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Abstract: - Accurate target tracking for rotary wing Unmanned Aerial Vehicle (UAV) is a fascinating application and a very demanding 

and complex field of research owing to the composite fluctuations and the diversified speed of moving target with respect to time. For this 

reason, several control algorithms have been evolved to track a target for rotary wing UAV. In this work a method called, Radial Velocity 

and Bernouli Maximization Restricted Boltzmann Feedback Controller (RV-BMRBFC) is introduced with the objective of suitable 

controller identification for accurate trajectory tracking in UAV. The RV-BMRBFC method is split into three sections, namely, data 

processing, controller identification and feedback controller for accurate trajectory tracking. First, the raw data obtained from Drone 

Dataset (UAV) is subjected to Partial Derivative Lagrangian-based Drone data processing for generating computationally efficient drone 

data for efficient controller identification. Second with the processed drone data as input Radial Velocity and Visual Axis Waypoint is 

applied for significant controller identification. The objective function in our work is formulated based on the response time, peak 

overshoot and settling time. By taking into consideration these objective function results, fitness is measured for all the processed 

controller identified results. Finally, Expected Bernoulli Maximization Restricted Boltzmann Machine-based Feedback Controller is 

applied with the identified controller positions for accurate trajectory tracking. With the obtained controller positions, target position data 

is said to be identified with which accurate trajectories are tracked in UAV. Experimental assessment is performed with diversified 

quantitative metrics like trajectory tracking accuracy, trajectory tracking time, trajectory tracking error rate and trajectory tracking 

overhead. The analyzed results demonstrate the superior performance of our proposed RV-BMRBFC method when compared with the two 

state-of-the-art methods.   

Keywords: Target Tracking, Unmanned Aerial Vehicle, Partial Derivative, Lagrangian, Radial Velocity, Visual Axis, 

Waypoint, Expected Bernoulli Maximization, Restricted Boltzmann Machine 

 

I. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) are extensively employed in different fields such as military, healthcare and 

agriculture, where UAVs are deployed for target tracking, delivery of medicine and precise aerobiological 

sampling autonomously under the supervision of an operator. A novel intelligent controller employing adaptive 

neural network with a non linear control model using Lyapunov function was designed in [1] with the purpose 

of focusing on the frictional forces and external disturbances. Moreover the application of a fused error signal as 

single input in neural network importantly minimized the computational complexity and ensured accurate 

tracking of trajectory in an intelligent fashion.  As a result target tracking was ensured with reduction in tracking 

error. A complicated dynamic method though can ensure accuracy however may not be pertinent in 

computational aspects. Thus to address on this issue, a data driven method was designed in [2] with the purpose 

of enhancing autonomous tracking. Here, the nonlinearities present between lateral and longitudinal vehicle 

dynamics were captured with reduced computational cost. In [3], an overview of contemporary control-related 

research from the angle of multibody dynamics was investigated. Tracking trajectory for autonomous vehicles 

(AVs) is specifically addressed by means of control law design that in turn ensures fixed realistic trajectories on 

the basis of the trajectory error. However, vehicle dynamics exhibits complicated nonlinearities and crucial 

variability. With the purpose of solving nonlinearity, trajectory tracking control employing nonlinear was 

proposed in [4]. Here, steady state error was reduced considerably. Yet another method employing extreme 

machine learning was applied in [5] to focus on the velocity errors. Here the control algorithms were learnt via 

parameter adjusting that in turn minimized velocity errors. In [6], deep neural networks were employed for 

designing real time tracking and control framework that with the aid of motion planning element ensured 

accurate tracking. Over the recent few years, AV driving has become the centric point of evolution in the area of 
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UAV. Several methods have been researched over the recent few years for ensuring reliable trajectory tracking 

controller. In [7], deep deterministic policy gradient algorithm of the double critic network was applied that in 

turn sent the control commands to the vehicle for making wise decisions via Markov decision process. As a 

result accuracy was ensured. Yet another neural networks learning based on both online and offline strategy was 

proposed in [8].  

I.1 Contributions of the paper 

A novel Radial Velocity and Bernouli Maximization Restricted Boltzmann Feedback Controller (RV-

BMRBFC) is introduced with the following novel contributions, 

• To improve the trajectory tracking accuracy, the RV-BMRBFC method is designed based on three major 

processes namely data processing, controller identification and feedback controller design.  

• First, Partial Derivative Lagrangian-based Drone data processing is proposed in the RV-BMRBFC method 

for finding the computationally efficient drone data required for further processing from the raw dataset. The 

Partial Derivative Lagrangian mechanics is applied for minimizing the tracking time and finally selects the 

significant features.  

• To reduce tracking error, RV-BMRBFC method uses Radial Velocity and Visual Axis Waypoint-based 

controller identification.  

