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Abstract: - A While software-defined networking (SDN) offers flexibility and excellent programmability, it faces challenges in optimizing 

traffic engineering to adapt to changing network conditions. Enhancing SDN functionality relies heavily on effective traffic allocation and 

resource efficiency. Therefore, the necessity for an efficient, scalable, and adaptive algorithm is crucial to enable intelligent flow control 

and network improvement. Despite numerous proposed solutions within this realm, the absence of a precise and efficient algorithm for 

managing traffic in SDN networks remains apparent due to the complexity of the problem. In this study, an enhanced ACO algorithm was 

implemented for traffic management in an SDN network. The findings from simulations conducted on various network topologies indicate 

that the ACO algorithm significantly enhances network traffic distribution by identifying more optimal paths, thereby promoting load 

balancing within the network. 

Keywords: Traffic Engineering(TE), Software Defined Networks(SDN) ,Swarm Intelligence (SI), Ant Colony Optimization 

Algorithm (ACO)Load balancing (LB) 

 

1. Introduction 

Software Defined Networking (SDN) is considered as a promising approach in networking paradigm. It 

distinguishes between the network's control plane and the data forwarding plane. This strategy not only aids in 

the optimal exploitation of network resources, but it also decreases network administration complexity, lowers 

network operating costs, and fosters novel and evolutionary ideas. 

It separates the network control logic from the underlying routers and switches, encourages centralized network 

control, and enables network operation programming. SDN will become the preferred platform for deploying 

numerous networks. Compared to conventional networks. OpenFlow serves as the prevalent communication 

protocol connecting the controller plane with the switch plane in SDN. SDNs enable centralized control, which 

provides a global view of the network and allows for dynamic reconfiguration to adapt to changing traffic 

patterns. Techniques such as adaptive robust traffic engineering and dynamic traffic engineering leverage this 

capability to optimize network performance and reduce reconfiguration frequency, ensuring stability and 

minimizing overhead [1, 2]. 

Traffic engineering (TE) in SDNs involves optimizing the management of network traffic to improve 

performance, reliability, and resource utilization. This is achieved by leveraging the decoupled control and data 

planes, which allow for centralized network management and dynamic reconfiguration. SDN traffic engineering 

challenges include flow management, fault tolerance, topology update, and traffic analysis, requiring novel 

solutions to optimize performance and manage traffic in software-defined networks. Traffic engineering can 

reduce connection failures and service degradation in networks.. [3]Therefore the effective traffic engineering in 

SDNs involves a combination of centralized control, dynamic reconfiguration, load balancing, advanced 

machine learning techniques, hybrid deployments, and robust multi-controller architectures. These approaches 

collectively optimize network performance, resource utilization, and resilience. Cluster-based routing and multi-

controller architectures enhance the scalability and resilience of SDNs. These approaches reduce control traffic 

delay and improve fault tolerance, ensuring efficient network operation even during traffic spikes or controller 
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failures [4, 5] Advanced techniques such as machine learning, reinforcement learning and Genetic Algorithm 

are being used to enhance traffic engineering in SDNs. These methods can predict traffic patterns and 

dynamically adjust routing decisions to optimize performance and reduce latency [6, 7]  

Ant Colony Optimization (ACO) utilizes a probabilistic method to address the target problem, similar to GA, 

simulated annealing, and other algorithms that rely on heuristics. Inspired by the behavior of ants, the ACO 

algorithm involves ants initially wandering aimlessly before returning to the nest after depositing pheromones 

on paths while searching for food. Subsequent ants can then follow these pheromone trails instead of moving 

randomly. This strategy has been applied to tackle issues in computer networking, such as determining the 

optimal path within the network. Various systems based on the ACO algorithm, such as AntNet, AntHocNet, 

HopNet, and Stigmetry, can be utilized to solve the routing issue for the computer network.[8, 9] In this study, 

we implemented a Swarm Intelligence-based Traffic Engineering (SITE) algorithm which is essential for 

intelligent traffic management and network optimization. 

2. RELATED WORK 

Qi et al. [10] decided to better learn the traffic features and improve the routing performance, proposed a TE 

approach combining contrastive learning and reinforcement learning to optimize routing of network traffic in 

hybrid SDN. In this paper each agent trains an encoder that well represents the traffic features through 

contrastive learning and the traffic features are fed into the training of the actor neural network for learning 

the map between the traffic and routing policy through reinforcement learning.  After receiving offline 

training, the agent installed on the SDN switch may quickly infer an appropriate traffic splitting policy that 

defines the traffic splitting ratio on the switch.. Extensive experiments on three different network topologies 

showed that their proposed algorithm provides significant improvements. 

