

power on branch i, while PGmax indicates the highest output power that branch i can accommodate in the power 

distribution system. 

III. PROPOSED METHOD FOR PROBLEM 

The study introduces a new Crow Swarm Optimization (CSO) algorithm combining the strengths of Particle 

Swarm Optimization (PSO) and the Crow Search Algorithm (CSA). The CSO balances the strong exploitation of 

PSO with the simple, random exploration of CSA, allowing individuals to explore unknown areas guided by 

random peers. Testing the CSO on various benchmark functions shows that it enhances optimization efficiency, 

global search ability, and robustness, outperforming PSO and CSA, particularly in high-dimensional, complex 

problems.  

A. Over view PSO 

The Particle Swarm Optimization (PSO) algorithm was developed by Eberhart and Kennedy in 1995. Since then, 

it has been widely applied in control systems and optimization calculations [18-20]. The trajectory of each 

individual in the search space is adjusted by changing its velocity, based on its flight experience and that of other 

individuals in the search space. The position vector and velocity vector of an individual i in a multi-dimensional 

space are: 

xi = (x11; x12; x13; … . ; x1n; );  Vi = (v11; v12; … . ; v1n; )  (11) 

At each iteration, the velocity of a particle is determined by both personal experience and the experience of the 

entire group: 

Vi
t+1 = ω. vi

t + c1. r1(pbi
t − xi

t) + c2. r2(gbi
t − xi

t)          (12) 

i = 1,2, … . n; vmin ≤ vi
t+1 ≤ vmax 

xi
k+1 = Xid

k + Vid
k+1          (13) 

xmin ≤ xi
t+1 ≤ xmax 

where: 

Vi
t+1 is the velocity vector of particle i. 

Xi
t+1 is the position of particle i. 
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pbi
t is the best previous index of each individual. 

gbi
t is the best index among all individuals in the population. 

k is the number of iterations the individuals have moved. 

c1 and c2 are acceleration constants. 

r1 and r2 are two random numbers uniformly distributed within the range [0, 1]. 

vmin and vmax are the lower and upper limit of particle update velocity, respectively; in this paper, vmin = -vmax. xmin 

and xmax are the minimum and maximum positions of particles, respectively. 

Equation 12 is the first term represents the previous velocity, giving the particle momentum to continue 

wandering through the search space. The second component is considered the cognitive element, representing the 

artificial intelligence of the particles. This part directs the particles toward their best positions. The third 

component is the social element, which represents the combined effect of particles in finding the global optimal 

solution. The social element guides particles toward the global optimum. Initially, particles are generated at 

random positions, and each particle is assigned a random velocity. The fitness of the particles is estimated 

through the objective function. At each point, the velocity of each particle is calculated, and its position is 

updated for the next estimation using (13). Over time, if the particles find a better position than their previous 

one, this new position is saved in memory. 

B. Over view CSA 

The crow search algorithm (CSA) is a new metaheuristic optimization method that simulates the intelligent 

behavior of crow flocks. Introduced by Askarzadeh in 2016, this algorithm showed promise in its initial results, 

demonstrating the potential to tackle a variety of complex engineering optimization problems. The Crow Search 

Algorithm (CSA) is a swarm intelligence optimization strategy that mimics the behavior of crows tracking each 

other [23]. This paper outlines the fundamental principles of the algorithm, examines the primary parameters 

influencing its performance, and analyzes its search mechanism. Improvement strategies are summarized, and 

examples are provided to demonstrate the algorithm's application in the 0-1 knapsack problem, image processing, 

scheduling issues, feature selection, and parameter optimization. Finally, considering the current research and 

application of the crow search algorithm, future research and development directions are discussed. 

