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Abstract: - Aspect Oriented Programming (AOP) language is a high-level object-oriented language, which is widely used for generating 

web applications. As AOP is designed in a multi-threaded manner, the data race occurs in a program when different threads access the 

shared memory resource. But, none of the existing works handle the dynamic control flow of AOP, resulting in higher levels of false 

positives and false negatives in Data Race Detection (DRD). Therefore, in this work, an efficient framework is proposed for detecting the 

data race of Aspect Oriented Programming (AOP) language using Eisen Cosine Correlation distance based Entropy Variance KMeans 

(ECC-EVKMeans), SoftSwish – Linear Scaling Gated Recurrent Unit (SS-LSGRU), and Kullback Leibler -based Fuzzy Bayesian 

Inference System (KL-FBIS). Primarily, the proposed system acquires an AOP of various applications; then, its number of variables 

along with the methods are extracted. Further, the context-sensitive information of code is analyzed in the thread analysis phase using the 

control flow graph. Subsequently, the dynamic scope of pointers is evaluated in escape analysis, and the single parameterized analysis of 

each method is attained by the compositional pointers. Meanwhile, the test cases are generated, and the significant test cases are selected 

and clustered using G-CSOA and ECC-EVKMeans, respectively. Then, by using the BERT algorithm, the vector values of corresponding 

words in test cases are returned. Further, the vector values are separated using the KL-FBIS approach to minimize the nested loops. 

Eventually, the vector values are trained using the SS-LSGRU classifier and also tested with real-time AOP for detecting the race 

condition. The experimental results show that the proposed system detects data race with 98.26% accuracy and 98.95% precision in 

37751ms. Also, the important test cases are selected with 97.85% fitness by using the proposed technique. 

Keywords: Bidirectional Encoders Representations from Transformers (BERT), Galois - Chameleon Swarm Optimization 

Algorithm (G-CSOA), Test case, loops, Threads, Word vectors, Data race. 

 

1. INTRODUCTION 

In the advanced technology, many applications and tools are developed by using the Aspect Oriented 

programming platform. While creating the programs by the software developers, the shared memory resource 

may be accessed by multiple threads or tasks and cause data races (Basloom et al., 2023). The data race in a 

code indicates the presence of concurrency errors, and the data execution is affected by corrupting, hanging, 

and crashing the data (Al-Johany et al., 2023). It results in race condition, which is a multi-threaded bug that 

occurs when the order of the event is dominated by some undesirable tasks (Arteca et al., 2023), (De Sousa & 

Hasselbring, 2021). As data race is generally present in specific traces of threads, it becomes a challenging task 

for the developers to detect (Nithya & Chitra, 2020). 

For detecting the data race, two different categories, such as static and dynamic detection approaches are 

usually followed. By using static detection, the variable name and source location of the accessed memory 

source can be analyzed. So, the turnaround time for the detection process is minimal (Paiva et al., 2020), (Bajaj 

& Sangwan, 2021). However, the static analysis model cannot perform well for larger programs and suffers 

from false positives (Moseler et al., 2022). The dynamic approach acts as a per-input / per-schedule detector, 

which detects the races by assessing all the possible thread schedules during program execution (Bai et al., 

2022). This approach also has its own drawbacks as it analyzes races only for the selected input of code and 

takes a larger turnaround time. Hence, to enhance race detection further, hybrid tools and Machine learning 

techniques are recently explored (Almeida et al., 2021).   

Using a Convolutional Neural Network (CNN), the raw data is efficiently learned, and the data race is detected 

at the code level and file level using a DeepRace model (Wang et al., 2022). The concurrently executing codes 

are analyzed through test cases, which are generated by using fuzzing approaches (Giebas & Wojszczyk, 

2021). Further, the nested loops of code are parallelized using the frog leaping algorithm to detect the races 

(Zhang et al., 2021). The data race in multi-threaded code is also dynamically detected using the resettable 

encoded vector clock approaches (Pozzetti & Kshemkalyani, 2021), (Fava & Steffen, 2020). However, none of 

the existing works focused on handling the dynamic control flow of the AOP for examining the program paths 

and detecting the data races. Hence, in this work, a novel DRD framework is proposed using ECC- 

EVKMeans, SS-LSGRU, EVKM-BERT, and KL-FBIS techniques. 