In [10] a load-balancing technique is presented which averages the load across SDN controllers, thereby 

facilitating effective load distribution. The performance of the proposed technique is evaluated based on the 

degree of load balancing, network response time, and migration cost. These metrics provide insights into the 

method's efficacy in maintaining load stability and the overhead associated with the migration process. The 

proposed approach showed that the load imbalance degree of the proposed method decreased by an average 

of 53.3% and 43.5% compared to EASM and SMS respectively. 

Authors in [11] have proposed the migration of the data plane components to balance the load between 

distributed SDN controllers. Different from most previous works which use reactive mechanisms, wethey 

proposed to preemptively balance the load in the SDN control plane to support network flows that require 

low latency communications. First, they forecast the load of SDN controllers to prevent load imbalances and 

schedule data plane migrations in advance. Second, they optimized the migration operations to achieve better 

load balancing under delay constraints by constructing two prediction models based on Auto Regressive 

Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) techniques for forecasting SDN 

controller demand. Their results show that, in long-term predictions, the accuracy of LSTM model 

outperforms that of ARIMA by 55% in terms of prediction errors. The simulations reveal that the suggested 

approach works near optimally and outperforms previous benchmark algorithms from the literature.[12] 

Guo et al. [13] proposed an approach that leverages Graph Neural Networks (GNNs) and multi-arm bandit 

algorithms to dynamically optimize traffic management policies based on real-time network traffic patterns. 

They used a GNN model to learn and predict network traffic patterns and a multi -arm bandit algorithm to 

optimize traffic management policies based on these predictions. They evaluated their proposed approach on 

three different datasets, including a simulated corporate network (KDD Cup 1999), a collection of network 

traffic traces (CAIDA), and a simulated network environment with both normal and malicious traffic (NSL-

KDD). Their results demonstrated that the approach outperforms other state-of-the-art traffic management 

methods, achieving higher throughput, lower packet loss, and lower delay, while effectively detecting 

anomalous traffic patterns.  
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There exist various studies on TE of SDN [14] presented a scheme on how to use the genetic algorithm (GA) for 

solving the LB problem of SDN. Although it is an innovative method, the conventional GA is extremely time-

consuming.. There are also studies adopting Ant Colony Optimization (ACO) for LB [15-18] . 

A machine learning-based meta-layer and heuristic algorithm layer comprise the traffic-engineering framework 

that was suggested. The meta-layer trains the heuristic algorithm layer in traffic engineering to identify the best 

route following training. The optimum path is then used for dynamic routing, which produces effective network 

operation. Additionally, QoE-Centric flow routing using ACO, [16] which was shown to be better than Shortest 

Path Routing (SPR). ACO was paired with job categorization for multi-controllers, which separates central 

controllers from sub-controllers.[15]. 

In [8] a traffic engineering framework consisting of a heuristic algorithm layer and a machine learning-based 

meta layer is proposed. For traffic engineering, the heuristic algorithm layer is trained by the meta layer to 

find the optimal path. Dynamic routing is then performed on the optimal path, resulting in efficient network 

operation. ACO is also used for QoE-centric flow routing, which was shown to be better than Shortest Path 

Routing (SPR). 

ACO is combined with multi-controller job classification, where the job classification distinguishes the 

central controller from the sub-controllers. While the basic ACO algorithm produces good results, it requires 

a lot of computation before it can fully function. As with typical optimization problems, the solution may take 

a long time to converge or reach a local optimum. It is also not easy to deploy them on the network when the 

operating scenario changes. This paper classifies AI-based load balancing technologies and carefully 

evaluates these mechanisms from different perspectives, including the algorithms/methods used, the problems 

solved, and their advantages and disadvantages. Third, it summarizes the indicators used to evaluate the 

effectiveness of these strategies. Finally, identifying the tendencies and demanding situations of AI-based load 

balancing for destiny research. SDN architecture is organized into three principal planes based on the Open 

Networking Foundation (ONF). [19] 

Although the basic ACO algorithm produces good results, it requires a large number of computations to reach 

its full potential. Similar to other common optimization issues, it could take a while for the solution to converge 

or reach the local optimum. Deploying to the network when the operation scenario changes is also difficult. 

3. PROPOSED METHOD 

The problem of this research is the use of ACO algorithm for traffic engineering in an SDN network. Traffic 

engineering in SDN network using ACO algorithm includes dynamic optimization of traffic routing to increase 

network efficiency. The problem of traffic engineering in this research is to find optimal paths in order to 

balance the load: 

𝑝𝑎𝑡ℎ𝑠 = min
𝑉,𝐸

𝑓(𝑃𝑎𝑐𝑘𝑒𝑠𝑡)    (1) 

𝑝𝑎𝑡ℎ𝑠 represents the paths in the network.  V and E represent the set of switches and network links, respectively.  

