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Abstract: - This study introduces a novel method for predicting patient admission and discharge events using Electronic Health Records 

(EHR) while prioritizing the protection of personal privacy. Our approach utilizes a Simple Recurrent Neural Network (RNN) model 

enhanced with a Differential Privacy mechanism to strike a balance between high-accuracy outcome predictions and the confidentiality of 

patient data. At the core of our methodology is the application of a Simple RNN to EHR data, which facilitates the prediction of whether 

a patient will be admitted to or discharged from a healthcare facility. To strengthen data confidentiality, we integrate Differential Privacy 

by injecting controlled noise into the dataset, ensuring that our model’s predictions preserve the privacy of individual patient records. 

We conducted experiments using six different classifiers to implement our privacy-preserving prediction strategy. Among these, the 

Random Forest classifier emerged as the most accurate, proving the effectiveness of our method in providing reliable predictions without 

compromising privacy. In contrast, the XG Boost classifier showed the least precision, indicating some limitations in its ability to balance 

privacy with predictive accuracy. This research significantly advances the field of healthcare informatics by presenting a sophisticated 

solution that combines cutting-edge predictive models with stringent privacy safeguards. Our findings highlight the critical need to 

maintain a delicate balance between achieving precise clinical predictions and upholding the moral responsibility to protect patient 

privacy in the modern landscape of digital health records. 

Keywords: RNN, Electronic Health Record (EHR), Differential Privacy (DP), Patient Data Confidentiality, In & Out 

Prediction. 

 

I. INTRODUCTION 

The digitalization of healthcare records has brought about a revolution in the realms of medical research and 

patient care. Electronic Health Records (EHR) present an invaluable source of information, unlocking 

unprecedented opportunities for predicting patient outcomes and refining clinical decision-making. However, 

this transformative shift towards digitization has not come without its share of challenges, especially when it 

comes to safeguarding the privacy and confidentiality of sensitive health data. Graph Neural Networks (GNNs) 

prove instrumental in predicting clinical risks by capturing the relational dynamics within medical events and 

entities, handling extensive Electronic Health Record (EHR) datasets. Future research endeavors within this 

domain could tackle challenges such as the diverse nature of EHR data, incorporation of multiple modalities, 

and enhancing model interpretability. The overarching goal is to advance the development of comprehensive 

GNN models that offer heightened prediction accuracy, seamless integration into clinical settings, and, 

ultimately, contribute to the enhancement of patient care [1, 24]. 

In response to these challenges, our research is dedicated to addressing the dual imperative of ensuring accurate 

patient outcome predictions and safeguarding individual privacy within the domain of EHR. We employ 

Recurrent Neural Networks (RNNs), a subset of artificial neural networks tailored for handling sequential data, 

to propose an innovative approach for predicting patient admission and discharge statuses based on their EHR 

details. Additionally, in recognition of the inherent privacy risks associated with handling such sensitive 

information, we introduce a Differential Privacy optimization mechanism into our model. Patient representation 

learning involves acquiring a condensed mathematical representation of a patient, capturing significant 

information from Electronic Health Records (EHRs). This process typically employs sophisticated deep learning 

methods to accomplish the task [2]. 

The incorporation of Differential Privacy stands out as a pivotal element in our methodology, seeking to strike a 

delicate balance between harnessing the wealth of information contained within EHR and upholding patient 

confidentiality. By introducing controlled noise during the training process, we ensure that the predictions 

generated by our model do not compromise the privacy of individual health records. As an example, in the 
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research [3] its primary objective is to address the pressing security challenges in healthcare administration, 

particularly concerning the exposure of sensitive medical data. The proposed solution involves a hybrid system 

combining sensitive attribute access primitives, enhanced attribute-based encryption, and anonymity methods to 

safeguard electronic health records. The focus is on achieving improved performance, particularly in terms of 

completion time, encryption, and decryption processes, with a goal to provide a more secure and efficient 

healthcare technology solution in the face of evolving threats and technological advancements. The swift 

integration of electronic health records (EHRs) presents a significant opportunity for progressing medical 

knowledge through insights gained from practical experience. Nonetheless, the credibility of clinical research 

based on EHRs faces uncertainty, given the challenges of inadequate research reproducibility stemming from 

the intricate and diverse nature of healthcare institutions and EHR systems [4]. 