The principles of CSA include the following: (1) crows live in flocks, (2) each crow remembers where its hiding 

places are and can steal food from other crows, and (3) a crow may protect its food by flying randomly if it 

realizes it's being followed, with a certain probability [24]. The position of each crow represents a solution xi
t. In 

each iteration, crow i tracks a randomly chosen crow j. If crow j is unaware of being followed (i.e., rj  ≥AP), 

crow i approaches crow j's hiding place pbj
t. However, if crow j senses it is being tracked, it deceives crow i by 

flying to a random location in the search space to safeguard its hiding place. The mathematical expression is: 

      {
xi
t+1 = xi

t+1 + r3. fl. (pbj
t − xi

t), rj ≥ AP

a random position                   else 
          (14) 

where, rj and r3 are random numbers uniformly distributed between 0 and 1, fl represents the length of a crow’s 

flight, AP is crow j perceptual probability, and pbj
t indicates where the current crow j stores its food, which 

corresponds to the historical best solution crow j has found. 

The Crow Search Algorithm (CSA) is a population-based optimization method that is relatively simple, with 

only two adjustable parameters [25]: flight length fl and perceived probability AP. This simplicity makes it 

attractive for various engineering applications. In CSA, perceived probability parameters directly control the 

algorithm’s diversity. Compared to the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and 

Harmony Search Algorithm (HS), CSA has fewer parameters to adjust and is easier to implement. Additionally, 

individual crows in CSA can reach entirely random positions, giving them a stronger capacity to explore 

unknown regions. 
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However, CSA lacks criteria for choosing destinations, as selections are made randomly between crows, and the 

flight length is constant. These characteristics lead to a weaker ability to exploit current information compared 

to PSO, resulting in lower search precision, a higher likelihood of falling into local optima, and premature 

convergence, particularly in multi-dimensional optimization problems. 

C. Proposed combine PSO and CSA for problem 

To leverage the strengths of both PSO in exploitation and CSA in exploration, this study introduces a new Crow 

Swarm Optimization (CSO) algorithm. In CSO, particle movement is guided by the best position discovered by 

the individual particle and the best position found by the entire swarm, similar to PSO. At the same time, each 

particle monitors others, meaning its movement may be influenced by the best position discovered by the swarm 

and another particle’s best solution. In CSA, this involves tracking where another crow hides its food. The 

equation for updating the flight velocity of crows in CSO is: 

{
vi
t+1 = ω. vi

t + c3. r3(pbj
t − xj

t) + c2. r2(gbj
t − xj

t)   rj ≥ AP

vi
t+1 = ω. vi

t + c1. r1(pbj
t − xj

t) + c2. r2(gbj
t − xj

t)else 
 (15) 

where c3 represents the degree of the influence of individual j on individual i and r3 is a random number within 

[0, 1]. The updating velocity use (14) is also limited by vmin and vmax.  

When rj ≥ AP individual i chooses to follow individual j, and its velocity is influenced by its inertia velocity, 

the global optimal solution, and the current optimal solution of individual j. Otherwise, the velocity of individual 

i is determined by its inertia velocity, the global optimal solution, and its own local optimal solution. Once the 

velocity of individual i is calculated, its position in the next iteration is obtained using (13). 

Fig 1 and Fig 2 present the flowchart CSO and pseudocode of the proposed algorithm CSO application 

reconfiguration distribution network consider DG and Evs. The primary difference between the CSO and the 

other two algorithms lies in how particle speed and position are updated. PSO focuses on optimization 

efficiency and aims to approach the current best solution during each iteration, leading to strong exploitation of 

existing information. On the other hand, CSA provides more freedom to the algorithm to maintain solution 

diversity, which enhances its ability to explore new regions. The proposed CSO combines the strengths of both 

PSO and CSA, achieving a better balance between randomness and efficiency, or in other words, between 

exploration and exploitation. 

 

Fig. 1. Flowchart of the proposed CSO for problems 
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Fig. 2. Pseudocode of the proposed algorithm CSO application RDN consider DG and Evs. 

Individual Movement: The movement of individuals significantly impacts the performance of swarm intelligence 

algorithms. Fig. 2 illustrates how individual positions are updated in (a) PSO, (b) CSA, and (c) CSO. In PSO, 

movement is consistent and determined by a particle’s inertia, its best current position, and the best position 

identified by the whole swarm. Both CSA and CSO offer alternatives with varying probabilities to better sustain 

solution diversity. However, CSA is less efficient than CSO due to differences in the way solutions are updated.  