𝑓(𝑃𝑎𝑐𝑘𝑒𝑠𝑡)is a function that represents the amount of packets passing through network links. The function of 

the number of packets traveling over network links is represented by f in this context. In order to achieve load 

balancing, the process of uniformly distributing traffic load throughout the network aims to avoid congestion 

and guarantee the effective use of available resources. By mimicking the actions of ants searching for the best 

roads based on pheromone pathways and heuristic information, the ACO algorithm finds efficient paths. While 

maximizing throughput, these effective pathways also decrease latency. Additionally, these pathways result in a 

more stable network by preventing overloading of each particular link. 

3.1  Flowchart OF Proposed Method 

The suggested method's flowchart is displayed in the accompanying diagram. First, the network topology is 

defined using this flowchart. Defining the network topology includes identifying the amount of switches, links, 

and network configuration. Once the topology has been established, the switches are initialized and ant farms 

are randomly assigned to them. The routing operation is then carried out by determining the probability of each 
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path based on the pheromone material. Until the optimal pathways achieve the ultimate requirements, these 

procedures are repeated. Ultimately, this algorithm's output will balance the load and improve network 

efficiency. 

 

Figure Error! No text of specified style in document.1. Flowchart of the proposed method 

3.1.1 Network Topology Modeling  

At the beginning of the proposed method, the network topology is modeled. A two-dimensional graph is used to 

model the network. Graph G is a set of nodes (switches) and edges (links). Here, graph G can be modeled as 

equation 2: 

𝐺𝑆𝐷𝑁 = (𝑉, 𝐸)     (2) 

In graph-based topology, links are communication paths between switches. Each link has three characteristics: 

𝐶𝑖𝑗   , 𝐿𝑖𝑗 , 𝐷𝑖𝑗    (Figure 3-2). Therefore, the 5 parameters of Table 1 represent the main characteristics of the 

graph that should be considered in modeling. 

Table 1. main parameters in SDN topology modeling 

Variable Description 

V Set of nodes (switches) 

E Set of edges (links) 

𝐶𝑖𝑗 Capacity of link 

𝐿𝑖𝑗  Current load in link 

𝐷𝑖𝑗  Delay of link 
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In the modeled graph, the number of V and E is very important in the problem of path finding and load 

balancing. It is assumed that the studied network has m switches and k links It depends on (Capacity of link, 

Current load in link, Delay of link). 

𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛}      (3) 

𝐸 = {𝐸1, 𝐸2, … , 𝐸𝑘}     (4) 

 

Figure 2. A simple example topology with 𝐶13, 𝐿13, 𝐷13 

3.1.2 Initial Settings 

Initial settings are created after the network topology has been defined and modeled. They serve to define the 

network static variables, such as the number of m-k, the minimum acceptable delay between two switches, the 

initial parameters of the ACO optimization algorithm, and other parameters required to initiate path finding and 

load balancing. This step in the simulation process is crucial because a network whose parameters do not 

correspond to real-world conditions cannot yield trustworthy results 

  

3.1.3 Definition of fitness function 

The fitness function is defined as shown below. The purpose of ACO optimization is to locate efficient 

pathways and equally distribute traffic across the network. To balance the network load, the ACO algorithm 

should find the optimum pathways based on the following relationship. 

𝐹 = max  (
𝐿𝑖𝑗

𝐶𝑖𝑗
) + 𝛿 ∑ 𝐷𝑖𝑗 . 𝑥𝑖𝑗

(𝑖,𝑗)𝜖𝐸

      (5) 

𝐿𝑖𝑗  Current load in link 

𝐶𝑖𝑗 Capacity of link 

𝐷𝑖𝑗  Delay of link 

In this regard, δ determines the importance of load uniformity. Also, in this relation, 𝑥𝑖𝑗  is a binary variable. 

This variable is equal to one if the link (i,j) is used in the selected path; otherwise it is zero. 

𝑥𝑖𝑗 = {
1      𝑖𝑓 (𝑖, 𝑗) ∈ 𝑝𝑎𝑡ℎ𝑠𝐸

0      𝑖𝑓 (𝑖, 𝑗) ∄ 𝑝𝑎𝑡ℎ𝑠𝐸
       (6) 

∈\𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 

∄\𝑛𝑜 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 

3.2. ACO optimization algorithm in SDN traffic engineering 
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The ACO algorithm is derived from the behavior of ants, where they leave pheromone trails from the nest to the 

food source, which is then followed by other ants to obtain the food. 