Time-based electronic health records (EHRs) encompass extensive information suitable for secondary purposes, 

including the prediction of clinical events and the management of chronic diseases. Nevertheless, there are 

inherent challenges associated with the representation of temporal data [5, 25]. This paper is dedicated to 

providing a comprehensive exploration and presentation of our RNN-based approach, delving into the 

methodology, experimentation, and outcomes. Through a meticulous analysis of six classifiers that implement 

our proposed technique, we aim to shed light on the effectiveness of our model in achieving both accurate 

outcome predictions and robust data privacy. This research seeks to contribute meaningfully to the broader 

discourse on healthcare informatics, offering a holistic solution that navigates the intricate intersection of 

predictive modelling and ethical considerations surrounding patient data privacy in electronic health 

environments. In particular, the technique of evidence-based decision-making demonstrates the capacity to 

employ multiple levels of non-linear feature transformation through representation learning, addressing 

challenges presented by extensive datasets [6]. 

This research paper delves into the formulation of a novel methodology geared towards forecasting patient 

outcomes using Electronic Health Records (EHR) data, all while prioritizing the privacy and confidentiality of 

sensitive patient information. The research commences by harnessing primary EHR data to predict patient in-

and-out probabilities based on their blood reports. To safeguard patient privacy, the initial step involves de-

identifying the primary data meticulously. Subsequently, the EHR data undergoes intensive model training 

employing an RNN model architecture to enable precise outcome predictions. Post the model training stage, the 

study integrates differential privacy mechanisms to introduce carefully controlled noise into the data, thereby 

bolstering the safeguarding of patient information from unauthorized access. Through this comprehensive 

approach, the paper endeavors to contribute to the advancement of outcome prediction in healthcare while 

concurrently addressing the paramount concern of data privacy in electronic health records. 

 

 
Fig 1: Training Electronic Health Record Data. 

 

Referring to the Fig 1, the integration of differential privacy optimization is instrumental in enhancing privacy 

measures without compromising the predictive accuracy of the model. As a result, the culmination of the 

research yields EHR data enriched with privacy-preserving noise, accessible solely to authorized personnel, thus 

ensuring the safety and confidentiality of patient information. Through this holistic approach, the study 

endeavors to advance outcome prediction in healthcare while simultaneously addressing paramount concerns 

surrounding data privacy in electronic health environments [26]. 
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Fig 2: Add Noise to EHR Data to Secure the Information. 

 

II. OBJECTIVE OF THIS WORK 

In this study, our attention is directed towards three fundamental objectives outlined below. 

• To conduct a thorough literature review to identify gaps in existing research methodologies within the 

field. 

• To enhance privacy measures by integrating and optimizing the model with Differential Privacy 

mechanisms, aiming to fortify the confidentiality of individual patient records in the Electronic Health Records 

(EHR) dataset. 

• To develop an innovative predictive model based on Recurrent Neural Networks (RNNs) to achieve 

accurate patient outcome predictions using EHR data. 

III. MOTIVATION FOR THIS WORK 

The motivation behind undertaking this research stems from the pressing need to bridge gaps in the current 

landscape of healthcare informatics. As we witness the transformative shift toward digitized Electronic Health 

Records (EHR), the potential for leveraging predictive modelling to enhance patient outcome predictions is 

substantial. However, this potential is accompanied by ethical considerations, particularly concerning the 

privacy and confidentiality of sensitive health data. Recognizing these challenges, our motivation is rooted in 

the desire to develop a nuanced solution that not only accurately predicts patient outcomes using Recurrent 

Neural Networks (RNNs) but also prioritizes the implementation of robust privacy measures through 

Differential Privacy optimization. By navigating the intersection of predictive modelling and privacy 

preservation, our work aspires to contribute a thoughtful and practical approach to healthcare analytics, fostering 

advancements that are not only technologically sound but also ethically responsible in the ever-evolving realm 

of electronic health records. 

IV. REVIEW OF LITERATURE 

The literature review section encompasses essential aspects such as examining predictive models employed in 

healthcare, the intersection of Electronic Health Records (EHR) and predictive models, and the role of 

Differential Privacy (DP) optimizers in healthcare informatics. This exploration aids in comprehending the 

broader landscape of predictive modelling in healthcare, specifically in the context of EHR, and the 

incorporation of privacy measures. Within this section, our objective is to thoroughly analyze existing research, 

identifying the current state of knowledge, pinpointing research gaps, and establishing the context for the 

significance of our proposed "RNN-Based Approach for Outcome Prediction with Differential Privacy 

Optimization. 

