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Abstract: - It is of great significance to scientifically and effectively assess the spillover effects of internal and external risks in China's 

energy finance and build an accurate risk early warning system to steadily promote the realization of the " carbon peaking and carbon 

neutrality " goal. Multiple internal and external market data are selected, and the spillover index model based on quantile vector 

autoregression is used to capture the internal and external risk spillover characteristics under different market conditions and visualize 

them through complex networks. In addition, the early warning index of nonlinear Granger causal test is incorporated into the Attention-

CNN-LSTM model to construct a risk early warning system. The empirical results show that: (1) There are significant risk spillover effects 

both inside and outside China's energy financial market under different market conditions, and the risk spillover index under extreme 

market conditions is greater than that based on conditional mean and conditional median. (2) The internal crude oil and fuel oil markets 

and the external energy and stock markets occupy an important position in the overall risk spillover system. (3) Comparing and analyzing 

the prediction effects of six different models, the MAE and RMSE of the Attention-CNN-LSTM model were 0.7686 and 0.9077, 

respectively, which were optimized by 12.9% and 21.4% respectively compared with the second-best performing CNN-LSTM model; 

Moreover, after adding the early warning indicators, the prediction effect of the Attention-CNN-LSTM model is improved by 19.8% and 

31.9% respectively in MAE and RMSE compared with the original model, so it is more suitable for constructing China's energy financial 

risk early warning system. 
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I. NTRODUCTION 

In order to address global warming, China has proposed the "double carbon" target based on its responsibility to 

promote the building of a community of human destiny and the inherent requirement to achieve sustainable 

development, which has injected a strong impetus for the international community to fully and effectively 

implement the Paris Agreement and demonstrated China's ambition and great power's role in addressing climate 

change. However, one of the main causes of climate change is the burning of fossil fuels, and according to the UN 

data, coal, oil and natural gas account for more than 75% of global greenhouse gas emissions and nearly 90% of 

all carbon dioxide emissions. Therefore, reducing fossil energy consumption and steadily promoting renewable 

energy use has become a feasible approach to mitigate climate-related risks [1]. 2022, the "14th Five-Year Plan 

for Modern Energy System" issued by the National Energy Administration again mentions accelerating the 

transformation of energy to low-carbon, and energy As a commodity, changes in its structure will naturally affect 

its price fluctuations through market supply and demand, and once such fluctuations exceed the warning line, they 

will cause energy security problems, which in turn will affect the development of the national economy [2]. 

Therefore, it is important to understand the volatility characteristics of energy prices and to prevent risks in a 

timely manner in order to maintain a solid national real economy and to accomplish the "double carbon" target on 

time. 

Energy finance is a series of financial activities formed by integrating energy resources and financial resources, 

and the risks it generates not only trigger oscillations within the energy commodity market [3-5], but also spillover 

externally thus affecting normal transactions in other markets, however, this spillover is not unidirectional, but is 

manifested as characteristics of mutual spillovers between different markets [6-8]. For example, Liu et al. 

investigate extreme risk spillovers among global energy markets, noting that risks are mainly transmitted to each 

other within energy markets, and this phenomenon is more pronounced especially during periods of extreme 

upward volatility[9]. Ji et al. explore the correlation between energy and agricultural products and find that energy 

and agricultural products tend to fluctuate together, exhibiting mutual spillovers, and that the volatility between 

energy and agricultural markets is greater when the market experiences extreme downward movements than when 

it moves upward[10]. Similarly, Mensi et al. analyze the spillover relationship between global green bonds (GBs), 

WTI oil, and G7 equity markets and find that each market both exports and receives risk externally and is largely 

transmitted from G7 equity markets to WTI oil and green bonds[11]. It is true that China is currently in an 
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important period of low-carbon transition, and exploring the risk transmission mechanism of internal and external 

markets of energy finance can help us find the source of risks more quickly and precisely when they occur, so as 

to effectively prevent the collapse of the whole system and even the stagnation of the real economy caused by 

further risk transmission. 

In recent years, the literature on energy financial risk contagion has been characterized by single point, localization 

and internationalization, and few scholars have conducted internal and external risk spillover analysis on China's 

energy financial market alone. Based on this, this paper focuses on the following aspects: firstly, we collect 

relevant market data from previous literature, mainly including futures data of various energy sources and external 

market data with possible spillover effects on energy; secondly, we capture the internal and external spillover 

characteristics of the energy market using the quantile vector autoregressive model-based spillover index method 

(QVAR-DY); then, we use complex networks to visualize the characteristics of the above risk spillover structure. 