The ACO algorithm is used to traffic engineering in two parts. In the first stage, ants find new trails and collect 

information about current ones. This process is known as a forward update. If one of the ants successfully 

reaches the destination node, some of them will return to the source node via the already traveled path in the 

second phase. This round trip updates the nodes' routing tables.. This step is called a backward update. With 

SDN, these updates are eliminated because the controller has an overview of the entire network[20]. 

To demonstrate the concept of ACO in the proposed scheme, a practical SDN topology has been used as shown 

in the Figure Error! No text of specified style in document.. OpenFlow plays a fundamental role in SDN 

topology by providing a standard protocol, which handles direct communication between the SDN controller 

and network devices such as switches and routers. This protocol facilitates the separation of the control plane 

from the data plane and makes the controller centrally manage the network behavior by dynamically configuring 

the flow tables in OpenFlow switches. This feature enables the SDN controller to optimize traffic flows, 

implement dynamic routing policies, and thereby perform real-time traffic engineering. Obviously, traffic 

management has resulted in efficient load balancing throughout the network, which ultimately increases the 

overall performance and flexibility of the network. 

In order to illustrate the concept of ACO employed in the proposed scheme, the topology shown in Figure 

Error! No text of specified style in document. is used. Each ant in the ant-world may be considered as a 

network packet that begins randomly at any node in the topology. 

 

Figure Error! No text of specified style in document.. Topology based on Open flow[15] 

As previously stated, the number of switches in the topology is considered to be equal to n. To implement the 

ACO algorithm for traffic engineering on links and switches, a clear definition of ants is required. In this study's 

problem, each ant is treated as a packet delivered over a network. To do this, each ant's movement begins at 

random in each network node. This indicates that the ants have a random movement location, and the 

commencement of this movement comes from one of the network switches. Now, if 𝑏𝑖(𝑡) stands for the number 

of ants in the ith switch at time t, then the following relationship between m and n and 𝑏𝑖(𝑡) is established. 

𝑚 = 𝑏1(𝑡) + 𝑏2(𝑡) + ⋯+ 𝑏𝑛(𝑡)      (7) 

In this regard, m is the total number of ants, which can be written as follows. This relationship shows that the 

total number of ants is obtained from the total number of ants in the switches: 

𝑚 =∑𝑏𝑖(𝑡)

𝑛

𝑖=1

                 (8) 

It is vital to note that an ant does not visit the same switch repeatedly. This condition prevents loops and lowers 

efficiency. To provide these circumstances, temporary memory is required. As a result, each ant maintains track 

of which switches it has visited in a taboo table. This method allows for the discovery of more optimum 
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pathways in the network, resulting in more balanced traffic distribution. To model the state transfer probability 

between two switches based on the remaining pheromone in each path (probability of ant k moving from link i 

to j), the following equation is used: 

𝑃(𝐴𝑘)𝑖𝑗 = {

[𝜏𝑖𝑗(𝑡)]
𝛼
. 𝜇𝑖𝑗
𝛽

∑ [𝜏𝑖𝑗(𝑡)]
𝛼
. 𝜇𝑖𝑗
𝛽

𝑎𝑘

,   𝑗 ∈ 𝑎𝑘

0      𝑜. 𝑤

    (9) 

𝐴𝑘 = 1,2, … ,𝑚 

In this structure , k is the ant number 𝐴𝑘 and 𝑃(𝐴𝑘)𝑖𝑗 models the probability of Ak for Vj to visit Vi. Also, 𝑎𝑘 

shows the available switches to select when Ak is in Vi. Also, α represents the weight of the remaining 

pheromone. β also represents the path distance corresponding to the remaining pheromone. In this relation, τ_ij 

(t) also models the entire pheromone that is located in the path between Vi and Vj. The amount of pheromone in 

this path at the beginning (initial value) is equal to θ. 

𝜏𝑖𝑗(0) = 𝜃             (10) 

Pheromone is one of the key variables in the ACO algorithm for traffic engineering. These compounds are 

disseminated by ants throughout the pathways. The amount of pheromone on a connection determines how 

appealing it is to ants. As a result, the higher the pheromone level, the more probable the link will be picked. 

The figure below shows how the Ak ant chooses the lower path based on more pheromone (higher probability). 

 

Figure Error! No text of specified style in document.3 (Representation of signal stages of two-junction 

network)Paths with 𝜏1 < 𝜏2 

This relationship is very important in pathfinding and traffic engineering because ants based on the probability 

calculated by this relationship; They choose the next switch to visit, in other words, this relationship is the 

decision to choose the next switch. In the above relation, 𝜇𝑖𝑗
  is also calculated with the following relation. This 

variable indicates the intrinsic-exploratory quality of the link. In this regard, 𝑑𝑖𝑠𝑖𝑗  represents the distance 

between two switches i and j. 