This research aims [7] to compare the effectiveness of deep Elman Recurrent Neural Networks (RNNs) with 

deep gated RNNs for statistical parametric speech synthesis (SPSS). While deep neural networks (DNNs) are 

commonly used for SPSS, their inability to capture temporal structures in speech poses limitations. RNNs, 

particularly those with LSTM cells, offer better performance but are computationally complex. This study 

explores whether deep Elman RNNs, with simpler architecture, can perform competitively in SPSS. Using the 

Blizzard Challenge 2015 dataset across three Indian languages, the research demonstrates the potential of deep 

Elman RNNs for acoustic modelling, context representation learning, and outperforming DNN-based duration 

models through both subjective and objective evaluations. 

 

Table 1: Related Research Work 

Author / 

Year 

Objective Dataset used Methods 

Used 

Focused 

Disease 

Performance 

Measure 

 

Future 

Scope 

Choi et 

al. 

[2015] 

[8] 

Applied to 

EHRs with 

longitudinal 

time stamps. 

262K 

individuals. 

 

Simple RNN  Multiple 

Diseases  

Recall: 80.5%  Applicability 

and 

Accuracy 

need to be 
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 considered 

Wu et al. 

[2018] 

[9]  

 

Paediatric 

asthma 

classification 

using root 

mean 

difference. 

4013 patients 

from the 

Olmsted 

Country Birth 

Cohort and 

4000 patients 

from 

Physionet. 

Simple RNN Asthma in 

case of  

Children’s 

 

Precision- 

84.54% 

 Recall- 

85.65% 

F1 score-

85.08% 

 

 

Relative 

Time for 

event 

sequence 

need to be 

extended 

 Shi et 

al. 

[2016] 

[10] 

 

Clinical notes 

for the 

assessment of 

various 

diseases based 

on a standard 

model. 

4298 patients 

from a 

Chinese 

hospital with 

an A grade 

were assessed. 

The 

accuracy of 

the CNN 

and 

Framingham 

risk score 

 

Cerebral 

infraction 

(CI), 

Pulmonary 

Infarction 

(PI), 

And 

Coronary 

Heart (CH) 

 

Accuracy CI-

96.5% 

PI- 95.6% 

CH- 93.6% 

 

Adaptability, 

Effectiveness 

and risk 

assessment 

model need 

to be 

enhanced 

 Farzi et 

al. 

[2017] 

[11] 

 

A rapacious 

method of 

utilising DBN 

for ADHD 

diagnosis. 

73 New York 

University 

neuroimaging 

samples 

totalling 263. 

 

DBN's 

avaricious 

strategy 

ADHD 

 

NI: 69.83% 

NYU's 

accuracy was 

63.68%. 

 

Early 

detection and 

accuracy 

need to be 

considered 

 

 Hwang 

et al. 

[2017] 

[12] 

 

 

Disease 

prediction 

from EHRs 

using stacked 

auto-encoders 

and Generative 

Adversarial 

Networks 

(GAN). 

 

There are 569 

cases of breast 

cancer with 

records 

accessible, 212 

of which are 

malignant and 

357 of which 

are benign. 

 

AE and 

GAN 

stacked 

 

Breast 

cancer 

 

95.28% is the 

sensitivity. 

98.05% 

accuracy 

99.47% 

specificity 

 

 

Sensitivity & 

specificity of 

two stage 

framework 

need to be 

improved 

 Jorge et 

al. 

[2019] 

[13] 

 

Identify lupus 

patients from 

the EHR. 

A dataset 

including 400 

EHR records. 

The codified 

algorithm 

for machine 

learning is 

rule-based. 

Specify  

SLE & 

probable 

SLE 

Sensitivity- 

86% 

Specificity- 

60% 

PPV- 46% for 

SLE 

 

Sensitivity- 

84% 

Specificity- 

69% 

PPV 65% for 

probable SLE 

 

Performance 

metric 

optimization 

need to be 

enhanced 

Sun & 

Zhang 

[2019] 

[14]  

 

The EHR is 

utilised in 

conjunction 

with five 

machine 

learning 

algorithms to 

diagnose DR. 

