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Abstract: -  An efficient method for extending the depth-of-field of optical lenses is multi-focus image fusion, which produces an entirely 

focused image from a collection of partly focused images of the same scheme. In this paper, fusion schemes namely, Self Fractional Fourier 

Functions, 2D- Variational mode decomposition, 2D- Variational mode decomposition with fusion rule, Bidimensional multivariate 

Empirical mode Decomposition, and 2D-Compact Variational mode decomposition are compared for Remote sensing images for fusion. 

Also, a novel approach is derived and compared with the above-stated algorithms. The simulations are performed on available data sets and 

compared with the existing algorithms using seventeen objective performance parameters and subjective parameters. The simulation results 

show that the proposed algorithm gives better results than the existing schemes. 

Keywords: Image fusion, 2-dimensional Variational mode decomposition, Bidimensional multivariate Empirical mode 

Decomposition, 2-dimensional Compact Variational mode decomposition, Self Fractional Fourier Functions. 

 

1. Main text  

Data fusion can be defined as the synergistic use of information from different sources to assist in the overall 

understanding of a phenomenon. For the last 19 years (from 2005 to 2023) data is acquired from the Core 

Collection database of Web of Science (WoS) and presented in Figure 1. Which witnesses the development in 

this field with an increase in newly proposed methods. [5,6]. 

Multi-focus image fusion works well to increase the depth of field of optical lenses by creating an all-in-focus 

image from a collection of partially focused images. This technique is important in the domains of digital 

photography, integral imaging, optical microscopy, etc. Image Fusion techniques can be classified as frequency 

and spatial domain.  

 
Fig. 1 Articles available in international journals indexed by Science Citation Index Expanded (SCIE) of 

duration from 2005 to 2023, on multi-focus image fusion are shown here. 

 

A fully data-driven technique namely EMD, which decomposes signals into their basic components, called 

intrinsic mode functions (IMFs) [12,16,21], which is a different approach from the Fourier transform or wavelet 

transform-based signal decomposition methods that project signals onto a fixed set of bases. Empirical Mode 

decomposition (EMD)[4] and its variants like multivariate EMD (MEMD)[10], Bivariate EMD, Multivariate 

EMD, Multidimensional Empirical mode decomposition, Bidimensional Multivariate Empirical Mode 

decomposition, Window EMD, methods for multi-focus image fusion have recently been reported. Thereafter 

VMD [2,3] came into existence as a robust tool for processing the non-stationary signal. It has been suggested in 

the literature that, the VMD performance is superior to EMD and its modified forms in terms of noise robustness, 

tone detection, and tone separation [2,3], and also has an appropriate mathematical theory. The image fusion 

classification techniques, categorization, and applications are summarised in Figure 2.[8,9,11,26] 
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Classification Techniques 

2)    Frequency Domain

1. Laplacian Pyramid Fusion Technique

2. Discrete Transform Fusion Method

3. Discrete Cosine Transform

4. Discrete Wavelet Transform (DWT) Method

5. Kekre’s Wavelet Transform (KWT) Method

6. Kekre’s Hybrid Wavelet Transform (KHWT) 

Method

7. Stationary Wavelet Transform (SWT) Method

8. Curvelet Transform Method

1) Spatial Based Techniques

1. Simple Average

2. Minimum Technique

3. Maximum Technique

4. Max–Min Technique

5. Simple Block Replace Technique

6. Weighted Averaging Technique

7. Hue Intensity Saturation (HIS)

8. Brovey Transform Method

9. Principal Component Analysis (PCA)

10. Guided filtering

3)    Non stationary signal processing Techniques

1. Empirical Mode decomposition (EMD)

2. Bivariate EMD,

3. Multivariate EMD

4. Multidimensional Empirical mode decomposition

5. Bidimentional Multivariate Empirical Mode 

decomposition

6. Window EMD

7. Variational mode decomposition

4)    Deep Learning

IMAGE FUSION 

Main Applications Categorization

Following Main Applications in Divers  domains  
were anticipated by different authors for image 
fusion.