𝜇𝑖𝑗
 =

1

𝑑𝑖𝑠𝑖𝑗
        (11) 

By placing 𝑑𝑖𝑠𝑖𝑗 instead of 𝜇𝑖𝑗
  in the visit probability relationship, the following relationship is obtained: 

𝑃(𝐴𝑘)𝑖𝑗 =

{
 
 

 
 [𝜏𝑖𝑗(𝑡)]

𝛼
. (

1
𝑑𝑖𝑠𝑖𝑗

)
𝛽

∑ [𝜏𝑖𝑗(𝑡)]
𝛼
. (

1
𝑑𝑖𝑠𝑖𝑗

)
𝛽

𝑎𝑘

,   𝑗 ∈ 𝑎𝑘    (12)

0      𝑜. 𝑤

 

This formula shows that the smaller the distance between i and j, the more likely the ant will visit node i. In this 

regard, there are two important parameters. These two parameters are very effective on the main relationship. 

The small value of α makes the probability of the next switch completely depend on 𝑑𝑖𝑠𝑖𝑗 , which is not a 
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desirable result. This problem causes local optima. On the other hand, if β is small, the next switch is chosen 

randomly, which results in an inaccurate answer to the problem. 

Table 2. Analysis of two parameters α and β 

parameter 

Effective 

parameter  on 

𝑃(𝐴𝑘)𝑖𝑗 

The problem of 

being small 

𝛼 𝜏𝑖𝑗(𝑡) 
local optimal 

solution 

𝛽 𝜇𝑖𝑗
  

not guarantee 

finding any good 

solution 

for solving this problem, The pheromone volatilization relationship is used. The relation of pheromone 

volatilization from the link is equal to: 

𝜏𝑖𝑗(𝑡 + 𝑛) = (1 − 𝜌) ∗ 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(𝑡)  (13)  

In the above relation, ρ represents the volatilization percentage of pheromone on link ij. ∆𝜏𝑖𝑗(𝑡) also shows the 

increase or decrease of pheromone along the path based on the ant's movement. The existence of this 

relationship is very essential in finding optimal paths. This relationship (pheromone volatilization) helps to 

control and reduce the amount of pheromone on the paths over time and thus prevents the accumulation of 

pheromone on the paths that were temporarily attractive but may no longer be optimal. In relation ∆𝜏𝑖𝑗(𝑡) is 

obtained using the following formula: 

∆𝜏𝑖𝑗(𝑡) = ∆𝜏𝑖𝑗
1 (𝑡) + ∆𝜏𝑖𝑗

2 (𝑡) + ⋯+ ∆𝜏𝑖𝑗
𝑚(𝑡) = ∑∆𝜏𝑖𝑗

𝑘 (𝑡)

𝑚

𝑘=1

     (14) 

The initial value of ∆𝜏𝑖𝑗(𝑡) is zero. This value indicates the initial state of the path[21]. 

∆𝜏𝑖𝑗(𝑡) = 0 

In this regard, ∆𝜏𝑖𝑗(𝑡) has two modes in modeling the rate of pheromone volatilization. The first mode is 

positive feedback. Positive feedback means reinforcement of optimized paths by ants. When an ant travels a 

path and reaches its destination, the amount of pheromone on that path increases (positive). This increase in 

pheromone increases the probability of choosing this path by the next ants. Therefore, this feature is modeled in 

the form of the following relationship. 

∆𝜏𝑖𝑗(𝑡) = {

𝑄

𝐿𝑘
      𝑖𝑓 𝐴𝑘 𝑚𝑜𝑣𝑒𝑠 𝑓𝑟𝑜𝑚 𝑉𝑖 𝑡𝑜 𝑉𝑗

0                                                   𝑜. 𝑤

    (15) 

The second mode is negative feedback. This is the opposite of the behavior of the ant in the state of crossing a 

path.  

In the above relations, there are four main parameters which are defined as follows. 

Table 3.  Definition of main variables in ACO relations for SITE 

Definition Variable 

Number of Ants m 

Pheromone Importance 𝛼 
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Heuristic Importance 𝛽 

Evaporation Rate 𝜌 

The fundamental purpose of the ACO algorithm is to identify optimum pathways using the concept of ants 

traveling around a network. Each ant that moves from one switch to another makes a record (pheromone). These 

records are represented using a probabilistic connection. Routing activities include estimating the likelihood of 

each path depending on the pheromone ingredient. These stages are continued until the optimum pathways 

achieve the desired criteria. Finally, the result of this method will balance the load and improve the network 

performance. This approach is known as network traffic engineering. 