301 hospitals 

in China 5057 

records were 

supplied. 

Decision 

Tree 

Diabetic 

Retinopathy 

 

87.7% 

Accuracy 

Disease 

diagnosis 

method need 

to be 

integrated 

with readily 

available 

EHR 

Aidaroos 

et al. 

[2012] 

Medical data 

classifications 

include LR, 

15 databases 

from the UCI 

library provide 

NN, LR, 

DT, and NB 

Numerous 

Health 

issues, such 

97.43%: 

Accuracy  

AUC: 99% 

Focus on 

hybrid 

models to 
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[15] 

 

NB, NN, and 

DT. 

illustrations of 

various 

disorders. 

as liver 

problems, 

hepatitis, 

and cancer 

enhance the 

efficiency of 

medical data 

mining 

Zhang et 

al. 

[2019] 

[12]  

 

SVMs are 

being used in 

EHRs to 

classify 

cancer. 

Used 400 

pieces of data 

for training, 

and 100 pieces 

of health 

information 

for every 

cancer. 

SVM-RBF Cancer Accuracy: 

98.31%  

 

Accuracy 

need to be 

focused to 

detect the 

broader 

range of 

Cancer 

 

The paper [17] introduces a distributed intelligence framework for Cyber-Physical Systems (CPS) focusing on 

security, data privacy, and adaptability. Unlike conventional methods prioritizing performance, our framework 

addresses risks linked to centralized data processing by leveraging Federated Machine Learning techniques. By 

decentralizing CPS architecture, local data processing on individual nodes is enabled, mitigating data breach and 

privacy risks. Successful implementation in an industrial CPS application validates the framework's viability, 

offering privacy, security benefits, along with promising accuracy and precision results. 

This study [18] aims to improve the interpretability of Deep Learning (DL) models in clinical ICU settings by 

introducing a new interpretable neural network model called double self-attention architecture (DSA). Using 

two attention-based mechanisms, self-attention and effective attention, the DSA model captures the significance 

of input variables and their temporal changes. Evaluation on real-world clinical datasets of 22,840 patients 

demonstrates the effectiveness of our model in predicting delirium onset 12 h and 48 h in advance. Comparative 

analysis with three post-hoc interpretable algorithms and clinical opinion shows that our model effectively 

incorporates variable and temporal dependencies, enhancing descriptive performance without sacrificing 

predictive accuracy. 

The main objective of this review [19] is to examine the recent advancements in utilizing deep learning 

techniques for clinical tasks based on electronic health records (EHRs). The review encompasses various 

applications such as information extraction, representation learning, outcome prediction, phenotyping, and de-

identification. By analyzing existing literature, the review aims to identify the current state of the field and 

highlight areas for future research, including challenges related to model interpretability, data heterogeneity, and 

the need for universal benchmarks. 

In this research [20] the primary objective is to develop a smart city application using IoT and Wireless Sensor 

Network (WSN) technology, aiming for optimal network performance classification. The infrastructure includes 

WSN, VANET, MANET, RFID, and WBAN. The study predicts the efficiency of each network component, 

considering factors like energy consumption, data size, mobility, throughput, and delay. The output from each 

network is fed into an Optimized Recurrent Neural Network (ORNN) for predicting the overall effectiveness of 

the IoT network. Parameter tuning in the RNN is achieved using the Self Adaptive Honey Badger Algorithm 

(SA-HBA). The method aims to accurately forecast and enhance the performance of the simulated IoT system, 

achieving minimal energy consumption and improved prediction accuracy. In a recent study, [23] this was 

highlighted that, limited success of utilizing natural language processing and machine learning to detect suicide 

attempts in a small group of hospitalized adolescents within a psychiatric environment. 

 

V. METHODOLOGY USED 

Data Pre-processing: The initial step involves meticulously processing the collected Electronic Health Record 

(EHR) data to ensure its integrity and suitability for analysis [21]. This encompasses several tasks such as 

addressing missing values, standardizing numerical features, encoding categorical variables, and eliminating any 

irrelevant or redundant information [22]. 

Feature Extraction: Subsequently, relevant features are either chosen or extracted from the pre-processed EHR 

dataset. This process may entail employing domain knowledge and statistical methodologies to identify 

variables that exhibit high predictive potential for patient outcomes. 