1) Remote Sensing Applications
2) Medical Domain Applications
3) Surveillance Domain Applications
4) Photography Domain Applications
5) Applications in Other Domains
6) Recognition Application
7) Detection and Tracking Application

To achieve the required fusion objectives, different
authors have projected following diverse
techniques:-

1) Single Sensor
2) Multi-Sensors
3) Multi-view Fusion
4) Multi-modal Fusion
5) Multi-focus Fusion
6) Multi-temporal Fusion

 
Fig.2.  Classification of Image Fusion techniques 

 

2. Literature review  

2.1. Self-Factional Fourier Functions (SFFF) 

Self-fractional Fourier functions ψ(t)M,L, which are Eigen functions of the fractional Fourier operation, are 

invariant under the fractional Fourier transform for some angle α. Any function let φ(t), from The Hilbert space 

of finite space i.e. L2, can be represented as a sum of M SFFF which are orthogonal to each other. Let φ(x, y) be 

any generator function, which can be represented through the sum of M orthogonal SFFFs of the order M 

φ(x, y) =  ∑ ψ(x, y)M,L
M
L=0                                                                                                (1) 

Where  

ψ(x, y)M,L = 
1

M
∑ exp (

i2πL(k−1)

M
)R(α,α)[φ(u, v)](x, y)M

k=1                                                 (2) 

Here ψ(x, y)M,L is an SFFF’s, R(α,α)denotes a 2D-FRFT operator with angle α =  
2π(k−1)

M
  towards the axis x, and 

y.[23] 

2.2. Bidimensional MEMD Algorithm 

The bidimensional MEMD algorithm for ready reference is given below [1]. The bidimensional multivariate 

signal S can be decomposed into K bidimensional univariate signals, represented as Qφk, for k = 1,2,…,K, by 

projecting S along vφk . The algorithm is stated below 

Algorithm1: Bidimensional MEMD Algorithm 

1. Evaluate the projections of bidimensional multivariate signal S along the unit projection vector vφk  by 

the following equation (3), and denoted by Qφk 

Qφk = [

∑ vl
φkn

l=1 Sl(1,1) ∑ vl
φkn

l=1 Sl(1,2) ⋯

∑ vl
φkn

l=1 Sl(2,1) ∑ vl
φkn

l=1 Sl(2,2) ⋯

⋮ ⋮ ⋱

]                                                             (3) 

Where vφk  given a unit projection vector along the angle φk. 

2. Corresponding to the local maximum and minimum of, locations (xmax
φk , ymax

φk ) and (xmin
φk , ymin

φk ) are extracted, 

respectively. 

3. n-dimensional maximal and minimal surfaces are obtained by interpolation of S(xmax
φk , ymax

φk ) and 

S(xmin
φk , ymin

φk ) represented by  εmax
φk  and  εmin

φk   respectively. 

4. Repeat the above steps for all k from 1 to K. 

5. μ which is the n-dimension mean surface of S is estimated as, 

μ =  
1

2K
∑ (εmax

φk + εmin
φk )K

k=1  .                                                                                   (4) 

6. Extract the details β using β = S −  μ. 

If β satisfies the 2D stopping condition [24].[25]. For a bidimensional n-variate IMF, apply the above procedure 

to S −  β, otherwise apply it to β. 
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2.3. Variational Mode Decomposition 

The time-frequency signal analysis method VMD is completely adaptive and non-recursive. An original time 

series x is divided into n IMFs using the VMD. Dragomirestskiy and Zossa [3] claim that equation (1) is the 

constrained variational formulation for generating the IMFs. 