3.3. The Permanent Structured Cooperation (PESCO) code 

The summary of relationships and algorithm presented in this research is summarized in the following 10 steps. 

Pesco code 

1. The network graph is modeled. 

𝐺 = (𝑉, 𝐸) 

2. It is assumed that there are n switches in the network. 

𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑛} 

3. It is assumed that there are k links in the network. 

𝐸 = {𝐸1, 𝐸2, … , 𝐸𝑘} 

4. The number of ants (variables of ACO algorithm) is set. 

𝑚 = 𝑠𝑒𝑡 𝑎𝑠 𝑛𝑢𝑚 

5. The constants of the ACO algorithm are set. 

(𝛼 − 𝛽 − 𝑚 − 𝜌) 

6. Fitness function (balance in load) is defined. 

𝐹 = 𝑚𝑎𝑥  (
𝐿𝑖𝑗

𝐶𝑖𝑗
) + 𝛿 ∑ 𝐷𝑖𝑗 . 𝑥𝑖𝑗

(𝑖,𝑗)𝜖𝐸

 

7. Ants find the most efficient paths using the following probabilistic relations. 

𝑚 =∑𝑏𝑖(𝑡)

𝑛

𝑖=1

 

𝑃(𝐴𝑘)𝑖𝑗 = {

[𝜏𝑖𝑗(𝑡)]
𝛼
. 𝜇𝑖𝑗
𝛽

∑ [𝜏𝑖𝑗(𝑡)]
𝛼
. 𝜇𝑖𝑗
𝛽

𝑎𝑘

,   𝑗 ∈ 𝑎𝑘

0      𝑜. 𝑤

 

𝜏𝑖𝑗(0) = 𝜃 

𝜇𝑖𝑗
 =

1

𝑑𝑖𝑠𝑖𝑗
 

𝜏𝑖𝑗(𝑡 + 𝑛) = (1 − 𝜌) ∗ 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗(𝑡) 

∆𝜏𝑖𝑗(𝑡) = ∆𝜏𝑖𝑗
1 (𝑡) + ∆𝜏𝑖𝑗

2 (𝑡) + ⋯+ ∆𝜏𝑖𝑗
𝑚(𝑡) = ∑∆𝜏𝑖𝑗

𝑘 (𝑡)

𝑚

𝑘=1

 

∆𝜏𝑖𝑗(𝑡) = {

𝑄

𝐿𝑘
      𝑖𝑓 𝐴𝑘 𝑚𝑜𝑣𝑒𝑠 𝑓𝑟𝑜𝑚 𝑉𝑖 𝑡𝑜 𝑉𝑗

0                                                   𝑜. 𝑤

 

8. Has the minimum error condition been met? 

If the answer is yes, go to 9, otherwise, go to 7 

9. Efficient paths are introduced in the output of the algorithm. 

10. Go to 1 
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3.4 SIMULATION 

The primary objective of this study was to build and evaluate a traffic engineering strategy based on swarm 

intelligence (SITE) for SDN utilizing the AGIS network topology and preset parameters. Specific targets 

include: 

Development of a Python-based simulation environment to simulate an SDN network based on AGIS topology. 

Implementation of swarm intelligence algorithms, such as Ant Colony Optimization (ACO) for dynamic 

allocation of flow to path and traffic optimization and ultimately increasing network capability 

Performance evaluation of SITE compared to traditional SDN TE algorithms. 

In this study, the Mininet-WiFi library and other SDN simulation tools are used to generate a simulated SDN 

environment based on the AGIS network topology, which is then tested against various traffic scenarios to 

assess the SITE implementation's performance. Mininet is a frequently used network simulator in this field of 

study. This simulator creates a network of virtual hosts, switches, controllers and links (network graph)[22]. It 

hosts standard Linux network software and switches also use OpenFlow for flexible routing with SDN. 

According to these features, Mininet has been used for simulation so that the performance of the proposed 

method can be compared[23]. 

3.4.1 Simulation constants  

 The selection of ACO algorithm simulation constants has a significant impact on the final output. Thus, 

adjusting these factors may result in improved outcomes. One of the advances of this research is adjusting these 

settings to achieve better outcomes. The table below shows the size and definition of the default constants in the 

ACO algorithm for traffic engineering[24]. 