Finally, the Attention-CNN-LSTM model is used to construct an early warning system for China's energy finance 

risk and to propose targeted risk prevention suggestions. 

II. LITERATURE REVIEW 

A. Choice of Metrics for Risk Spillover and Complex Networks 

Most studies have shown that risk spillovers in energy financial markets are multi-directional, time-varying, 

asymmetric and non-linear, and such spillover effects show significant differences across different market states 

[12]; therefore, choosing a more relevant method to measure risk correlation is a prerequisite for accurately 

analyzing the internal and external risk transmission mechanisms in energy financial markets. There are not many 

early methods to study financial risk spillover effects, but they mainly have limitations such as unidirectional, 

linear, static and difficult to quantify, e.g. Ji et al. used ΔCoVaR to explore the risk correlation between a single 

market and the whole system, which focuses on one-way propagation from one subject to another and is not able 

to quantify the multi-directional risk linkage between markets effects between markets in multiple directions can 

be quantified[13]. The GARCH model is often used for its simplicity and its ability to characterize volatility 

aggregation and spikes and thick tails [14-16], but it can only reflect the existence of intermarket spillovers and 

cannot further explain the magnitude and direction of spillovers, so it is often improved and then applied to related 

studies in later studies ([17-19]. In addition, there are also models that are often used in combination with other 

methods to measure and analyze risk linkages, thus compensating for the deficiencies in one aspect [20, 21]. As 

scholars' research in the field of risk spillover continues to intensify, the models innovated in recent years have 

become more receptive and compatible, and the DY spillover index model is a good example. Specifically, 

Diebold and Yilmaz combined the VAR model and the generalized forecast error variance decomposition model 

to construct the DY spillover index model [22], which can effectively measure the time-varying trend of the 

magnitude of spillover effects among different markets by reasonably solving the shortcomings of the traditional 

variance decomposition results that depend on the order of variables, and is therefore widely used by scholars in 

several studies [23-28]. However, the drawback is that this approach relies on conditional mean estimates, which 

can only reflect the average risk in the whole market, and it is difficult to make a reasonable risk measure for those 

"black swan" and "gray rhino" events, so it is not suitable for those with relatively high sensitivity. Therefore, it 

is not suitable for the study of energy financial risk spillover effects, which are relatively sensitive. 

Complex networks can visualize the correlation between various markets by means of network topology diagrams 

and can calculate the density of the whole network, which can more intuitively reflect the importance of each 

element in the system, the role it plays and the strength of the relationship between two markets. 

Therefore, this paper first analyzes the internal and external risk spillover characteristics of energy finance using 

the quantile vector autoregressive model-based spillover index method (QVAR-DY) proposed by Ando [29], 

which can effectively capture the size of risk spillover under extreme event shocks and can measure the time-

varying effect of risk spillover at different quantile points separately. The obtained risk network association matrix 

is then used as the adjacency matrix to evaluate and visualize the overall network structure using complex 

networks. 

B. Risk Warning Method Selection 

If the study of risk spillover effects is compared to the search for an army that can win battles, then the study of 

risk early warning is the search for an excellent commander. In the process of preventing and resolving financial 
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risks, risk early warning is the first challenge ahead, and accurate risk prediction is a prerequisite for controlling 

and resolving risks more quickly, more effectively, and with lower losses. The traditional risk early warning 

models, such as the KLP signal method proposed by Kaminsky and the FR probability model proposed by Frankel 

and Rose [30, 31], are mainly based on various information indicators to estimate the probability of a crisis 

occurring in a long period of time, which does not provide a good explanation for the occurrence of a crisis from 

a temporal point of view, and the range of future forecasts is too long. The range of future forecasts is too long 

and therefore does not accurately reflect the likelihood of financial risks in the short term. Logistic regression 

models have also been used for risk early warning studies, e.g., Kumar used a logit model to study the possibility 

of currency collapse in emerging markets, but this approach is prone to underfitting and is generally not very 

accurate[32]. With the advent of the era of big data and artificial intelligence, scholars began to try to put machine 

learning into the study of financial risk early warning, using more attributed to artificial neural network models 

[33] and support vector machines [34], but the traditional machine learning methods are often weaker than deep 

LSTM models, as classical deep learning models, are able to learn, train and predict stock volatility well and are 

often used by scholars for time-series prediction analysis [35]. After that, in order to be able to further improve 

the prediction accuracy of LSTM models, it is a classical research idea in the field of risk warning to combine 

them with other models to construct new models and compare the prediction effects of fittin[36, 37], for example, 

Ji Xingquan et al. used Attention-CNN -LSTM model to predict short-term electricity prices and found that the 

prediction results were better than those of LSTM and CNN-LSTM models alone in all aspects[38]. 