• To improve tracking accuracy and reduce overhead, the proposed machine learning classifier uses the 

Expected Bernoulli Maximization function for analyzing the testing and tainting features. Then the 

Restricted Boltzmann Machine with the aid of sigmoid activation function returns the trajectory tracking 

outcomes by minimizing the transition error. 

• Finally, comprehensive experimental assessment is carried out with different types of performance metrics to 

illustrate the proposed RV-BMRBFC method over conventional methods. 

I.2 Organization of the work 

The rest of the paper is arranged into different sections as follows. Section 2 reviews the related works in the 

domain of controller identification for trajectory tracking. An elaborate description of the proposed RV-

BMRBFC method with the aid of pseudo code and figurative is given in Section 3. Section 4 describes the 

experimentation settings with detailed discussion on the performance results of the proposed and conventional 

methods with different metrics. At last, Section 5 concludes the paper.  

II. RELATED WORKS 

Of late, as the evolution of robotic technology, the intelligent robots have been extensively utilized both in 

military and civilian areas, to name a few being, target tracking, missions involving strategy for detecting attack 

and ensuring rescue missions, home serices and so on. In [9] a trajectory tracking control mechanism employing 

fuzzy adaptive neurons was presented. Here, with the aid of integrative derivative controllers based on the self-

tuning proportional mechanism accurate and precise trajectory tracking was ensured. Yet another fuzzy neural 

network approximator was presented in [10] for ensuring accurate trajectory tracking control. Learning space for 

implementing general motions is large and also the dynamics are found to be huge, non linear in nature, 

differing in time and complexity also.  In [11] fuzzy neural network supervised training method was applied to 

reduce the position tracking error. Also a fuzzy inference system in an adaptive fashion was proposed by fine 

tuning parameters and weight coefficients. As a result accuracy was also improved. The design of controller has 

occupied a large space in several domains. In [12], a proportional integral derivative employing cascaded model 

for trajectory tracking was proposed. Also by controlling the position and angular velocity resulted in the 

accuracy and robustness. To recognize the chief evolution estimation of object detection and tracking pipeline 

rigorously, in [13] a survey of prevailing deep learning network based materials and methods for both detecting 

of objects and tracking of the same via distinct controllers were designed in detail. Yet another adaptive 

controller employing extended state observer via robust integral was applied in [14] with the objective of 
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minimizing the average tracking error. The extremely achievable trajectory planning of UAV is very significant 

in certain tasks but has not yet received much attention. This is because of the reason that most of the prevailing 

studies employed rationalized UAV model with certain restriction to design trajectory. However, tracking 

features of UAV were not taken into consideration fully.  In [15], a novel UVA model based on control oriented 

design for trajectory planning method was proposed. Here by employing trajectory mapping network not only 

ensured computation speed but also improved prediction accuracy. A convolutional neural network for UAV 

was employed in [16] for avoiding involved in controller design. Here, the UAV was controlled with the 

purpose to follow a hypothesized trail while retaining its position adjacent to the trail center. 

However, the trajectory error aspect was not focused. To concentrate on this issue, Lyapunov function was 

applied in [17] via adaptive neural network system that with the aid of motion trajectory not only improved the 

control accuracy but also reduced the trajectory error significantly. Yet another deep DNN was designed in [18] 

for designing state estimation and controller. A feedback controller employing dynamic neural network (DNN) 

was proposed in [19] with the objective of addressing scenarios involving uncertain nonlinear systems. 

Generalized regression neural network was applied in [20] for focusing on the tracking errors. 

III. RADIAL VELOCITY AND BERNOULI MAXIMIZATION RESTRICTED BOLTZMANN FEEDBACK CONTROLLER 

(RV-BMRBFC) 

Trajectory tracking problem for UAVs has inspired crucial awareness from the robotics research section over 

the past few years. This is predominantly owing to the prospective applications where perfect and accuracy 

trajectory tracking are necessitated.  Traditionally several controller based algorithms has been developed for 

trajectory tracking in UAV, however with minimum focus on steady state error. With this intend, optimization 

based control algorithms are designed to choose optimal controller parameter value for minimizing the time 

consumption or response time. Also to track the trajectories, optimization controllers are incorporated using 

artificial intelligence techniques by and track the trajectory with lesser computational complexity using RV-

BMRBFC. The proposed RV-BMRBFC method consists of three parts, data processing, controller identification 

and feedback controller for accurate trajectory tracking in UAV. The elaborate description of RV-BMRBFC 

method is provided in the following sections.  