Table 4.  Size and definition of default constants in ACO algorithm 

Definition Value Variable 

Number of Ants 8 m 

Number of Iterations 100 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 

Pheromone Importance 1 𝛼 

Heuristic Importance 2 𝛽 

Evaporation Rate 0.4 𝜌 

The table below also illustrates the size and definition of the default constants in the customized ACO method 

for the traffic engineering problem in SDN. One of our advances was to improve the ACO algorithm for the 

specific usage of swarm intelligence-based traffic engineering (SITE) in SDN. These parameters are obtained 

based on trial and error. These changes are made to avoid creating local optima. 

Table Error! No text of specified style in document..  Size and definition of improved constants in ACO 

algorithm 

 

3.5 Implementation steps 

The following steps have been taken to implement the proposed method. 

Definition Value Variable 

Number of Ants 8 m 

Number of Iterations 100 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 

Pheromone Importance 2.5 𝛼 

Heuristic Importance 3.1 𝛽 

Evaporation Rate 0.55 𝜌 
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Get data from Zip file: First, a Zip file called "topology-zoo.zip" is downloaded from Google Drive, which 

contains network data. This file is downloaded from Google Drive using PyDrive.Data Extraction: After 

downloading, the Zip file will be extracted to access the network data.Processing GML files: Network data is 

read from GML files. This process involves reading the GML files in the extracted directory and creating the 

corresponding networks using the NetworkX library.Network performance analysis: For each network, its 

performance is checked before the ACO algorithm and after the implementation of the ACO algorithm. The 

network performance includes the average and maximum load of nodes. Also, the ACO algorithm is 

implemented to optimize the traffic in the network, and the traffic before and after the optimization is 

displayed[25].Statistical analysis: Various statistics of networks are calculated, including average degree of 

nodes, coefficient of variance of degree of nodes, correlation between closeness centrality and degree of nodes, 

degree assemblage, neighborhood size of the largest node, 2-core size and pyramid fit. 

Histogram analysis: The histogram of the average degree of nodes is drawn for the distribution of the average 

degree of nodes. Displaying results: The results of network analysis and related functions, including histogram 

and analytical statistics, are displayed. Network monitoring: A separate thread is run to monitor the network, 

which shows the amount of bytes sent and received continuously. Finally, the program uses another thread to 

monitor the network to continue the main process while monitoring. 

4. Experimentation and Results 

4.1 Simulation results  

This section presents the final simulation results. This application produces graphs linked to the histogram of the 

average degree of nodes, as well as other graphs relevant to network research. Analytical statistics for each 

network are also displayed, including the average degree of nodes, the coefficient of variance of the degree of 

nodes, the correlation between the centrality of closeness and the degree of nodes, the degree assemblage, the 

size of the neighborhood of the largest node, the 2-core size, and the Pyramid fit. An example of various 

complicated networks is investigated in the file "topology-zoo.zip". This output provides the following 

information gathered during the program's execution: Information about the number of bytes delivered and 

received from the network over time: 

  Different values are displayed for bytes sent and received from the network. This information can be useful for 

monitoring network activity and its connections with other networks. Analytical statistics related to networks: 

  Various statistics have been calculated for each network, including the average degree of nodes, the coefficient 

of variance of the degree of nodes, the correlation between the centrality of closeness and the degree of nodes, 

degree assemblage, the neighborhood size of the largest node, 2-core size and pyramid fitting. 

  This information examines important characteristics of networks such as alignment, connectivity between 

nodes, and location of important nodes. 

In general, the comparison has been made for four networks. 

Comparison of two modes (without ACO and with ACO) for Cynet network 

Comparison of two modes (without ACO and with ACO) for janetbackbone network 

Comparison of two modes (without ACO and with ACO) for Amres network 

Comparison of two modes (without ACO and with ACO) for AGIS network 

In the table below, the specifications of the four grids (size V and E) are listed. 

Table 6. characteristics of the four networks (size V and E) under study 

NET V E 

Cynet 10 20 
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janetbackbone 15 25 

Amres 8 12 

AGIS 12 18 

The graphics in the figures below demonstrate the influence of the ant colony optimization algorithm (ACO) on 

various network topologies. The photos labelled "Traffic Before ACO" depict network traffic before the ACO 

algorithm is deployed. You can observe that the traffic distribution is frequently unequal, with some edges 

receiving much more traffic than others. 

The photos labeled "Traffic After ACO" depict network traffic following the application of the ACO algorithm. 

The traffic distribution is more balanced, since the ACO algorithm finds more efficient pathways and distributes 

traffic equally over the network. 