 

1.1 Problem statement: 

The problems noticed in most of the existing works for data race detection are mentioned as follows; 
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❖ In (Ahishakiye et al., 2021), the dynamic control flow of the code was not effectively managed, thus 

resulting in higher false positives and false negatives.  

❖ As data races were detected from the detection tools at the user level in (Mahjoub et al., 2022), the target of 

offload execution and the Open MultiProcessing (OpenMP) interfaces were not supported. 

❖ Most of the works did not focus on identifying the harmful data races and benign data races. 

❖ The dynamic detection techniques depend on limited input sets for the program execution, and so the 

program paths were not properly analyzed in (Jiang et al., 2022). So, undetected data races may result in 

inaccurate race identification with higher false negatives. 

To overcome these limitations, the objectives concerned by the proposed framework for DRD are listed below; 

❖ To reduce the false positives and false negatives, the control flow of the AOP is examined under the thread 

analysis to attain the context-sensitive code information using the Control flow graph. 

❖ For supporting the target of offload execution and OpenMP tasks, the AOP dataset is trained by the 

proposed system and tested with the real-time AOP. 

❖ The presence of all data races is accurately identified from the detected race condition using the proposed 

SS-LSGRU model. 

❖ The thread analysis is carried out for AOP, and the optimal test cases are selected using the proposed G-

CSOA for analyzing the program paths, which aids in accurate race detection. 

The rest of the paper is aligned as follows: Section 2 discusses the related works of DRD; Section 3 elaborates 

on the processes of the proposed methodology and then the performance is assessed in section 4. Finally, the 

paper is wrapped with a conclusion and future scope in section 5. 

 

2. LITERATURE SURVEY 

(Mahjoub et al., 2022) detected the data races in concurrent programs by using the ConRacer prototype. The 

call graph of the Java program was constructed using the ConRacer tool by analyzing the control flow. Then, 

the escaped objects among threads were identified through the escape analysis. Further, the False Positives 

(FP) and False Negatives (FN) were minimized with the help of happens-before analyses. The performance 

was improved with lower FP, FN, and detection time. However, the test cases were not determined, so the 

detection of appropriate race conditions was not achieved. 

(Jiang et al., 2022) presented a system for detecting concurrency errors in Multithreaded applications. Initially, 

a source code was acquired from a programming language. Then, the errors, such as insufficient mutexes, 

atomicity violations, and order violations of parallel threads were analyzed by using the rdao detector 

application tool. The system detected errors with better FP. Yet, the control flow of the code was not analyzed, 

which hinders the context-sensitive information for error detection. 

(Tehranijamsaz et al., 2021) suggested an automated framework for detecting the race condition of the 

Interrupt-Driven Embedded Software. The input data was generated through the symbolic execution and the 

potential races. Then, the interrupts at potential racing points were validated and repaired using the virtual 

platform of SDRacer (Static and Dynamic Race detector). The performance was enhanced with enhanced 

accuracy and the least execution time. However, the FP and FN performance was not sufficiently achieved, 

which degrades the efficient detection process. 

(Shi et al., 2021) explored a hybrid system called Hambug for detecting race conditions. The error in the source 

code was debugged using the Hambug tool, which provided the list of variables and the respective memory. 

The thread that occurred among the shared memory was tracked by the ‘change detector’. Further, the race 

conditions were detected using the Shared Variable- Track algorithm. The system identified race conditions 

with higher efficiency. But, the optimal test cases were not identified, resulting in inaccurate detection of race 

conditions. 

(Jin et al., 2023) recommended a hybrid-static analysis for identifying the data races. The driver code was 

statically analyzed at compile time to identify the variables. Then, the concurrent driver functions were 

identified through the entry and exit points of the driver function. Further, the data races were detected by 

analyzing the static lockset of the driver code. The performance was improved with better throughput. Yet, the 

model missed some driver codes and race conditions,  thus limiting the detection of data races. 

(Ahishakiye et al., 2021) presented an approach for analyzing the threads among concurrent Java programs. 