III.1 Partial Derivative Lagrangian-based Drone data processing 

Unmanned Aerial Vehicles (UAVs) has observed a mushroom growth over the past few years due to the 

technological advancement and increased accessibility. Nevertheless, UAV positioning remains a demanding 

issue, specifically in confined locations. Positioning the aircraft proportional to another object or designing a 

suitable controller for accurate trajectory tracking is a frequent task that is laborious and cumbersome to 

accomplish. Here, an autonomous data processing model employing Partial Derivative Lagrangian mechanics is 

presented that is able to design suitable controller and maintain appropriate relative position to a drone object. 

Correspondingly, the UAV is depicted to operate for rotary wing UAVs, providing increased effectiveness and 

autonomy and safety. Figure 1 shows the structure of Partial Derivative Lagrangian-based Drone data 

processing model.  

As illustrated in the above figure, with the drone dataset Unmanned Aerial Vehicle (Rotary Wing Unmanned 

Aerial Vehicles) obtained from https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav consists of 

2718 files both including JPG (i.e., 1359) and txt file (i.e., 1359) respectively. Each txt file includes five features 

‘𝐹 = {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5}’ namely, class_id, x_initial_pos or x width (‘𝑥𝑤’), y_initial_pos or y width (‘𝑦𝑤’), 

x_final_pos or x height (‘𝑥ℎ’) and y_final_pos or y height (‘𝑦ℎ’) respectively. 
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Figure 1 Structure of Partial Derivative Lagrangian-based Drone data processing 

 𝐼𝑀 = [𝑆𝐼1𝐹1 𝑆𝐼1𝐹2  … 𝑆𝐼1𝐹𝑛 𝑆𝐼2𝐹1 𝑆𝐼2𝐹2  … 𝑆𝐼2𝐹𝑛  … … … … 𝑆𝐼𝑚𝐹1 𝑆𝐼𝑚𝐹2  … 𝑆𝐼𝑚𝐹𝑛 ]  (1) 

With the above formulated input matrix ‘𝐼𝑀’ as given in equation (1), the width and height of each sample 

images are obtained from the dataset. Following which initially the length is formulated as given below.   

 𝑥𝑙 = 𝑥𝑤 ∗ 𝑥ℎ;  𝑦𝑙 = 𝑦𝑤 ∗ 𝑦ℎ  𝑤ℎ𝑒𝑟𝑒 (𝑥, 𝑦) ∈ 𝐼𝑀      (2) 

According to the Partial Derivative Lagrangian mechanics, the arbitrary model of the Rotary Wing Unmanned 

Aerial Vehicles is derived in the form of Lagrangian equation as given below.  

 𝑃𝑅 =
𝑑

𝑑𝑡
[

𝜕𝑇

𝜕𝑐𝑖
′] −

𝜕𝑇

𝜕𝑐𝑖
= 𝐶𝑖         (3) 

From the above equation (3), ‘𝑇’ refers to the Rotary Wing UAVs kinetic energy, ‘𝑐𝑖’, ‘𝑐𝑖
′’ and ‘𝐶𝑖’ denotes the 

abstract coordinates, abstract velocity and abstract force, ‘𝐶1’, ‘𝐶2’ and ‘𝐶3’ represent the length of the sample 

image, the width of the sample image and the height of the sample image respectively. The pseudo code 

representation of Partial Derivative Lagrangian-based Drone data processing is given below.  

Input: Dataset ‘𝐷𝑆’, Sample images ‘𝑆𝐼 = {𝑆𝐼𝑖 , … , 𝑆𝐼𝑚}’  Features ‘𝐹 = {𝐹1, . . , 𝐹𝑛}’ 

Output: computationally efficient drone data processing ‘𝑃𝑅’ 

1: Initialize ‘𝑚 = 2718’, ‘𝑛 = 5’ 

2: Initialize ‘𝑥𝑤’, ‘𝑦𝑤’, ‘𝑥ℎ’, ‘𝑦ℎ’ 

3: Begin 

4: For each Dataset ‘𝐷𝑆’ with Sample images ‘𝑆𝐼’, Features ‘𝐹’ 

5: Formulate input matrix as given in equation (1) 

6: Evaluate length of Sample images ‘𝑆𝐼’ as given in equation (2) 

7: Obtain arbitrary model of the Rotary Wing Unmanned Aerial Vehicles as given in equation (3) 

8: Return processed results ‘𝑃𝑅’ 

9: End for 

10: End  

Algorithm 1 Partial Derivative Lagrangian-based Drone data processing 

𝐿𝑒𝑛𝑔𝑡ℎ 

𝑊𝑖𝑑𝑡ℎ 

 

𝑥𝑤 , 𝑦𝑤 

 

 

𝑥ℎ , 𝑦ℎ 

 

 

𝑥ℎ , 𝑦ℎ 

 

𝑥𝑙 , 𝑦𝑙  

 

Partial Derivative Lagrangian mechanics Camera processed data  
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As given in the above algorithm, with the objective of reducing the tracking time involved during the design of 

controller, first the data from drone dataset (UAV) are subjected to formulation of input matrix split into distinct 

features and sample images. Following which with the width and height of each drone obtained from the raw 

dataset, length of each drone is evaluated to obtain its positioning. Following which Partial Derivative 

Lagrangian mechanics is applied that being a function of objects or samples position, velocity and force is 

designed in such a way that the action is defined as the integral of Lagrangian over time is minimized, therefore 

minimizing the tracking time involved in controller design.  