 

Figure 5. Comparison of two modes (without ACO and with ACO) for Cynet network 
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Figure 6. Comparison of two modes (without ACO and with ACO) for janetbackbone network 

 

Figure 7. Comparison of two modes (without ACO and with ACO) for Amres network 
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Figure 8. Comparison of two modes (without ACO and with ACO) for AGIS network 

The results clearly show that the use of ACO in these networks has led to the improvement of traffic 

management, congestion reduction and path optimization[26] The most noteworthy aspect of the occurrence is 

the uniformity of traffic size across network pathways following the use of the ACO algorithm. This highlights 

the relevance of the suggested technique, particularly for bigger and more complicated networks like 

Janetbackbone. If ACO fails to employ the route optimizer, some paths may get saturated with traffic, causing 

network delays and inefficiencies. The graphic below shows a comparison of network size and CDF for several 

networks. 

 

Figure 9. Comparison between Network size and CDF for different networks 

The CDF plot shows the cumulative distribution of network sizes for different network topologies. This figure 

shows that most networks are about 10-30 nodes in size. 
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Figure 10. Comparison between Network size and Average node degree for different networks 

 

Figure 11. Comparison between the amount of load in two modes of ACO and without ACO for different 

networks 

The ACO algorithm clearly improves network traffic distribution by identifying more efficient pathways, 

resulting in a more balanced load at network edges. The exhibited pictures demonstrate the usefulness of the 

ACO algorithm in improving network traffic allocation. The analysis of the network characteristics shows that 

the ACO algorithm is especially useful for medium-sized and dense networks. The results show the importance 

of using optimization algorithms for efficient network management and resource allocation[27]. 

 

Figure 12. Average node degree histogram 
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The histogram shows the average frequency of different node degrees across the networks. This bar graph shows 

that most networks have an average node degree between 1.8 and 2.0, indicating a relatively sparse network 

structure. In summary, CDF plots and histograms show that the analyzed networks are generally of medium size 

and relatively sparse in terms of connections. 

Authors should describe the results and how they might be interpreted in the context of prior investigations and 

the working hypothesis. The findings and their implications should be discussed in the broadest context 

possible. Future research directions might also be mentioned. 

4.1.2 Discussion and comparison 

In the table below, a comparison is made between Set1 and Set2. set1 is a set of parameters that used the ACO 

algorithm by default in the traffic engineering process. set2 also represents the set of parameters set for ACO (as 

custom). For better comparison in both tables the mode without ACO is also included. As it is known, the 

results are better in set2 mode. 

Table 7. TE and SITE comparison for set1 

𝑆𝑒𝑡1 Success rate 

TE (no ACO) 89.5 

SITE (with ACO) 91 

Table 8. TE and SITE comparison for set2 

𝑠𝑒𝑡2 Success rate 

TE (no ACO) 89.5 

SITE (with ACO) 96.3 

The results show that although the basic ACO algorithm provides good results, a lot of calculations are needed 

before it is fully operational. As with conventional optimization problems, the TE solution may take a long time 

to converge or lead to a local optimum. Also, it is not easy to deploy in the network when the operation scenario 

changes. This problem was solved to some extent in our research.G-ACO is a new solution to LB from SDN 

that blends GA and ACO. The present system, based on the ACO algorithm, employs a positive feedback 

mechanism to update the Path information of streams as they are transmitted. However, this may lead to a local 

optimal solution and inappropriate route selection. Also, the proposed method in [15]has a computational 

burden. In this research, we have shown that by presenting an improved plan in ACO, we can perform LB 

operations with good accuracy despite the absence of processing load. In the chart below, a complete 

comparison between the three modes is made 
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.  

Figure 13. Comparison between different TE methods 

5. Conclusions and Future Work 

Efficient traffic distribution, swarm avoidance, and resource utilization are critical to enhance SDN 

performance. In this context, the implementation of swarm intelligence-based traffic engineering (SITE) 

algorithms is essential for intelligent flow management and network optimization. Despite presenting various 

researches in this field, the lack of an accurate and fast algorithm for traffic engineering in SDN network is still 

felt. For this purpose, in this research, the improved ACO algorithm was used for traffic engineering in an SDN 

network. The simulation results on different topologies show that the ACO algorithm obviously improves the 

network traffic distribution by finding more efficient paths and leads to load balance in the network. 

The objective of this research is to address traffic engineering issues in Software-defined Networking (SDN), an 

innovative method for network architecture and management. Enhancing SDN performance requires prioritizing 

traffic allocation, avoiding swarm behavior, and optimizing resource utilization. The enhanced Ant Colony 

Optimization (ACO) method was employed for traffic engineering in a Software-Defined Networking (SDN) 

network, resulting in enhanced traffic distribution and load balancing. Future research could incorporate 

heuristic optimization algorithms, such as PSO and GA, to achieve better results. 
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