The test case was generated from a program. Then, the stack traces of the thread were analyzed, and the source 

code was extracted. Further, the thread information was accessed using the ThreadRadar method for debugging 

the multiple threads running in the programs. The approach identified threads with higher accuracy and less 

time. However, the number of variables and methods used in the program were not focused, which restricts the 

recognition of race conditions. 

(Bora et al., 2021) suggested the test case selection for prioritization using the Discrete Cuckoo Search (DCS) 

algorithm. After selecting the test case, the test suite was prioritized. The problem that occurs with the ordering 

of test cases was minimized by transforming the real numbers into permutation sequences using the DCS 



J. Electrical Systems 20-3 (2024): 3260-3271 

 

  3262  

algorithm. The appropriate test case was selected using the algorithm with improved fitness. But, the DCS had 

a premature convergence problem, which degraded the selection of optimal test cases. 

(Sulzmann & Stadtmüller, 2020) presented a web testing approach for generating the test case. The initial test 

suite was gathered from a Java file, and the abstract test cases were extracted. Then, the concrete test cases 

were obtained using the random data generators. Further, the candidate test cases were generated by applying 

the mutation operators. The performance was enhanced with better efficiency. However, the mutation function 

was sensitive to FP and consumed more time for developing test cases. 

(Hao & Lu, 2021) selected the semi-automated test cases using the gradient descent approach. The test case 

was selected from the code by assuming the task as a multi-objective problem. Then, the optimal test cases 

were identified using the modified simulated annealing approach. The approach selected a test case with 

enhanced fitness and accuracy. Yet, the approach converged with the local optimum solution, which limits the 

selection of appropriate test cases. 

(Yousaf et al., 2021) suggested a data retrieval model from the Java programming tool using BERT. The 

source code was accessed, and the locally cloned projects were extracted. Then, the vector values of the words 

were analyzed using a BERT model. The performance was improved with better throughput and word 

similarity. However, the multiple threads in the program were not detected; therefore, the required data was not 

accurately retrieved. 

3. PROPOSED METHODOLOGY 

In this work, the efficient DRD system is proposed by analyzing the variables, methods, threads, and test cases 

of AOP by using the SS-LSGRU, G-CSOA, and ECC-EVKMeans techniques. The proposed framework is 

represented as a block diagram in Figure 1. 

 

 
Figure 1: Structure of proposed workflow 

 

3.1 Input data 

Initially, an AOP compiled for different applications is considered as input data ( )J  for detecting the data 

races. It is expressed as, 

 nJJJJJ ,.......,,, 321=      (1) 

Where, n denotes the number of functions present in J .  

 

3.2 Variables & methods extraction 

From J , the number of variables, comprising the string values for executing the specific function of AOP and 

the methods, such as registration, Booking appointment, amount withdrawal, Balance checking, and so on of 

various applications compiled in AOP are extracted for further analysis. It is defined as, 
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  ,=      (2) 

Where,  indicates the extracted information about variables and methods from J ,  denotes the  number 

of variables, and   specifies the methods in J . 

3.3 Thread Analysis 

Next,  is fed as input to the thread analysis, which examines the execution of multiple threads running behind 

the source code J and the accumulation of memory. It is mentioned as, 

        (3) 

Where,  denotes the threads compiling behind the code.  

Control flow analysis 

Here,   is given as input to the control flow analysis for analyzing the threads. The path of AOP, where 

different operations are executed, is analyzed using a Control Flow Graph (CFG) model. In CFG, every node 

illustrates the main function used in J ; and the directed edges depict the jumps or the functions that alter the 

order of program execution by calling a function out of the loops in AOP. Further, the entry node and exit node 

of CFG represent the beginning and end of the program flow, respectively. The CFG model ( )  is thus 

expressed as, 

 
gggg ZjbA ,,,=     (4) 

Where, gA denotes the entry node of the graph, gb indicates the base function of code, gj implies the directed 

edges of the graph, and gZ specifies the exit node of CFG. To evaluate the control flow, any two edges of the 

graph should satisfy the condition ( )
gG . It is defined by, 

( )

( )






=

1

1

2

1

Ni

No
G

d

d

g     (5) 

Where 21, NN indicate any two nodes of the graph and do and di denote the outer degree and inner degree of 

nodes, respectively. Based on gG , the control flow is analyzed, and it is mentioned as . 