𝑚𝑖𝑛
{𝑢𝑛},   {𝜔𝑛}

{∑ ‖𝜕𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗ 𝑢𝑛(𝑡)] 𝑒

−𝑗𝜔𝑛𝑡‖
2 

2
𝑁
𝑛=1 } ,         𝑠. 𝑡. ∑ 𝑢𝑛(𝑡) = 𝑥(𝑡)

𝑁
𝑛=1                                      (5) 

Where δ = the Delta function; j2  = -1;  ‖. ‖2 = L2 distance; 𝜔𝑛 = the center frequency; * = the convolution;          

𝑢𝑛(𝑡) = 𝐴𝑛 𝑐𝑜𝑠(∅𝑛(𝑡)) the nth IMF; ∅𝑛 = the non-decreasing function; and 𝐴𝑛 = the non-negative function.[2,3]. 

2.4. 2D Compact Variational Mode Decomposition 

For the amplitude discontinuities or abrupt changes, the performance of 1D-VMD suffers. To overcome this 

drawback of intrinsic conflict, as there is an inverse relationship between frequency and spatial support, Zassol 

et. Introduced 2D-CVMD an extension of VMD [34]. The binary support function is introduced in 2D-CVMD to 

eliminate abrupt signal conditions. The generalization of the Hilbert transform, directional Hilbert transform to 

higher dimensions is used in 2D-CVMD. To promote the sparsity of the signal L1-norm penalty function and 

total-variance (TV) are used. Finally, ADMM is used to solve the optimization problem, as ADMM is multiple 

times faster than conventional methods. Iteratively by ADMM, the modes Center frequencies, and Lagrangian 

multiplier are updated until the convergence criteria are satisfied [34]. 

2.5. Objective performance parameters are used for the comparison of the proposed algorithm with the others. 

Due to the nonavailability of ground truth images in some applications as in this application, performance 

evaluation becomes a tedious task. Various performance parameters have been proposed by researchers for this 

issue [4,7,18,33,36,37]. The following sixteen parameters including simulation time, were used in this paper for 

the comparison of the performance of different algorithms.  

1. Information Theory-Based Metrics 

1. Normalized Mutual Information (PMI)[14] 

2. Image Feature-Based Metrics 

1. Nonlinear Correlation Information Entropy (PNCIE) 

2. Gradient-Based Fusion Performance (PG) 

3. Image Fusion Metric-Based on Phase Congruency (PP) 

3. Image Structural Similarity-Based Metrics 

1. Piella’s Metric (PS)[28] 

2. Yang’s Metric (PY) 

4. Human Perception Inspired Fusion Metrics 

1. Chen-Blum Metric (PCB)[23,29] 

2. Chen-Varshney Metric (PCV)[30] 

For all eight parameters from serial No. 1 to 4, except for (PCV), a higher value shows better fusion performance, 

whereas a lower value shows better fusion performance for (PCV) is just on the contrary.[7]. 

5. Mean or Average Pixel Intensity (Mean): Measure of contrast. 

6. Standard Deviation (SD): Measure of the spread of data. 

7. Average Gradient (AG): Measure of degree of clarity and sharpness. 

8. Spatial Frequency (SF): Measure of activity level in the region. 

9. Total fusion performance (𝑄𝐴𝐵/𝐹): Measure of total information transfer from source image to fused image. 

10. Fusion loss (𝐿𝐴𝐵/𝐹): Total loss of information. 

11. Fusion artifacts (𝑁𝐴𝐵/𝐹1 ): Noise or artifacts added in the fusion process. 

12. Fusion artifact modified (𝑁𝐴𝐵/𝐹 ): Noise or artifacts added in fusion process modified parameter. 

For all eight parameters from serial No. 6 to 13, except for (𝐿𝐴𝐵/𝐹), 𝑁𝐴𝐵/𝐹, a higher value shows better fusion 

performance, whereas a lower value shows better fusion performance for (𝐿𝐴𝐵/𝐹, 𝑁𝐴𝐵/𝐹1, 𝑁𝐴𝐵/𝐹 ) is just on the 

contrary. [33,36,37]. Simulations are performed on Processor Intel(R) Core(TM) i7-8650U CPU@1.90GHz 

2.11 GHz,  RAM 16.0 GB (15.8 GB usable), System type-64-bit operating system, x64-based processor 

2.6. Dataset 

The dataset is taken from the link given in the book by G. Xiao, D. P. Bavirisetti, G. Liu, and X. Zhang, 

Titled “Image Fusion”. Publisher Springer,2020 [35]. The datasethas a set of 42 images for remote 

sensing, out of these 42 sets simulation is performed on three sets of images. 