III.2 RADIAL VELOCITY AND VISUAL AXIS WAYPOINT-BASED CONTROLLER IDENTIFICATION 

The fundamental process for a UAV to perform trajectory tracking is to generate a set of waypoints with which 

the controller can be designed. Then, the UAV successively advances in connection with the waypoint and acts 

in accordance with the planned controller identification. Also, the objective of controller training remains in 

retaining the error within the permissible extent. 

In our work, Radial Velocity-based Visual Axis Waypoint Behavior analysis model is designed based on the 

geometric association between the UAVs, the preceding waypoint and the succeeding waypoint respectively. 

Following which the new visual axis parameters are arranged to fine tune the waypoint behavior of rotary ring 

UAVs. In this manner, using Radial Velocity-based Visual Axis not only introduces intelligent computing but 

also maintains the reliability of conventional object tracking controller as far as possible. Figure 2 shows the 

structure of Radial Velocity and Visual Axis Waypoint-based controller identification. As shown in the below 

figure with the drone sample images and processed results ‘𝑃𝑅’ obtained as input, initially, with the dual 

waypoints by taking into considerations the preceding and succeeding waypoints lead distance and damper 

distance are measured. Following which, according to the visual axis the Radial Velocity is applied to measure 

waypoint behavior for controller identification. To start with the angular motion formulated by the dual 

waypoints is mathematically represented as given below.  

 𝛼 = 𝑡𝑎𝑛−1[𝑃𝑅 (𝑥𝑗+1 − 𝑥𝑗 , 𝑦𝑗+1 − 𝑦𝑗)]                   (4) 

From the above equation (4), the geometric association between the vehicle (i.e., processed results) ‘𝑃𝑅’ is 

obtained by taking into considerations the preceding waypoint ‘𝑥𝑗 , 𝑦𝑗’ and the succeeding waypoint ‘𝑥𝑗+1𝑦𝑗+1,’ 

respectively. Following which the, lead distance ‘𝐷𝑖𝑠𝐿’ and lead damper ‘𝐷𝑎𝑚𝑝𝐿’ are obtained from angular 

motion ‘𝛼’ and the length of the drone or sample ‘𝑥𝑙 , 𝑦𝑙’ in action as given below.  

 𝑃𝑅𝑚 = 𝐷𝑖𝑠𝐿 = (𝑥𝑙 − 𝑥𝑗) 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼) + (𝑦𝑙 − 𝑦𝑗) 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝛼)      (5) 

 𝑃𝑅𝑛 = 𝐷𝑎𝑚𝑝𝐿 = −(𝑥𝑙 − 𝑥𝑗) 𝑠𝑖𝑛 𝑠𝑖𝑛 (𝛼) + (𝑦𝑙 − 𝑦𝑗) 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝛼)                   (6) 

From the above equations (5) and (6), ‘𝑃𝑅𝑚 (𝐷𝑖𝑠𝐿)’ represent the instantaneous position of a target with respect 

to the observer and ‘𝑃𝑅𝑛(𝐷𝑎𝑚𝑝𝐿)’ denotes the instantaneous velocity with respect to the observer. Following 

which the Radial Velocity to analyze waypoint behavior for planned controller identification is formulated as 

given below. 

𝑑𝑃𝑅

𝑑𝑡
=

𝑑<𝑃𝑅𝑚,𝑃𝑅𝑛> 1/2

𝑑𝑡
         (7) 

𝑑𝑃𝑅

𝑑𝑡
=

1

2

<𝑃𝑅𝑚 ,𝑃𝑅𝑛> 

𝑑𝑡

1

𝑃𝑅
         (8) 

𝐶𝐼 =
𝑑𝑃𝑅

𝑑𝑡
=

1

2

<
𝑑𝑃𝑅𝑚

𝑑𝑡
,𝑃𝑅𝑚> +<𝑃𝑅𝑛,

𝑑𝑃𝑅𝑛
𝑑𝑡

> 

𝑃𝑅𝑚,𝑃𝑅𝑛
=

𝑃𝑅𝑚 ,𝑃𝑅𝑛

𝑃𝑅
      (9) 

