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Abstract: - The recognition of human activity is a challenging task nowadays, where surveillance cameras are employed for security 

purposes and monitoring. It is highly appreciated to utilize the best deep learning techniques to achieve higher accuracy than existing 

methods. In this research, the Gated Recurrent Unit (GRU) technique is employed to identify activities performed by humans. The Human 

Activity Recognition Trondheim (HARTH) dataset is utilized, which consists of data collected from individuals. The dataset comprises six 

different classes of daily activities performed by humans: climbing downstairs, upstairs, walking, sitting, running, and standing. The 

algorithm is implemented against the HARTH dataset to achieve higher accuracy using TensorFlow and the Python framework, and 

accuracy is calculated. A confusion matrix is also obtained from the conducted research. This research concludes that the GRU algorithm 

yields a higher accuracy of around 95% in identifying human activities compared to the machine learning algorithms implemented earlier. 
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I.  INTRODUCTION 

Identifying human activities is necessary to recognize any suspicious behavior in crowded places and ensure the 

safety of society. Therefore, research in this area has a significant impact on ensuring safety and security in day-to-

day life. From this perspective, deep learning algorithms have become integral in recognizing and assessing human 

activities in daily life [1]. Human activity recognition spans various fields such as sports, daily routines, remote 

surveillance, interactive gaming, yoga, fitness monitoring, and healthcare [2-7]. In some areas, wearable 

accelerometers have been utilized to assess human activity in hospitals and among patients, enabling remote 

connectivity. Despite the utilization of several machine learning algorithms to address this issue, achieving higher 

accuracy remains a challenge [8-13]. Although many solutions have been proposed by researchers, real-time 

capturing of videos and images still falls short in achieving higher accuracy. 

The GRU algorithm, a deep learning technique, addresses the low accuracy problem. It is also employed in speech 

processing, digital signal processing, language modeling, and human activity recognition. The primary aim of the 

GRU algorithm is to mitigate the vanishing gradient problem, making it particularly useful in processing image 

sequences over time. 

II. RELATED WORKS 

Hammerer NY et al. [14] experimented with research on the Opportunities dataset to identify a wide range of human 

activities using the Bi-directional LSTM algorithm, with hand signals as input sourced from inertial sensors. The 

research yielded an F1-score result of about 91%. 

Qiu S et al. [15] developed an LSTM algorithm employing regularization techniques on the HARTH dataset, 

achieving an accuracy of about 94%. In their research, they used two parameters to assess the results: the confusion 

matrix and the learning curve. 

Cruciaini et al. [16] experimented with human activity recognition on the UCI - HAR dataset using Convolutional 

Neural Networks and achieved an accuracy of about 91.8%. Ordonez et al. [17] proposed a convLSTM technique 

to recognize and classify human activities. The authors used various initial sensors and accelerometers to measure 

parameters against the Skoda dataset, classifying around five human activities. The algorithm yielded an F1 score 

of about 95.8% accuracy. 
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Xia K et al. [18] proposed a CNN Long Short-Term Memory algorithm against the HARTH dataset for recognizing 

human activities. This algorithm achieved around 95.8% accuracy and required less computational time during the 

training phase. 

Alani et al. [19] proposed CNN, LSTM, and CNN LSTM against the SPHERE dataset, achieving accuracies of 

92.89%, 93.55%, and 93.6% respectively. In this research, the CNN, CNN LSTM, and LSTM algorithms were used 

for imbalanced data for HAR, with limitations in performance. 

Alzantot et al. [20] used LSTM techniques to classify human activities and categorize real and synthesized 

(generated) data. The drawback of this research is low accuracy and longer training times during the training phase 

due to the presence of many training layers leading to complex architecture. Shakya et al. [21] experimented with 

CNN and RNN algorithms against the Actitracker dataset, attaining an accuracy of about 92.2%. 

III. PROPOSED METHODOLOGY 

In this research, a ReLU layer is incorporated along with GRU to enhance classification accuracy in identifying 

individual activities. The HARTH dataset is utilized for training and testing GRU. The dataset is split into training 

and testing phases, with 80% of the data used for training and the remainder for testing purposes. Figure 1 illustrates 

the proposed methodology. In this setup, the GRU algorithm is trained to classify six classes: walking, running, 

standing, upstairs, downstairs, and sitting. 

 

Figure 1: Framework of the proposed system 

The Gated Recurrent Unit is one of the deep learning algorithms, a type of recurrent neural network. The vanishing 

gradient problem in RNN is resolved by the GRU algorithm. It is an algorithm utilized to process sequences of time 

data. The GRU unit does not have any memory units to get linked with. The architecture of GRU is shown in Figure 

2. The GRU consists of a reset gate and an update gate. This setup includes a sigmoid function and based on the 

output of the sigmoid function, the data is either accepted or rejected by the gate. The information is passed across 

the cell based on the sigmoid output. When the sigmoid output is 1, data is accepted by the gate, and when the 

sigmoid output is 0, the data is rejected by the gate. The output of the sigmoid function is denoted as Rt. The input 

to the Reset gate, ht, is considered as the present state, and the previous hidden state is given by ht-1. 

The sigmoid function is attached to the Update gate, which in turn updates the cell state. The Update gate decides 

whether to pass or reject the data to the future state via the gate. The sigmoid function ranges between 0 and 1. For 

all values above zero, the output of the sigmoid function will be 1, whereas for all negative values and zero, the 

output of the sigmoid is 0. Similarly, we use a tanh activation function along with the sigmoid function to create 

the new state. The tanh has a value ranging from -1 to 1. The sigmoid function is multiplied with the tanh function 

to give the output. The output of the present cell Ct is added with the multiplication product, where ht is the hidden 

state output of the current cell. Reset and update gate are computed by the following equations, respectively. Wr 

and Wz represent the reset and update gate’s weights. The corresponding weight was calculated during the training 

phase, respectively. 
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Figure 2: Architecture of GRU cell 

Moreover, ht, the height of the GRU, is given by the following equations. 