3. A Novel approach (Proposed) 

3.1 The Proposed Fusion Algorithm for grayscale image 

1. Read the bidimensional multiscale images 𝑆(𝑥, 𝑦) 
2. Calculate 2-D IMFs of the images 𝑆(𝑥, 𝑦)′𝑠 using 2D- Compact Variational Mode Decomposition. 

3. Calculate the new IMFs by concatenating the corresponding IMFs from the images. 

4. Repeat for all M, IMF to find a set of fused IMFs, for m=1, 2…. M. 

5. Add all 𝑆̅𝑚(𝑥, 𝑦)to gather to yield the fused image 𝑆̅(𝑥, 𝑦). 
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3. Methodology for novel approach 

 

 
Fig. 3 Structure of the proposed algorithm for gray-scale image. 

 

3.3 Formulation of Novel Approach 

The methodology of the 2-D CVMD-based multi-scale image fusion at the pixel level is explained in Figure 3. A 

bidimensional multivariate signal 𝑆(𝑥, 𝑦), which is a collection of n images (two images in this case) as illustrated 

in equation 6 for grayscale images, is first disintegrated by the 2-D CVMD method to find a set of M, n-variate 

IMF images denoted by 𝑆𝑘
𝑚(𝑥, 𝑦)  where m=1, 2 ….M and k=1,2,……n. as 

 For graysscale images 

{𝑆(𝑥, 𝑦): |𝑆𝑘
𝑚(𝑥, 𝑦)

𝑚 = 1,2, … .𝑀𝐷𝑒𝑛𝑜𝑡𝑒𝑠 I𝑀𝐹′𝑠
𝑘 = 1,2, … . 𝑛𝐷𝑒𝑛𝑜𝑡𝑒𝑠𝑑𝑒 − 𝑓𝑜𝑐𝑢𝑠𝑒d images

|}                                 (6) 

 

where 

{
  
 

  
 

Sk
m(x, y): 

|

|
S1
m(x, y) = ∑ S1

m(x, y)

M

m=1

 where |
S1
1(x, y) 1st IMF of first image
⋮ ⋮

S1
m(x, y) Mth IMF of first image

|

⋮ ⋮

Sn
m(x, y) = ∑ Sn

m(x, y)

M

m=1

 where |
Sn
1(x, y) 1st IMF of nth  image
⋮ ⋮

Sn
m(x, y) Mth IMF of nth image

|
|

|

}
  
 

  
 

 

 

Here symbol |⬚| in the equation (6) is used to define the signal that does not represent an operator, In the next 

step, Calculate the resultant IMFs by adding the respective IMFs from the input images as given in equation (7). 

Ik
m(x, y) =  ∑ Sk

m(x, y)M
m=1                  for k = 1 to n.                                                                        (7) 

To calculate all m IMFs, to find a set of fused IMFsS̅m(x, y), for m=1,2,….M, the process is repeated, finally 

added together to produce the fused image S̅(x, y). 
S̅(x, y) =  ∑ Ik

m(x, y)n
k=1                                                                                                                   (8) 

4. Results 

4.1 Comparison of different algorithms is made on Performance Parameters for three sets of images. 

 

Table 1 Objective performance parameters for the first set of greyscale images of size 512x512, shown in 