Model Architecture Design: The architecture of the Recurrent Neural Network (RNN) model is meticulously 

crafted to effectively handle the sequential nature of EHR data [27]. Key decisions involve determining the 

number of layers, selecting appropriate RNN cell types (e.g., LSTM or GRU), defining activation functions, and 

tuning other hyper parameters. 

Model Training: Following the architectural design, the RNN model undergoes rigorous training using the pre-

processed and privacy-protected EHR data [30]. This phase revolves around optimizing the model's parameters 

utilizing advanced training algorithms such as stochastic gradient descent or Adam optimization, all while 

adhering to stringent differential privacy constraints. 
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Differential Privacy Optimization: Integral to the training process is the incorporation of differential privacy 

mechanisms to bolster the confidentiality of individual patient records. This entails introducing controlled 

perturbations into the training data or adapting learning algorithms to ensure that sensitive information remains 

safeguarded from potential inference. 

Model Evaluation: Upon completion of training, the efficacy of the trained RNN model is assessed using a suite 

of evaluation metrics including accuracy, precision, recall, F1-score, and the area under the receiver operating 

characteristic curve (AUC-ROC). This comprehensive evaluation gauges the model's proficiency in predicting 

patient outcomes while upholding privacy preservation standards [31]. 

Cross-Validation: To ascertain the robustness and generalizability of the RNN-based approach, experimental 

validation is conducted using either a dedicated validation dataset or through cross-validation techniques. This 

validation procedure ensures that the model's performance remains consistent across diverse patient cohorts and 

healthcare environments. 

Comparison and Interpretation: Finally, the performance of the RNN-based approach is meticulously 

benchmarked against baseline models or existing prediction methodologies to ascertain its superiority in terms 

of both predictive accuracy and privacy preservation. The study's findings are then meticulously interpreted and 

contextualized within the existing literature, elucidating the proposed approach's efficacy in outcome prediction 

and privacy optimization within the realm of electronic health records. 

 

 
Fig 3: Model Architecture. 

 

VI.  MODELS AND MATERIALS 

In this study, a comprehensive approach to machine learning model evaluation and comparison is presented for 

the classification of medical data [28]. Initially, the dataset is divided into features and the target variable 

'Result', followed by a stratified train-test split to ensure representative data distribution. The dataset is inspected 

to ascertain its dimensions and the types of features present, distinguishing between numerical and categorical 

variables. Subsequently, the categorical feature 'SEX' is removed from both the training and testing datasets. 

A variety of classification models are then employed, encompassing Random Forest, Decision Tree, K-Nearest 

Neighbors (KNN), Multilayer Perceptron (MLP), AdaBoost, and XGBoost classifiers. Each model is trained on 

the training data and evaluated on the testing data. Performance metrics including confusion matrices and 

classification reports are generated to assess the predictive capabilities of each model. Notably, the accuracy of 

each model is calculated and stored for subsequent comparison. 
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Plot 1: RF & it’s Output 

 

 

 
 

 

 
Plot 2: Decision Tree & it’s Output 

 

 

 

 
Plot 3: KNN & it’s Output 
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Plot 4: MLP & it’s Output 

 

 

 
Plot 5: Ada-B & it’s Output 

 

 

 
Plot 6: XGB & it’s Output 

 

 

 

Furthermore, the best-performing classifier is identified based on its achieved accuracy. The accuracies of all 

classifiers are visualized using a bar plot, facilitating a comparative analysis of their performance. The plot 

showcases the accuracy scores of each classifier, allowing for easy interpretation and comparison. The study 

concludes by highlighting the best-performing classifier and its corresponding accuracy, providing valuable 

insights into the effectiveness of different classification algorithms for the task of medical data classification 
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[29]. 

 

Table 2: Comparison table for all the Models 

MODEL(S) ACCURACY 

RANDOM FOREST 0.7497168742921857 [highest accuracy] 

DECISION TREE 0.6874292185730464 

KNN 0.6806342015855039 

MLP-CLASSIFIER 0.7066817667044167 

ADA-BOOST 0.7123442808607021 

XG-BOOST 0.7406568516421291 

 

VII. DATASET DESCRIPTION 

In this study, we conducted a comprehensive analysis of various machine learning classifiers to predict medical 

outcomes using a dataset obtained from clinics in New York City. The dataset, titled "Patient Treatment 

Classification," encompasses comprehensive patient details, spanning 11 columns from the patient's age and 

gender to their complete lipid profile. Comprising both numerical and categorical features, the dataset contains a 

total of 10 features, including demographic information such as age and gender, alongside clinical indicators. 