Based on this, this paper takes the total time-varying spillover results of risk spillover as the research object of 

risk early warning, and adopts the Attention-CNN-LSTM model to forecast energy financial risks after selecting 

several early warning indicators and influencing factors at the same time to construct an energy financial risk early 

warning system in China. 

The rest of the paper is organized as follows: Chapter 3 briefly describes the construction process of QVAR-DY 

risk spillover model and Attention-CNN-LSTM model; Chapter 4 applies the model to Chinese energy finance 

internal and external market data, captures the static and dynamic characteristics of internal and external risk 

spillover under different market states and visualizes them through complex network diagrams, then constructs a 

risk early warning system and presents the empirical results; the last chapter gives the conclusion of the paper and 

puts forward policy recommendations. 

III. MODEL CONSTRUCTION 

A. Spillover Index Model based on Quantile Vector Autoregression 

This paper will capture the internal and external risk transmission characteristics of China's energy finance market 

using a quantile vector autoregressive based spillover index model to explore whether there is heterogeneity in 

risk spillover at different quantile points. In general, define an n-dimensional p-order quantile vector 

autoregressive process ( )QVAR P : 

1

( ) ( ) ( ), 1,2, ,
p

t i t i t

i

y c B y e t T  −

=

= + + =    (1) 

Which ty is an n-dimensional column vector, ( )c  represent the intercept vector at quantile  , ( )iB   represent 

n-dimensional lag coefficient matrix at quantile   , ( )te   is an n-dimensional error column vector. Before 

estimating the lag coefficient matrix ( )iB  and the intercept vector ( )c  , requires certain assumptions to be given 

to the error term ( )te    in order to satisfy the preconditions for the interpretability of the equation. That is, 

assuming that the error term satisfies the conventional quantile regression constraint 
1
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Then, the framework of the DY spillover index is built and the QVAR model is embedded in it to calculate the 

spillover index at multiple quartiles separately, thus constructing a model that can measure the spillover index at 

different quartiles, which can better respond to the volatility spillover effect under extreme conditions (Ando et 

al., 2022). Specifically, equation (1) is first rewritten as an infinite-order vector moving average process: 



J. Electrical Systems 20-9s (2024): 2243-2262 

2246 

 

 

1

( ) ( ) ( ) , 1,2,t s t s

s

y A e t T   


−

=

= + =  (2) 

It is important to note that,  
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Here, ty  is obtained by summing the error terms ( )te   to infinite order, which can also be expressed as the 

sum of the mutually orthogonal error terms ( )te   to infinite order: 
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Here ( )  is a lower triangular Cholesky decomposition matrix, and a one-step forward prediction of ty  

in equation (5) yields. 
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Thus the one-step prediction error is: 
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And so on, the forward h-step prediction error is obtained as: 
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For a single variable in series  ity , the forward h-step prediction error can be expressed as: 
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variance decomposition of the prediction error allows to understand the ratio from the own to the external shocks 

at different quantile levels, which in turn allows to construct the gross spillover index ( )TSI  , the net spillover 

index ( )jNSI 
, and the directional spillover indices ( )iDSI   and ( )iDSI 

 at different quantile levels, defined 
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 ( ) ( ) ( )i i iNSI DSI DSI    = −  (15) 

The total spillover index represents the sum of the spillover risks in the whole system at the  -quantile, the 

directional spillover index represents the one-way spillover effect of a market to another market, and the net 

spillover index represents the difference between the outward spillover and inward-received risk values of a single 

market, which can reflect whether a market is a risk transmitter or a risk receiver. 