Figure 4. 
Methods / 

Parameters 

2D-CVMD 2D-VMD with 

Fusion rule  

2D-VMD BMEMD with 

Fusion rule 

SFFF 

PMI 0.3340 0.3058 0.3279 0.2873 0.1729 

PNCIE 0.8043 0.8041 0.8042 0.8039 0.8023 

PG 0.4867 0.4661 0.4630 0.4733 0.0324 

PP 0.4033 0.3538 0.3827 0.3113 0.1844 

PS 0.4749 0.5589 0.4591 0.5856 0.0234 

PY 0.6896 0.7079 0.6539 0.7223 0.0450 

PCB 0.5466 0.4675 0.5420 0.5422 0.2295 

PCV 180.2330 180.1216 593.1186 444.2635 1.181x103 

𝐐𝐅
𝐀𝐁 0.8114 0.7916 0.7997 0.8060 0.5611 

𝐋𝐅
𝐀𝐁 0.0983 0.1802 0.0916 0.1568 0.1927 

𝐍𝐅𝟏
𝐀𝐁 0.4186 0.1151 0.4853 0.1580 0.4923 

𝐍𝐅
𝐀𝐁 0.093 0.0282 0.1087 0.0373 0.2461 

Mean 208.6157 110.2654 208.7104 109.6497 0.8185 
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SD 44.7578 26.5399 45.1860 28.6093 0.1783 

AG 10.8402 12.0829 14.1052 11.8470 0.0522 

SF 16.9176 17.6924 21.0054 17.4018 NC 

Simulation Time 48.3577 Sec 656.3904 Sec 647.5420 Sec 6483.2874 Sec 24.6188 Sec 

 

  
(a) Input-1 (b) Input-2 

 

  
(c) SFFF (d) 2D-VMD 

  
(e) BMEMD (f) 2D-VMD Variance 

 

 

(g) 2D-CVMD  

Figure.4 Images (a), and (b) are the input images for table 1, respectively, images(c), (d), (e), (f), (g) are the 

focused Images by SFFF only, VMD only, BMEMD, 2D-VMD with Varience and 2D-CVMD  method 

respectively. 

 

Table 2Objective performance parameters for the second set of greyscale images of size 512x512, shown in 

figure 5 
Methods / 

Parameters 

2D-CVMD 2D-VMD with 

Fusion rule 

2D-VMD BMEMD with 

Fusion rule 

SFFF 

PMI 0.3792 0.3560 0.3821 0.3458 0.2099 

PNCIE 0.8056 0.8056 0.8056 0.8054 0.8025 

PG 0.5126 0.4896 0.5061 0.4837 0.0439 

PP 0.4135 0.3524 0.4193 0.2955 0.2425 

PS 0.5213 0.5664 0.5143 0.5615 0.0411 
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PY 0.7233 0.6670 0.7075 0.7081 0.0507 

PCB 0.5443 0.5187 0.5096 0.5615 0.2256 

PCV 418.0736 382.7809 694.4588 355.5832 1.127x103 

𝐐𝐅
𝐀𝐁 0.8126 0.8090 0.8055 0.8082 0.5605 

𝐋𝐅
𝐀𝐁 0.1015 0.1531 0.0854 0.1493 0.1963 

𝐍𝐅𝟏
𝐀𝐁 0.4128 0.1471 0.5354 0.1809 0.4864 

𝐍𝐅
𝐀𝐁 0.0859 0.0378 0.1090 0.0425 0.2432 

Mean 202.1876 114.4511 202.2741 114.0672 0.7932 

SD 89.7692 35.5088 60.2625 38.4656 0.2360 

AG 10.2146 13.1402 12.0835 11.3895 0.0484 

SF 15.6733 18.3848 18.1641 16.1274 NC 

Simulation Time 48.0736 Sec 778.58 Sec 738.444 Sec 4664.6046 Sec 44.5724 Sec 

 

  
(a) Input-1 (b) Input-2 

  