Where, e implies the escape states, ( ), denotes outside of the methods and threads, and arg indicates the 

argument. As the objective task or function of the program is retrieved through the cpt , a single parameterized 

analysis result for invoking the method is obtained and the in-build threads are suppressed. Thus, the analyzed 

parameter from cpt is declared as
→

p . Hence, the threads are analyzed from AOP, and it is mentioned as .  

3.4 Test case generation 

Next, the test cases are generated from J for accurately detecting the race conditions. Here, the test suites, 

including various test cases are developed for the earlier recognition of bugs in the code. It is specified as, 

 
qC = .,,.........,, 321     (6) 

Where, C indicates the generated test cases for various applications and q denotes the number of test cases. 

3.5 Test case selection 

From C , significant test cases are selected to enhance the detection of race conditions. For selecting the 

optimal test cases, a meta-heuristic Chameleon Swarm Optimization Algorithm (CSOA) is used owing to its 

tendency to solve global optimization problems. However, the CSOA used a fixed scaling factor during the eye 

rotation behavior, thus causing an incorrect rotation matrix and premature convergence. To overcome the issue, 

the Galois technique is used in the computation of the rotation matrix and attains the optimal solution.  
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Pseudo code of G-CSOA 

 

 
 

After that, the selected  are clustered according to similar applications to enable the proper data training and 

accurate identification of the data races. The clustering process is further described. 

3.6 Clustering 

Here,   is given as input to the clustering process. For clustering  , the k-Means algorithm is used, which 

efficiently handles the larger dataset with more dimensions. However, the k-Means algorithm is sensitive to 

outliers and does not perform well on uneven data. Hence, the variance problem of k-Means is resolved by 

utilizing the Entropy Variance (EV) technique. Further, the clustering accuracy of k-Means is improved using 

the Eisen Cosine Correlation (ECC) distance measure, which effectively measures the linear relationship 

between the test cases. 

 After measuring disE
, the problem of variance in  is tackled by introducing EV

( )VarE
, which 

provides the average distance among the test cases. Where, 
X

expresses the probability of closer distance 

between o and appC
and 

log
 denotes the logarithmic function. 

 Subsequently, a new centroid 
( )newC

is chosen among the clusters whenever the test cases are not 

grouped with the relevant application
( )appC

. Where, rC
indicates the centroid of each cluster and to ta l

 

implies the total number of  . 

 The processes are repeated from the distance evaluation step until all the test cases are clustered with 

the appropriate application cluster.  

3.7 Word Embedding 

Next, the analyzed threads in AOP ( )  and the clustered test cases ( )T  are represented as ( )inpWe  and are 

fed as input to the word embedding phase to return the vector values of corresponding words. Here, the BERT 
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algorithm is used for the word embedding process, which processes the language and makes the data 

understandable by the DL network. The process of retrieving values using BERT is explained below; 

Step 1: At first, the text format of ( )inpWe is divided into smaller tokens by the tokenization process and is 

indicated as. Further, is converted into vector format using the embedded matrix. It is defined as, 

( )= m


      (7) 

Here, 


denotes the vector value ofand m indicates the embedded matrix. 

Step 2: Then, the correlation between the words of is estimated by calculating the self-attention score 

through the trainable parameters ( )kQ,  of BERT. It is expressed as, 














=

2
dimM

Qk
S

T

score       (8) 

Where, scoreS indicates the self-attention score of each,  implies the softmax function, Q denotes the 

query, 
Tk mentions the transpose of the words’ key, and dimM specifies the dimension matrix of the key. 

Step 3: Further, using , the tokens are activated along with the Euler’s value. It is represented as, 

( )
( )

=

=
t

b

k

k

score

b

a

e

e
S

1

      (9) 

Where, e expresses the Euler’s value, t denotes the total number of characters in


, a denotes the a th 

character in 


 , and b depicts the iterating index over the characters in


.  

Step 4: Then, the weights are applied over the BERT layers and the resultant outcome ( )OR  is linearly 

transformed by residual connectivity ( )sRe  between the layers. It is represented as, 

( )scoreO SsLR += Re      (10) 

Here, L denotes the linear transformation of the scoreS of tokens. 