Structured as both a .csv file and a .docx file, the dataset provides flexibility in data exploration. While the .csv 

file contains tabular data, the .docx file likely offers additional contextual or descriptive information. With a size 

of approximately 77 kilobytes, the dataset facilitates efficient handling and analysis within the scope of this 

research. The dataset comprises 4412 rows and 11 columns, with 10 features utilized for analysis. Among these 

features, 9 are numerical, and 1 is categorical. To ensure balanced representation, the 'SEX' column, being 

categorical in nature, is removed before splitting the dataset into training and testing sets using a stratified 

approach. 

VIII. RESULT &DISCUSSION 

The classifier exhibiting the highest performance in this study is the Random Forest, achieving an accuracy of 

0.75. The graphical representation of classifier accuracies is presented, where a bar plot depicts the accuracy 

scores of different classifiers. It is crucial to note that a Future Warning is generated, indicating that the passing 

of palette without assigning hue is deprecated. The recommended approach involves assigning the x variable to 

hue and setting legend=False for equivalent functionality. This graphical visualization aids in the comparison of 

classifier performances, providing a clear illustration of the Random Forest's superiority in accuracy among the 

evaluated models. 

 
Fig 4: Comparative graph Plot to detect high accuracy. 

 

The graph illustrates the effect of adding differential privacy noise to patient data in Electronic Medical Records 

(EMR) when using a Recurrent Neural Network (RNN) model. As shown: 

Without Noise: The accuracy improves and stabilizes as the number of epochs increases, depicting typical 

learning behavior in neural network training. 

With Noise: The introduction of noise simulating differential privacy mechanisms results in a general decrease 

in accuracy over the same number of epochs, reflecting the trade-off between privacy and performance. 
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Fig 5: Representation of Data with and without Noise addition. 

 

IX. ADDITION OF NOISE TO THE MODEL FOR DATA PRIVACY 

To describe the process of enhancing EMR privacy using differential privacy and a Recurrent Neural Network 

(RNN) model mathematically, we can break down the steps into several key equations and definitions: 

1. INPUT DATA REPRESENTATION 

Let X represent the original patient data matrix, where each row corresponds to a patient's record and each 

column corresponds to a different attribute of the data. 

2. DIFFERENTIAL PRIVACY MECHANISM 

Differential privacy involves adding noise to the data to mask individual contributions while allowing statistical 

analysis of the dataset. Let M(X) be the mechanism that applies differential privacy: 

M(X) = X + Laplace (Δf/ϵ) 

Where: 

• Laplace (Δf/ϵ) represents the noise added to each entry of X, drawn from a Laplace distribution centred 

at zero with scale Δf/ϵ.  

• Δf is the sensitivity of the function f being computed, which measures the maximum change in f that 

any single individual's data can have. 

• ϵ is the privacy budget, a parameter that controls the trade-off between privacy and accuracy. 

3. RECURRENT NEURAL NETWORK (RNN) MODEL 

The RNN takes the noise-added data M(X) and processes it over time to model temporal dependencies and 

produce an output Y. 

The RNN function can be represented as: 

Y t =σ (W⋅h t−1 +U⋅xt + b) 

where: 

• xt is the input at time step t (a row from M(X)).  

• ht−1 is the hidden state from the previous time step. 

• W and U are weight matrices for the hidden state and input, respectively. 

• b is a bias vector  

• σ is a non-linear activation function, commonly the sigmoid or tan function. 

4. Output Data 

The final output Y represents the processed, privacy-enhanced EMR data that can be used for further analysis or 

decision-making. 