 

Fig. 3. Schematics of how an individual updates its position in (a) PSO, (b) CSA, and (c) CSO 

CSO maintains PSO's optimization efficiency while providing opportunities to explore broader regions. In CSO, 

the higher the AP probability parameter value, the more directionally oriented the movement becomes. When AP 

equals 1, CSO reverts to standard PSO; when AP equals 0, individuals always randomly choose a historical 

optimal solution to follow, with less emphasis on leveraging other known information. Notably, when AP is set to 

0, CSO does not transform into CSA but retains the rich diversity characteristic of CSA. 

IV. EXPERIMENTS AND RESULTS 

The proposed CSO algorithm was applied for evaluation on the 33-bus IEEE distribution system sample shown in 

Fig. 4, [13]. The initial network parameters include a total load of 3715 + j2300 kVA, consisting of 33 nodes, 37 

branches, and 5 switching devices, with further details available in the study by Goswami and [14]. The system 

includes two renewable energy sources: a wind turbine at node 15 with a capacity of 700 kW and another 
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renewable source at node 30 with a capacity of 500 kW. Additionally, the charging stations at nodes 10 and 23 

each serve 30 electric vehicles (EVs), with each EV having a battery capacity of 35.9 kWh.  

In this study, the simulation results are evaluated in two different scenarios. Scenario 1: The PV and WT power 

sources are assumed to have stable output at 60% of their rated capacity. Scenario 2: The output power of PV and 

WT depends on weather characteristics such as temperature, radiation, and wind speed. The EV load also varies 

based on the usage needs of EVs, so this uncertainty is simulated using a power graph. 

 

Fig. 4. IEEE sample distribution network - 33 bus. 

A. The result for scenario 1 

The simulation results for scenario 1 conducted in four different cases including:  

Case 1. Before reconfiguration without DG. 

Case 2. After reconfiguration without DG. 

Case 3. Before reconfiguration with DG. 

Case 4. After reconfiguration with DG. 

The results of the study are presented in Table 1 and Fig 5. 

TABLE I.  RESULTS OF THE CASES 

Case Open switches Plosse(kW) 
Voltage 

deviation/p.u 

Fmin 

(use 

Eq.5) 

1 
8–21, 9–15; 12–

22, 18–33, 25–29 
203.15 0.104 198.83 

2 
7–8, 14–15; 9–10, 

32–33, 25–29 
137.92 0.051 132.77 

3 
8–21, 9–15,12–22, 

18–33, 25–29 
109.82 0.053 97.83 

4 
7–8, 14–15; 9–10, 

31–32, 25–29 
82.73 0.031 73.23 

 

Table I reveals that network losses prior to reconfiguration without distributed generation (DG) were 203.15 kW, 

dropping to 137.92 kW post-reconfiguration, resulting in a reduction of approximately 32.109%. This led to 

notable improvements in load balancing and voltage deviation, enhancing the operational stability of the 

distribution network and demonstrating the effectiveness of the reconfiguration method presented in this paper. 
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With DG, network losses decreased from 109.82 kW before reconfiguration to 82.73 kW afterward, reflecting a 

reduction of around 32.74%. 

 

Fig. 5. Graph voltage of IEEE 33- distribution network in the cases different 

Fig 5 indicates that integrating DG successfully lowered network losses, improved voltage margins, and 

minimized voltage deviations. To evaluate the proposed method's effectiveness, it was tested on the IEEE 33-

node grid model incorporating DG and EV. The results were compared with the methods described by Chen [13] 

and Liu [14], demonstrating comparable switch closure/opening results to those achieved in previous studies. The 

simulation outcomes are detailed in Table II. 

TABLE II.  THE OUTCOMES OF THE METHOD 

Method Opened switchs 
Plosse 

(kW) 

Node Voltage 

(pu) 

Before 

reconfigurati

on 

8–21; 9–15; 12–

22; 18–33; 25–29 
202.68 0.9131 

Proposed 

method 

(CSO) 

7–8; 9–10; 14–

15; 25–29; 32–

33. 