Step 5: Among OR , some tokens are masked to determine the missing attributes of the nearby words. So, the 

model is trained to estimate such masked tokens based on the embedding process. It is evaluated by, 

( ) ( ) scoreSRLPb . =     (11) 

 Where, Pb indicates prediction probability, and  denotes the masked tokens. 

Step 6: Lastly, the predicted are tuned based on pre-trained ( )kQ, to exactly return the vector values. It is 

expressed as, 

( ) ( )  = kQtune ,      (12) 

 

Whereas, tune implies the fine-tuned outcome of the BERT model. 

Hence, the vector values of the respective words in ( )inpWe  are returned using the BERT algorithm and are 

represented as . 

3.8 Windowing 

Then,  is given as input to the windowing process in which the nested loops are replaced with single loops to 

minimize the computational time by separating the vector values. For minimizing the nested loops, the 

windowing process is performed using the Fuzzy Interference System (FIS), which processes the uncertain 

information and makes relevant decisions. But, the FIS generates more non-feasible rules, which complicates 

the decision-making process. To overcome the issue, the KullbackLeibler (KL) Divergence and Bayesian 

techniques are used to quantify the deviations or correlations among the rules. The proposed KL-FBIS is 

further explained below; 

3.9 Data Race Detection 

Here, the  is given as input to the DRD phase for identifying the race conditions present in AOP. For 

recognizing data races, GRU is used, which can rapidly train the larger sequential data efficiently with its 

fewer parameters. However, GRU suffers from enormous data loss and gradient vanishing problems. To solve 

this issue, a Linear Scaling-based SoftSwish (LS-SS) activation function is introduced, and this proposed 
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detection framework is simply named as SS-LSGRU model. The architecture of the proposed SS-LSGRU 

classifier is represented in Figure 2. 

 
Figure 2: Architecture of SS-LSGRU 

 

The process of the proposed SS-LSGRU classifier for DRD is described as follows; 

Input layer  

Initially, the   consisting vector values of threads and test cases in AOP are forwarded to the input layer to 

identify the data races. Next, the  is moved to the reset gate ( )
g , where it updates the memory regarding 

what information is to be retained or discarded from the network. Hence, the network is tailored with the 

different vector values for effectively learning the data.  Here,  denotes the LSSS activation function, 

Rw indicates the weight of g  , and 1−sH implies the hidden state at the previous time step ( )1−s . Here, the 

LS-SS activation is introduced instead of the sigmoid activation function to improve the data learning and 

solve the gradient vanishing problem. Where, y denotes the number of classes in  , iZ , jZ specify the 

similar attributes in  , and i  and j indicate the number of vector values present in input and output layers, 

respectively. 

Update gate 

Further, the input data is passed through the update gate ( )g , which incorporates the candidate vector ( )


 

within ( )1,0  into the hidden state ( )sH  to determine how far the data is acquired for updating the hidden state.  

Hidden state 

Then, the hidden state is updated by 


at every time step through the scaling of the hyperbolic tangent 

function ( )T  with the input data and the previous hidden state.  

Output layer 

Finally, the output layer determines what information is to be shared from the hidden state to produce the 

output for detecting the race condition ( )RaceD .   (13) 

Hence, the race condition is detected using the proposed SS-LSGRU network, and the presence of race 

condition is mentioned as CR , and the absence of race condition is specified as NR . For testing the AOP in 

real time, any developed AOP is fed into the proposed system, and the data race is identified based on the 
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trained SS-LSGRU classifier. Therefore, an efficient DRD system is formulated to prevent uncertain bugs and 

resource consumption in the AOP using the proposed work. 

 

4. RESULTS AND DISCUSSIONS 

The performance of the proposed DRD system is analyzed regarding various metrics in this section by 

comparing it with the existing techniques. For analysis, the proposed model is implemented using the 

PYTHON software tool, which integrates the system efficiently.  