From the above equations (7), (8) and (9), by fine tuning the ‘𝑃𝑅𝑚’ and ‘𝑃𝑅𝑛’ on the basis of the instantaneous 

position and instantaneous velocity, the controller identification (i.e., their corresponding positions) is made in 

an efficient manner wherein the track error nearing zero are reduced in a significant manner. This in turn 

minimizes the tracking error in an efficient manner. The pseudo code representation of Radial Velocity and 

Visual Axis Waypoint-based controller identification is given below.  
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                    Figure 2 Structure of Radial Velocity and Visual Axis Waypoint-based controller identification 

 

Input: Dataset ‘𝐷𝑆’, Sample images ‘𝑆𝐼 = {𝑆𝐼𝑖 , … , 𝑆𝐼𝑚}’  Features ‘𝐹 = {𝐹1, . . , 𝐹𝑛}’ 

Output: Error minimized controller identification ‘𝐶𝐼’ 

1: Initialize ‘𝑚 = 2718’, ‘𝑛 = 5’, processed results ‘𝑃𝑅’ 

2: Begin 

3: For each Dataset ‘𝐷𝑆’ with Sample images ‘𝑆𝐼’, Features ‘𝐹’ and processed results ‘𝑃𝑅’ 

4: Evaluate the angular motion formulated by the dual waypoints as given in equation (4) 

5: Evaluate lead distance and lead damper as given in equations (5) and (6) 

6: Formulate Radial Velocity to analyze waypoint behavior for planned controller identification as given in equations 

(7), (8) and (9) 

7: Return controller identified results ‘𝐶𝐼’ 

8: End for 

9: End  

Algorithm 2 Radial Velocity and Visual Axis Waypoint-based controller identification 

As given in the above algorithm, with the objective of reducing the tracking error involved in controller 

identification and therefore to promote tracking performance, Radial Velocity and Visual Axis Waypoint-based 

controller identification is designed. Finally, Radial Velocity is applied to analyze waypoint behavior for 

planned controller identification with minimum error.  

III.3 EXPECTED BERNOULLI MAXIMIZATION RESTRICTED BOLTZMANN MACHINE-BASED FEEDBACK 

CONTROLLER FOR ACCURATE TRAJECTORY TRACKING  

Finally, in this work, the objective function is computed for all planned controller identification values taking 

into consideration the response time, peak overshoot, and settling time with which suitable feedback controller 

for accurate trajectory tracking is made. On the basis of this objective function, Expected Bernoulli 

Maximization is obtained for all the parameter values, wherein the optimal best solution is obtained via 

Restricted Boltzmann Machine, therefore improving the accuracy with minimum overhead. Here Expected 

Bernoulli Maximization Restricted Boltzmann Machine is utilized to evaluate the feedback control parameters 

in a flexible manner. Figure shows the structure of Expected Bernoulli Maximization Restricted Boltzmann 

Machine-based Feedback Controller for accurate trajectory tracking. 

 

Drone dataset (UAV) 

Radial Velocity-based Waypoint behavior analysis Controller identification 

 

𝑃𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔 𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡  

𝑆𝑢𝑐𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑤𝑎𝑦𝑝𝑜𝑖𝑛𝑡  

𝑉𝑖𝑠𝑢𝑎𝑙 𝑎𝑥𝑖𝑠  

 

𝐷𝑖𝑠𝐿 

𝐷𝑎𝑚𝑝𝐿 
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Figure 3 Structure of Expected Bernoulli Maximization Restricted Boltzmann Machine-based Feedback 

Controller 

As shown in the above figure, Initially, three objective functions are measured. First, delay time or response 

time is defined as the time required for response to reach 50% of final value in the first time itself. Peak 

overshoot ‘𝑃𝑂’ or peak percent overshoot is defined as the difference between peak of 1st time and steady 

output.  

 𝑃𝑂 = 𝑒
−

𝜋∗0.5

√1−(0.5)2
∗100

         (10) 

Finally, settling time ‘𝑆𝑇’ is defined as the time that is consumed the response to reach and stay within the 

specified range (i.e., between 2% to 5%) of its final value. 

 𝑆𝑇 =
4

𝜉𝜔𝑛
          (11) 

The Expected Bernoulli Maximization Restricted Boltzmann Machine is a neural network designed on the basis 

of energy. The integrated energy functions of both visible and hidden variables are formulated as given below. 