138.89 0.9389 

Liu [14] 

7–8; 9–10; 14–

15; 25–29; 32–

33. 

139.57 0.9378 

D. Zhang 

[15] 

7–8; 9–10; 14–

15; 25–29; 32–

33. 

139.55 0.9379 

 

B. The result for scenario 2 

In practice, DG sources such as wind turbines (WT) and solar power (PV) have output power that depends on 

various uncertain factors, leading to variations in power output based on these uncertainties, such as wind 

distribution and wind speed. Moreover, the loads from electric vehicles (EVs) also have random characteristics. 
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Therefore, in this section, the simulation results are obtained when DG and EVs have randomly varying power 

outputs. 

 

Fig. 6. Forecasting the output power of DG (WT-PV) 

 

Fig. 7. Forecasting the power consumption of EVs 

In the study by Luo [13], the DGs are connected as shown in Figure 4, and the forecasted output of the PV and 

WT is plotted in Fig. 6. Additionally, the charging power of EVs over 24 hours is projected as shown in Fig. 7. 

Considering the load type, proportion, and output at each node [14], the daily load variation is shown in Fig. 8. 
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Fig. 8. Load curve of the day for the IEEE 33-node. 

 

Fig. 9. Hourly/daily dynamic load segmentation graph. 

A corresponding daily load curve is established, and the information entropy period division method is applied to 

segment the load curve as shown in Fig.9. The segmentation in Fig. 9 is used for dynamic reconstruction, 

resulting in the following outcomes. 

Based on Tables III when renewable energy sources (WT, PV) change and load capacity fluctuates over 24 hours, 

the grid reconfiguration differs at each point in time. However, the structure between the configurations remains 

similar, with only one or two switching devices varying. Power losses fluctuate at each moment, showing that the 

dynamic reconfiguration approach has optimized power losses over the 24-hour period. The maximum and 

minimum voltage values at the nodes all fall within the allowable limits. 

TABLE III.  RECONFIGURATION RESULTS ACCORDING TO THE LOAD CURVE 

Hours Open switches 
Plosse 

(kW) 
Umax/Umin (pu) 

1:00 –7:00 
7–8, 12–13, 8–9,31–32, 25–

29 
25.855 0.998/0.9321 

8:00 –13:00 
7–8, 13–14, 9–10, 32–33, 

25–29 
380.675 0.998/0.9452 

14:00 –18:00 7–8, 13–14, 9–10, 32–33, 518.661 0.998/0.9411 
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25–29 

19:00 –20:00 
7–8, 9–15, 10–11, 32–33, 

25–29 
330.522 0.998/0.9386 

21:00 –24:00 
7–8, 9–15, 9–10, 31–32, 

25–2 
71.121 0.998/0.9402 

 

TABLE IV.  RESULTS NUMBER OF SWITCH OPERATION RECONFIGURATION 

Dynamic 

Reconfiguration 

Number of switch 

operation 
Plosse (kW) 

No segment load 45 1308.236 

Segment load 7 1324.672 

Additionally, Table IV illustrates that the method of grid reconfiguration based on load segmentation 

substantially decreases the frequency of switching operations and the operational costs associated with the 

switching devices, while also reducing the downtime caused by the state changes of these devices. 

V. CONCLUSION 

In this study, the authors examined the problem of reconfiguring the distribution grid with a multi-objective 

function, which considers power loss, reliability, and economic factors in terms of the number of switching 

operations of the devices. The proposed combination of the CSA and PSO algorithms has facilitated fast and 

accurate convergence, avoiding local optima. Additionally, in the simulation results section, the authors 

conducted simulations with uncertain distributed power sources such as WT and PV, dependent on weather 

conditions, and with the participation of EVs in the load. The research findings indicate that changing the 

configuration when the output power of the DGs changes and EVs charge/discharge is necessary for optimal 

operation of the distribution system. 
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