𝑅𝑡 =  𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡])         - (1) 

𝑍𝑡 =  𝜎(𝑊𝑧[ℎ𝑡−1, 𝑥𝑡])         - (2) 

ℎ𝑡 = (1 − 𝑍𝑡)ℎ𝑡−1 + 𝑍𝑡  ℎ̂𝑡         - (3) 

The GRU is refined and implemented here to recognize and classify human activities. It is a special kind of RNN, 

employed to resolve the vanishing gradient problem present in the RNN. Apart from this it has an added advantage, 

that it requires less computational time in the training phase because of its high speed. It is well suited to process 

time sequence data and works better than RNN. 

Figure 3 represents the overall description of GRU and it consists of an input layer, two GRU layers and a single 

output layer. The input layer consists of three input features collected from the recordings of the accelerometers 

positioned in the individuals. ax, ay, az are considered as the input features, where ax, ay and az denotes acceleration 

in the x, y and z axis respectively. 

The input time sequence data is captured by the two GRU layers which is fed by the input layer as a feature input. 

Each Gated Current Unit layer has 32 hidden layers and a ReLU function along with it. The ReLU function is used 

for the robustness of GRU. Generally, GRU layers are stacked one above the other to increase the stability and 

accuracy. The output layer comprises of six neurons to identify six classes. Each neuron has a softmax activation 

function along with it to identify the classes and also cross entropy function for wrong identification is calculated 

here in terms of probability function. The learning rate of the algorithm for training the data is set to 0.0030 and 

each batch length is fixed to 64. 

The learning rate decides the training rate of the GRU algorithm.  The weights of the GRU algorithm were computed 

with the help of Adam Optimizer function. The computation of the proper weights for the training process increases 

the training accuracy, reduces the loss and minimizes the error.  Additionally, a regularization method is 

incorporated to avoid over-fitting in the training phase. Cross entropy loss is calculated to identify the errors of 

wrong identification of the classes in the overall proposed framework. 

 

Figure 3: GRU Framework 
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IV. DATASET DESCRIPTION 

The HARTH dataset comprises raw acceleration data collected from 22 individuals who wore two to three axial 

accelerometers on their bodies to measure the data. The three accelerometers were worn on the lower back and 

thigh of their bodies, and the corresponding accelerometer signals were measured while they performed any activity. 

It consists of 12 different classes of activities performed by humans, such as walking, standing, shuffling, climbing 

steps (up and down), sitting, lying, running, cycling with sitting position active, cycling with standing position 

active, cycling - sitting idle, and cycling - standing idle. The complete dataset is split into training data (80%) and 

testing data (20%). The HARTH dataset is purely based on human activities, which are based on the x, y, and z 

acceleration, time-dependent, and it is a function of gravity (g). The magnitude of the three recorded signals varies 

from -g to g. 

Evaluation metrics are used to measure the model’s performance using various statistical parameters from the 

Confusion Matrix, such as Precision, Sensitivity, Accuracy, and F1-Score. False Negative (FN), False Positive (FP), 

True Positive (TP), and True Negative (TN) are the measures obtained from the Confusion Matrix. A correctly 

predicted output from a model is termed as TP, while True Negative (TN) means a model correctly predicts it as 

negative, also known as correct rejection. FP indicates a wrong class, but the model predicts it as correct (false 

alarm or overestimation), and FN indicates that the model predicts it as negative, but it is actually positive, which 

is a type II error (underestimation). 

Accuracy =
TP+TN

TP+FP+TN+FN
         - (4) 

Recall =
TP

TP+FN
          - (5) 

Precision =
TP

TP+FP
          - (6) 

F1 score =  2 x 
Precision x Recall

Precision + Recall
        - (7) 

V. RESULTS AND DISCUSSION 

The algorithm was implemented for the data fed as an input and the obtained confusion matrix for the same is given 

below. 

 

Figure 4: Confusion matrix of the proposed framework against HARTH dataset 

The confusion matrix denotes the prediction summary of each class in matrix form. It displays correct and incorrect 

predictions, providing a better understanding of the different classes present in the dataset. 

Figure 4 represents the Confusion matrix of the proposed framework. The proposed system detects 3128, 2986, 

1587, 954, 854 and 632 for the 6 activities performed by human such as walking, standing, sitting, running, Upstairs 

and downstairs correspondingly. The Precision, F1 – Score, recall for all the 6 classes have been tabulated below. 
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Table 1 Classification Summary for the proposed GRU framework 

 

Table 2 Comparison of accuracy of the previous works with the proposed framework 

 

Table 1 indicates the values obtained for Precision, Recall and F1-Score for all the six classes. 

Table 2 shows the proposed framework implemented across HARTH dataset and the comparative analysis of the 

results obtained using other datasets. 

VI. CONCLUSION 

The GRU algorithm is implemented across the HARTH dataset to detect human activities and its classification 

accuracy was measured about 94.8%. Other evaluation parameters like Precision, Sensitivity (Recall) and F1 Score 

had also found and reported that GRU algorithm outperforms the previous works such as CNN and other machine 

learning algorithms. In future, hyper parameter tuning can be implemented to increase classification accuracy 

furthermore. In addition, it can be implemented with other deep learning algorithms for better results. 
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