  

 𝐸(𝐶𝐼(𝑃), ℎ) = −ℎ𝑇𝑊
𝐶𝐼(𝑃)

𝜎
−

(𝐶𝐼(𝑃)−𝐶𝑇)
2

2𝜎2 − 𝑏𝑇ℎ                    (12) 

From the above equation (12), the initial formulation is designed based on the visible layer arbitrary vector ‘𝑃 =

[𝑃1, 𝑃2, … . , 𝑃6]𝑇’ (i.e., 𝑃1 =sample images, 𝑃2 =processed results, 𝑃3 =controller identified results, 𝑃4 =delay 

time, 𝑃5 =peak overshoot, 𝑃6 =settling time) and the hidden layer arbitrary vector ‘𝐻 = [𝐻1, 𝐻2, … . , 𝐻6]𝑇’, the 

weight matrix ‘𝑊 ∈  𝑅6∗6’, bias ‘𝐶 ∈  𝑅6’, ‘𝑏 ∈  𝑅6’ and ‘𝜎’ representing the standard deviation associated with 

Expected Bernoulli Maximization visible vector ‘𝑃’ respectively. Then, the Expected Bernoulli Maximization 

for each controller identified ‘𝐶𝐼’ visible vector ‘𝑃’ is mathematically stated as given below.  

𝑞𝑖+1 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸{𝑙𝑛 𝑙𝑛 𝑃𝑟𝑜𝑏(𝐶𝐼(𝑃), 𝜀; 𝑞)|𝑆𝐼: 𝑞𝑖 }                   (13) 

From the above equation (13), ‘𝑖’ represents the Expected Bernoulli Maximization iteration and ‘𝑎𝑟𝑔𝑚𝑎𝑥 𝐸’ 

denotes the expectation subjected on the observations ‘𝑆𝐼’ under parameter hypothesis ‘𝑞𝑖’. In the coding 

process, given the features or controller identified samples ‘𝐶𝐼(𝑃)’ in the visible layer, then the probability that 

a neuron in the hidden layer gets activated is given by sigmoid function as given below.  

𝑃𝑟𝑜𝑏 (ℎ𝑗 = 1|𝐶𝐼(𝑃)) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑗 ∗
𝐶𝐼(𝑃)

𝜎2 + 𝑏𝑗)                                 (14) 

The above arbitrator generates a number between 0 and 1, if the number is less than the measured ‘ℎ𝑗’, then the 

result of hidden layer node is 1 otherwise it is 0. In a similar manner, in the decoding process, given the current 

state of all neurons (i.e., the processed results and the objective function) in the hidden layer, then the 

probability that a neuron in the visible layer is activated is then formulated as given below.  

Visible nodes 

Hidden nodes 

𝑊 

𝑏 

𝑃1 = 𝑆𝐼 𝑃2 = 𝑃𝑅 𝑃3 = 𝐶𝐼 𝑃5 = 𝑃𝑂 𝑃4 = 𝐷𝑇 𝑃1 = 𝑆𝑇 
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𝑃𝑟𝑜𝑏(𝐶𝐼(𝑃)𝑘 = 1|ℎ) = 𝑁(𝐶𝑘𝑊𝑘 + 𝐶𝐼(𝑃), 𝜎2)                            (15) 

From the above equation (15), ‘𝑁(𝜇, 𝜎2)’ represent Gaussian probability density function with mean ‘𝜇 =

𝐶𝑘𝑊𝑘 + 𝐶𝐼(𝑃)’ and standard deviation ‘𝜎2’ respectively. Then, the arbitrator generates a number between 0 and 

1, if the number is less than the measured ‘𝐶𝐼(𝑃)𝑘’, then the visible layer node is ‘𝐶𝐼(𝑃)𝑘’ and on contrary it 

will take the arbitrary number. 

Finally, by alternately performing coding and decoding, the transition error being minimal infers that the 

Expected Bernoulli Maximization Restricted Boltzmann Machine inclines to be in equilibrium state, therefore 

corroborating the objective with maximal accuracy and minimal overhead. The pseudo representation of 

Expected Bernoulli Maximization Restricted Boltzmann Machine-based Feedback Controller for accurate 

trajectory tracking is given below.  

Input: Dataset ‘𝐷𝑆’, Sample images ‘𝑆𝐼 = {𝑆𝐼𝑖 , … , 𝑆𝐼𝑚}’  Features ‘𝐹 = {𝐹1, . . , 𝐹𝑛}’ 

Output: 

1: Initialize ‘𝑚 = 2718’, ‘𝑛 = 5’, processed results ‘𝑃𝑅’, controller identified results ‘𝐶𝐼’, ‘𝜉 = 0.5’, ‘𝜔𝑛 = 6 𝑟𝑎𝑑/

𝑠𝑒𝑐’ 

2: Begin 

3: For each Dataset ‘𝐷𝑆’ with Sample images ‘𝑆𝐼’, Features ‘𝐹’, processed results ‘𝑃𝑅’ and controller identified results 

‘𝐶𝐼’ 