4.1 Dataset description 

For performance analysis, a dataset named “Low-Level virtual machine Open MP Verifier (LLOV)” repository 

is utilized. This dataset is gathered from publicly available sources. It verifies the Open MP programs by using 

the polyhedral compilation technique. From the dataset, 80% and 20% of data are used for training and testing 

the proposed framework, respectively. The dataset link used for the proposed model is cited below in the 

reference section. 

4.2 Performance assessment 

Primarily, the performance of the proposed SS-LSGRU for the DRD is examined by comparing it with existing 

techniques, namely GRU, Bi-directional Long Short Term Memory (Bi-LSTM), Long Short Term Memory 

(LSTM), and Recurrent Neural Network (RNN). 

 

 

 
Figure 3 Analysis of proposed SS-LSGRU Figure 4: Training Time Evaluation 

 

The proposed SS-LSGRU is analyzed regarding the accuracy, precision, f-measure, sensitivity, and specificity 

and is shown in Figure 3. The highest accuracy of 98.26%, the precision of 98.95%, the f-measure of 98.48%, 

the specificity of 98.78%, and the sensitivity of 98.02% are achieved by the proposed method. Meanwhile, the 

existing LSTM attained 93.03% accuracy, GRU attained 96.26% precision, and RNN attained 90.89% 

sensitivity. As the gradient vanishing problem and the data losses are resolved by the LS-SS activation 

function, the proposed algorithm detected race conditions with improved performance. Moreover, the lesser 

training time of 37751ms is taken by the SS-LSGRU model as represented in Figure 4 because of the selection 

of optimal test cases before training. The existing networks achieved an average training time of 50966 ms, 

which is higher than the proposed network. Thus, the proposed SS-LSGRU performs better than the prevailing 

models.   

Table 1: Performance comparison of SS-LSGRU 

Methods Recall (%) TNR (%) PPV (%) NPV (%)  

SS-LSGRU 98.0273 98.7846 98.9565 98.3206 

GRU 96.7132 96.6523 96.2648 96.2106 

Bi-LSTM 95.1525 94.2158 94.3657 95.8216 

LSTM 93.0378 91.6347 92.6478 92.8012 

RNN 90.8957 89.6514 90.1054 89.3364 

 

Table 1 depicts the performance of SS-LSGRU in terms of recall, True Negative Rate (TNR), Positive 

Predictive Value (PPV), and Negative Predictive Value (NPV). Also, 98.02% recall, 98.78% TNR, 98.95% 

PPV, and 98.32% NPV are attained by the proposed classifier. But, the existing methods, such as GRU 

attained 96.71% recall, Bi-LSTM attained 94.21% TNR, LSTM attained 92.64% PPV, and RNN attained 

89.33% NPV, which are lower than the proposed technique. As every path of the AOP is determined through 

the CFG under control flow analysis, the proposed method detects race conditions with improved performance 

than the existing methods. 
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Figure 5: Graphical evaluation regarding FPR, FNR 

 

The FPR and FNR achieved using SS-LSGRU are represented in Figure 5. The proposed network attained a 

lower FPR of 1.547 and FNR of 1.112. In the meantime, the existing GRU attained 3.326 FPR and LSTM 

attained 6.707 FNR, which are higher than the proposed network. As the test cases are grouped based on the 

applications and the vector values of words are returned prior to DRD, the proposed network detects data races 

with minimum error than the traditional networks. 

 

 
Figure 6: Fitness analysis of G-CSOA 

 

Figure 6 illustrates the fitness performance of the proposed clustering algorithm for various iterations by 

comparing it with existing algorithms, such as CSOA, Harris Hawks Optimization Algorithm (HHOA), Grey 

Wolf Optimization Algorithm (GWOA), and Grasshopper Optimization Algorithm (GOA). The proposed 

algorithm achieved 98.87% fitness for 50 iterations because of improving the eye rotation scaling of CSOA 

using the Galois method, obtaining the optimal solution without premature convergence. Meanwhile, for 50 

iterations, the HHOA attained 94.73% fitness and GOA attained 90.76% fitness. Also, the existing GWOA 

attained 91.78% fitness for 30 iterations. Hence, it is realized that the proposed algorithm achieved higher 

fitness for selecting vital test cases over the existing algorithms. 