(c) SFFF (d) 2D-VMD 

  
(e) BMEMD (f) 2D-VMD Variance 

 

 

(g) 2D-CVMD  

Figure.5Images (a), (b) are the input images for Table 2, respectively, images(c), (d), (e), (f), and (g) are the 

focused Images by SFFF only, VMD only, BMEMD, 2D-VMD with Varience and 2D-CVMD  method 

respectively. 
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Table 3Objective performance parameters for the third set of greyscale images of size 512x512, shown in 

Figure 6. 
Methods / 

Parameters 

2D-CVMD 2D-VMD with 

Fusion rule 

2D-VMD BMEMD with 

Fusion rule 

SFFF 

PMI 0.3787 0.3381 0.3644 0.3103 0.2278 

PNCIE 0.8063 0.8055 0.8059 0.8051 0.8029 

PG 0.5001 0.5095 0.4387 0.5141 0.0795 

PP 0.4316 0.4405 0.4115 0.3778 0.1094 

PS 0.4474 0.5808 0.4118 0.5935 0.0768 

PY 0.6882 0. 7793 0.6488 0.7602 0.1441 

PCB 0.5409 0.5127 0.5004 0.5535 0.3441 

PCV 418.4523 424.8637 1.055x103 827.1156 1.1899x103 

𝐐𝐅
𝐀𝐁 0.7979 0.8252 0.7572 0.82751 0.5676 

𝐋𝐅
𝐀𝐁 0.0989 0.1325 0.0831 0.1405 0.1745 

𝐍𝐅𝟏
𝐀𝐁 0.4320 0.1867 0.6099 0.1397 0.5158 

𝐍𝐅
𝐀𝐁 0.1032 0.0423 0.1597 0.0320 0.2579 

Mean 263.5241 141.2496 263.440 140.3213 1.0331 

SD 100.1464 58.4270 102.1248 73.0762 0.3981 

AG 23.3373 25.881 32.8001 26.2123 0.1129 

SF 33.8724 35.5656 47.6950 90.6504 NC 

Simulation Time 48.7054 Sec 977.7455 Sec 655.8218 Sec 6597.052 Sec 22.6399 Sec 

 

  
(a) Input-1 (b) Input-2 

  
(c) SFFF (d) 2D-VMD 

 

 

(e) BMEMD (f) 2D-VMD Variance 
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(g) 2D-CVMD  

Figure.6Images (a), (b) are the input images for table 3, respectively, images(c), (d), (e), (f), and (g) are the 

focused Images by SFFF only, VMD only, BMEMD, 2D-VMD with Varience and 2D-CVMD  method 

respectively. 

 

5. Conclusion and future work 

The performance is measured using the seventeen objective performance parameters, on the three grayscale 

images set of size 512x512 out of 42 images set available. 

Experiment results show better visual perception from the fused images for 2D-CVMD, 2D-VMD with variance, 

2D-VMD, and BMEMD and best for 2D-CVMD. Objective parameters like (PMI, PNCIE, PG, PP, PCB, 
QF
AB, Mean Standard Deviation and simulation time) shows the better performance of the 2D-CVMD algorithm, 

whereasparameters (PY) show the better performance of 2D-VMD, and parameters (PS, AG, SF) show the better 

performance of the BMEMD algorithm. Considering the simulation time 2D-CVMD presents the second least 

time with SFFF, but with comparable difference only. Concluding 2D-VMD performance is better than SFFF and 

BMEMD, and 2D-CVMD showed better performance comparing the above all. 

Further parametric (for example variance, minima, maxima, Local energy maxima , or any other), formulation 

may be derived for the number of modes for decomposition of image using 2D-VMD or 2D-VMD with variance 

or 2D-CVMD for optimal results. Further with 2D-CVMD any other information extraction method (for example 

variance, minima, maxima, local energy maxima, or any other) may be used for better fusion performance. 

Experiments may be conducted for specific images in Remote sensing. 
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