4: Evaluate peak overshoot as given in equation (10) 

5: Evaluate settling time as given in equation (11) 

6: Obtain integrated energy functions of both visible and hidden variables as given in equation (12) 

7: Obtain Expected Bernoulli Maximization for each controller identified ‘𝐶𝐼’ visible vector ‘𝑃’ as given in equation 

(13) 

8: Trigger coding process as given in equation (14) 

9: If ‘𝑃𝑟𝑜𝑏 (ℎ𝑗 = 1|𝐶𝐼(𝑃)) ≤ 𝑣𝑎𝑙(ℎ𝑗)’ 

10: Then result of hidden layer is 1 

11: Else result of hidden layer is 0 

12: End if 

13: Trigger decoding process as given in equation (15) 

14: If ‘𝑃𝑟𝑜𝑏(𝐶𝐼(𝑃)𝑘 = 1|ℎ)  ≤ 𝐶𝐼(𝑃)𝑘’ 

15: Then visible layer node is ‘𝐶𝐼(𝑃)𝑘’ 

16: Else assign arbitrary value to 𝐶𝐼(𝑃)𝑘 

17: End if  

18: End for 

19: End  
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Algorithm 3 Expected Bernoulli Maximization Restricted Boltzmann Machine-based Feedback Controller for 

accurate trajectory tracking 

As given in the above algorithm, with the objective of improving the accuracy and reducing the overhead, first, 

three objective functions are formulated, i.e., the response time, peak overshoot and settling time. Finally, 

following by coding and decoding processes separately based on the transition error provides the results of 

trajectory tracking of UAV.  

IV. EXPERIMENTAL SETUP 

In this section, the proposed Radial Velocity and Bernouli Maximization Restricted Boltzmann Feedback 

Controller (RV-BMRBFC) method and existing intelligent controller [1] and data driven method [2] are 

implemented in Python using the drone dataset taken from https://www.kaggle.com/datasets/dasmehdixtr/drone-

dataset-uav?select=dataset_xml_format 

The controller identification for accurate trajectory tracking using the proposed and existing two methods are 

discussed based on certain parameters such as trajectory tracking accuracy, trajectory tracking time, trajectory 

tracking overhead and trajectory tracking error rate with respect to a number of sample images. The 

performances of the proposed and existing methods are discussed with the aid of tabulation and graphical 

illustrations. 

IV.1 Performance analysis of trajectory tracking time 

In this section first the paramount performance metrics used to analyze controller for accurate trajectory tracking 

called, the trajectory tracking time is measured. The trajectory tracking time refers to the time consumed in 

tracking the corresponding trajectory via controller.  

𝑇𝑇𝑡𝑖𝑚𝑒 = ∑ ⬚𝑚
𝑖=1 𝑆𝐼𝑖 ∗ 𝑇𝑖𝑚𝑒 (𝑇𝑇)       (16) 

From the above equation (16), trajectory tracking time ‘𝑇𝑇𝑡𝑖𝑚𝑒’ is measured by taking into consideration the 

sample images ‘𝑆𝐼𝑖’ and the actual time consumed in tracking the corresponding trajectory ‘𝑇𝑖𝑚𝑒 (𝑇𝑇)’ via 

controller. It is measured in terms of milliseconds (ms).  

Table 1 Tabulation for trajectory tracking time using RV-BMRBFC, Intelligent controller [1] and Data driven 

method [2] 

Sample images Trajectory tracking time (ms) 

RV-BMRBFC Intelligent controller Data driven method 

120 4.2 5.04 5.76 

240 5.35 6.75 7.85 

360 5.85 8 8.85 

480 7 9.15 10 

600 7.55 9.95 12.55 

720 8.25 11.35 13.15 

840 9 12.15 14.35 

960 10.35 14 15.35 

1080 10.85 14.35 17 

1200 11.35 15 18.35 

 

The performance evaluation of trajectory tracking time .From the overall results it is inferred that the trajectory 

tracking time of RV-BMRBFC method is significantly minimized by 24% and 34% when compared to existing 

methods.  

IV.2 Performance analysis of trajectory tracking error  

https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav?select=dataset_xml_format
https://www.kaggle.com/datasets/dasmehdixtr/drone-dataset-uav?select=dataset_xml_format
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Second most paramount metrics in identifying the controller for accurate trajectory tracking is the trajectory 

tracking error. This is due to the reason that lesser the error more efficient the method is said to be and vice 

versa. The trajectory tracking error is measured as given below.  