 

Table 2: Evaluation of proposed G-CSOA 

No. of Iterations 
Selection time (ms) 

Proposed G-CSOA CSOA HHOA GWOA GOA 

10 6325 9554 12547 15628 18327 

20 10547 13659 16324 19487 22591 

30 14269 17485 20957 23659 26487 

40 18742 21659 24187 27845 30652 

50 22359 25418 28653 31457 34187 

 

The performance of the proposed G-CSOA is assessed regarding the selection time of test cases in different 

iterations and is exhibited in Table 2. It is observed that the optimal test cases are selected by the proposed G-

CSOA within 6325ms in 10 iterations and 14269ms in 30 iterations. The existing algorithms, namely CSOA 

take 9554ms and GWOA takes 15628ms for 10 iterations. Further, the existing HHOA and GOA take 

20957ms and 26487ms for 30 iterations, respectively. As the exploitation capability of the proposed algorithm 

is improved through the eye rotation behavior, the G-CSOA selected important test cases within a lesser 

duration than the prevalent algorithms. 
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Figure 7: Clustering time analysis 

 

The performance of the proposed ECC-EVKMeans algorithm for clustering the test cases with the appropriate 

applications is analyzed regarding clustering time and is shown in Figure 7. The clustering time of ECC-

EVKMeans is determined by weighing against existing methods, namely K-Means, Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN), Fuzzy C Means (FCM), and Mean Shift (MS). It is seen 

from Figure 7 that the proposed method achieved 8696 ms for clustering. But, the existing methods, such as K-

Means took 10511ms, DBSCAN took 13616ms, FCM took 15838ms and MS took 18558ms, which are higher 

than the proposed method. Since the test cases in different units are evaluated by the ECC technique, the 

proposed algorithm achieved better performance over the conventional methods. 

4.3 Comparative analysis 

Here, the performance of the proposed DRD model is compared with the related works to verify the better 

performance of the proposed technique.  

 

Table 3: Comparative analysis with related works 

References Technique Precision (%) Recall (%) 

Proposed SS-LSGRU 98.95 98.02 

(Kumar et al., 2022) MPI-ML 91.60 90.90 

(Khanna et al., 2021)  TML  94 93 

(Hirsch & Hofer, 2022) OML classifiers 91 93 

(Althiban et al., 2024) PHT - - 

 

Table 3 exhibits the performance comparison of proposed and existing DRD techniques regarding precision 

and recall. The performance is analogized with existing techniques, such as Event-based Statistical Analysis 

(E-SA), Message Passing Interface-based ML (MPI-ML), Traditional ML (TML) algorithms, Optimized ML 

classifiers (OML), and Parallel Hybrid Testing (PHT). It is noticed from Table 3 that the existing E-SA 

attained 90.9% precision, MPI-ML attained 91.6% precision, TML attained 93% recall, and OML attained 

91% precision, which are lower than the proposed method. These existing techniques did not focus on different 

variables and paths of the program for DRD. As the proposed model analyzed every character in AOP along 

with its path through the control flow analysis, the precision and recall improved to 98.95% and 98.02%, 

respectively. Thus, the proposed model efficiently detects the race conditions than the existing techniques.  

 

5. CONCLUSION 

This paper developed an effective DRD system for the AOP by analyzing the control flow and optimal test 

cases using the proposed techniques. The introduced detection framework extracted the variables and methods 

and then analyzed every function, including the control flow of the AOP through the thread analysis. 

Furthermore, the test cases for different applications were generated from AOP. Optimal test cases were 

selected in the mean time of 14448 ms using G-CSOA with an average fitness of 97.85% for various iterations. 

Then, the test cases were clustered with relevant applications using the proposed ECC-EVKMeans within 

8696ms. Further, the vector values of respective words in test cases and threads were retrieved using the BERT 

algorithm. Subsequently, the replacement of single loops over the nested loops by KL-FBIS. Thus, the race 

conditions were detected in 37751ms using the proposed SS-LSGRU network. Also, the data races were 

recognized using SS-LSGRU with an accuracy of 98.26%, precision of 98.95%, and recall of 98.02% along 

with 1.112 of FNR when analogized over existing techniques. Hence, for the AOP, the enhanced DRD is 

provided by using the proposed methodology. 
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