• Final Expression 

Combining these steps, the complete process can be succinctly described by the transformation from X to Y 

through the differential privacy mechanism and the RNN model: 

Y=RNN (M(X)) 

In this study, a recurrent neural network (RNN) architecture, specifically utilizing the Simple-RNN layer, is 

employed for the classification of medical data, focusing on the prediction of a binary outcome denoted as 

'Result.' The dataset, sourced from New York City clinics, is pre-processed by extracting relevant features and 

partitioned into training and testing sets. The input data is reshaped to meet the RNN input format, with the 

model architecture comprising a Simple-RNN layer with 64 units, followed by two densely connected hidden 

layers with 32 units each, all employing the rectified linear unit (ReLU) activation function. The final layer 

employs the sigmoid activation function to output binary predictions. The model is compiled using stochastic 

gradient descent (SGD) as the optimizer, binary cross entropy as the loss function, and accuracy as the 

evaluation metric. The training process involves 320 epochs with a batch size of 32, and the model's 

performance is evaluated on the test set. The achieved accuracy and loss metrics, along with the model 

summary, contribute to a comprehensive understanding of the RNN-based classification approach for medical 

data. 
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Fig 6: Addition of Noise in EHR using input to hidden layer of RNN. 

 

This work in Fig. 6 represents, a sequential neural network architecture is implemented for medical data 

classification, as evidenced by the model summary presented below. The architecture consists of a Simple-RNN 

layer with 64 units, followed by two densely connected hidden layers, each comprising 32 units. The output 

layer, utilizing a sigmoid activation function, produces binary predictions. The model's parameters, totalling 

7393 (28.88 KB), are non-trainable, and the entire model is trainable. The training process involves 320 epochs, 

during which the model is iteratively refined using stochastic gradient descent. The observed test accuracy at the 

conclusion of training is reported as 0.7157418. This comprehensive model summary and performance 

evaluation contribute essential insights into the effectiveness of the proposed neural network architecture for 

medical data classification. 

 
Fig 7: Addition of Noise in EHR using hidden to output layer of RNN. 

 

In the above graph plot Fig. 7, the training and validation accuracies of the implemented model are visualized 

for comprehensive analysis and interpretation. The plot depicts the evolution of accuracy metrics over the 

training epochs, with the training accuracy represented by the 'train acc' curve and the validation accuracy 

denoted by the 'val acc' curve. The legend provides clarity regarding the identification of each curve. This 

graphical representation serves as a valuable tool for assessing the model's performance throughout the training 

process, aiding in the evaluation of its learning dynamics and potential over fitting or under fitting tendencies. 

Such visualizations contribute to a holistic understanding of the model's behavior and efficacy in the context of 

the medical data classification task undertaken in this research. 

 

X. CONCLUSION 

Our study has developed a Recurrent Neural Network (RNN)-based methodology for predicting patient 

outcomes, significantly enhancing data privacy using Differential Privacy on Electronic Health Records (EHR). 

This approach has provided profound insights into the convergence of predictive modelling and privacy 

management in healthcare. Our exploration into sophisticated privacy techniques, including but not limited to 

Differential Privacy, underscores the essential need to bolster data protection concurrently with maintaining 

accuracy in predictions. The advancements in RNN optimization highlight the critical role of refining these 

models to handle the vast scales of EHR data efficiently. Moreover, enhancing model explainability remains 

pivotal, as it ensures that healthcare providers can understand and trust the predictive outputs, which is vital for 

informed decision-making. 

The inclusion of longitudinal analysis in our studies introduces a crucial temporal aspect to predicting patient 

outcomes, accommodating the variable nature of patient health over time. The adaptive features of our privacy 

techniques offer resilience against the changing dynamics of healthcare data environments. Furthermore, our 

research paves the way for applying these methods across various healthcare contexts, promising a robust, 
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adaptable, and ethically responsible predictive modelling framework.  

 

XI FUTURE RESEARCH DIRECTIONS 

Building on our findings, future research should explore several promising paths. Expanding privacy protections 

beyond the scope of Differential Privacy to include advanced cryptographic methods such as homomorphism 

encryption or federated learning could offer stronger safeguards without compromising the accuracy of 

predictions. There is also a pressing need to focus on the optimization of RNNs, particularly in improving the 

algorithms used for training these networks to ensure they are both efficient and scalable when applied to 

extensive EHR datasets. 

Prioritizing the explainability of these models is essential for clinician acceptance and trust, necessitating the 

development of new methods that can provide clear, understandable explanations of model decisions. 

Furthermore, extending this research to include longitudinal predictions will enhance the models' ability to 

capture and utilize the temporal dynamics inherent in patient data effectively. Investigating the adaptability of 

our RNN-based approach and privacy frameworks to diverse healthcare situations and broader applications 

remains a vital future task. This will ensure that our predictive models are versatile and ethically sound, suitable 

for a wide array of healthcare environments. 
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