 𝑇𝑇𝑒𝑟𝑟𝑜𝑟 = ∑ ⬚𝑚
𝑖=1

𝑆𝐼𝑇𝐼𝐴

𝑆𝐼𝑖
         (17) 

From the above equation (17), the trajectory tracking error ‘𝑇𝑇𝑒𝑟𝑟𝑜𝑟’ is measured by employing the sample 

images ‘𝑆𝐼𝑖’ and the sample images that were not tracked accurately ‘𝑆𝐼𝑇𝐼𝐴’. It is measured in terms of 

percentage (%). 

 

Figure 4 Trajectory tracking error versus sample images 

Figure 4 given above shows the graphical representation of trajectory tracking error. Finally, waypoint behavior 

for planned controller identification was obtained via Radial Velocity that in turn reduced the target tracking 

error using RV-BMRBFC method by 17% and 32%  than the [1],[2]. 

IV.3 Performance analysis of trajectory tracking accuracy  

Suitable controller identification based trajectory tracking accuracy is measured. The trajectory tracking 

accuracy is measured as the ratio between accurate trajectory samples to total number of sample images and is 

measured as below. 

 𝑇𝑇𝑎𝑐𝑐 = ∑ ⬚𝑚
𝑖=1

𝑆𝐼𝑇𝐴

𝑆𝐼𝑖
         (18) 

From the above equation (18), the trajectory tracking accuracy ‘𝑇𝑇𝑎𝑐𝑐’ is measured by taking into considerations 

the sample images ‘𝑆𝐼𝑖’ and the sample images accurately tracked ‘𝑆𝐼𝑇𝐴’. It is measured in terms of percentage 

(%). 

Table 2 Tabulation for trajectory tracking accuracy using RV-BMRBFC, Intelligent controller [1] and Data 

driven method [2] 

Sample images Trajectory tracking accuracy (%) 

RV-BMRBFC Intelligent controller Data driven method 

120 95.83 90.83 87.5 

240 95 RV-BMRBFC 90.35 86.66 

360 94.35 90.15 86.35 

480 94 90 86 

600 93.85 89.15 85.45 

720 93.55 89 85 

840 93 88.15 84.35 
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960 92.85 88 84 

1080 92 87.35 83.25 

1200 91.45 87 83 

Table 2 given above lists the performance of trajectory tracking accuracy .The average of 10 simulation runs 

indicates that the proposed RV-BMRBFC method enhances the trajectory tracking accuracy by 5% and 10% 

upon comparison with [1] and [2] respectively.  

IV.4 Performance analysis of trajectory tracking overhead  

Finally, in this section the overhead incurred in trajectory tracking via suitable controller is measured as given 

below.  

 𝑇𝑇𝑂𝐻 = ∑ ⬚𝑚
𝑖=1 𝑆𝐼𝑖 ∗ 𝑀𝑒𝑚 (𝑇𝑇)       (19) 

From the above equation (19), the trajectory tracking overhead ‘𝑇𝑇𝑂𝐻’ is measured using sample images ‘𝑆𝐼𝑖’ 

and the memory consumed ‘𝑀𝑒𝑚 (𝑇𝑇)’ in performing the overall process. It is measured in terms of kilobytes 

(KB).  

 

Figure 5 Trajectory tracking overhead versus sample images 

Finally, figure 5show graphical representation of trajectory tracking overhead. Therefore by eliminating the 

irrelevant arbitrary vector parameters and retaining the essential arbitrary vector parameters in the visible layer 

in turn improved the trajectory tracking overhead using RV-BMRBFC by 37% compared to [1] and 53% 

compared to [2]. 

V. CONCLUSION 

Moving target tracking is a smart application and hence considered as a complicated field of research due to the 

complicated dynamics and the varying speed of the moving target with time. UAV can have complicated 

dynamics and kinematics that governs flight of such multirotor devices.  Recently, many control algorithms 

have been developed to track a moving target using a camera. In this work a suitable Radial Velocity and 

Bernouli Maximization Restricted Boltzmann Feedback Controller (RV-BMRBFC) for accurate target tracking 

is developed to further improve the identification performance.  First, the drone data is used for obtaining both 

the textual and image information with the purpose of identifying controller for target tracking. Here, processing 

of drone data is performed using Partial Derivative Lagrangian function to obtain its positioning for further 

processing. Then Radial Velocity and Visual Axis Waypoint are employed in RV-BMRBFC method for 

identifying controller with minimal error. Finally, using Expected Bernoulli Maximization Restricted Boltzmann 

Machine-based Feedback Controller accurate target tracking is said to be ensured. A comprehensive 

experimental evaluation is performed using diversified performance metrics like trajectory tracking accuracy, 

trajectory tracking time, trajectory tracking overhead and trajectory tracking error rate with respect to the 

number of samples. The overall performance results illustrate that the presented RV-BMRBFC method achieves 

higher accuracy with minimum time than the conventional methods. 
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