B. Elaboration of CNN-LSTM Model based on Attention Mechanism 

Energy financial risk is not only related to the carbon, stock, exchange rate, interest rate, bond and gold markets, 

but also to its own previous moment's value. The advantage of long and short-term recurrent neural networks 

(LSTM) is that they can discover the intrinsic patterns of long series and have high prediction accuracy, but they 

often produce overfitting due to the size of the feature volume, so it is necessary to extract features from the data 

before feeding them into the LSTM framework. The CNN-LSTM model based on the attention mechanism can 

not only make up for the shortcomings of CNN in long series dependence, but also further improve the overall 

prediction accuracy at anomalies or jump points, so it is more suitable for the early warning analysis of energy 

financial risks, and the operation of the whole system is shown in Figure 1. 

 

 
Fig. 1 Schematic diagram of Attention-CNN-LSTM model 

 
The attention mechanism is similar to weighted summation, where the importance of the input features is first 

considered, then the Softmax activation function is applied to make the sum of all weights 1, and finally the input 

features are multiplied by the corresponding weights and summed. 
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where 
T

e  , eb  , 
eW  , eU  and are parameters to be learned; 

k

ta   is the k-th attention weight at time t; 
k

te  

denotes the importance of th ; and tz  denotes the attention output. 

CNN is mainly used for downscaling and feature extraction of energy financial risks, and the results are used as 

input for LSTM, which is calculated as follows: 

 ( )l l lh ELU W X b= +  (19) 

where lh  is the output of the data after CNN, ELU  is the activation function, 
lW  represents the weight matrix, 

 represents the convolution operation, and lb  represents the bias vector. 

LSTM is derived from recurrent neural networks, and by introducing a gate function, it can better capture the 

time-varying patterns of long sequences. It mainly consists of a unit state and an oblivion gate, a selection memory 

gate and an output gate, where the oblivion gate is used to decide how much of the previous state needs to be 

forgotten, the selection memory gate is used to decide which new information to retain, and the output gate is used 
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to determine how much to pass for output. The three gates operate in combination to reasonably solve the difficult 

problem of gradient disappearance and gradient explosion, and have relatively high prediction accuracy. 

 
1( [ , ] )t f t t ff W h x b −=  +  (20) 
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 ( )t t th o ELU C=   (25) 

where 
tf  denotes the forgetting gate, W  denotes the weight matrix of the corresponding gate, respectively, 

1th −
 denotes the hidden state at period t-1, tx  denotes the input of the layer at time t, b denotes the bias of the 

corresponding gate, respectively, ti  denotes the input gate, and to  denotes the output gate. 

IV. EMPIRICAL ANALYSIS 

A. Variable Selection and Descriptive Statistical Analysis 

In order to conduct a comprehensive analysis of the internal and external risk spillover effects in the energy finance 

market and to explore in more detail the structural characteristics of risk contagion among different markets and 

among submarkets within the energy finance market, this paper refers to previous literature and selects multiple 

submarkets with possible correlation effects with the external correlation markets for analysis. Given the 

availability of data, the internal markets are selected from the closing price data existing in the Chinese futures 

markets of crude oil, coking coal, coke, methanol, asphalt, and fuel oil from January 2, 2019 to December 30, 

2022, and preprocessed according to the logarithmic rate of return; the external markets are mainly selected from 

the carbon market (Hubei carbon trading market as The external markets are mainly selected from the carbon 

market (represented by Hubei carbon trading market), stock market (represented by SSE Composite Index), 

exchange rate market (represented by USD to RMB), interest rate market (represented by Shanghai Interbank 

Offered Rate), bond market (represented by SSE Treasury Bond Index) and gold market from January 5, 2015 to 

December 30, 2022. In addition, the SSE Energy Industry Composite Index is selected as a proxy variable for the 

energy financial market to be added to the analysis of external market spillover effects. The data frequencies of 

each market are daily and are standardized in order to exclude the effect of differences in magnitudes. The 

descriptive statistical analysis of each variable is shown in Table 1, and the Jarque-Bera test results show that all 

variables reject the original hypothesis of normal distribution at the 1% level, and the unit root test also shows 

that the variables are significantly smooth and can be used for the next risk spillover analysis. 

 

Table 1 Descriptive statistical analysis of internal and external indicators of the energy market 

 n max min mean std Kurtosis Skewness Jarque-Bera ADF 

Crude Oil 972 0.101 -0.142 0.0004 0.024 2.902 -0.254 346.54*** -10.25*** 

Fuel Oil 972 0.145 -0.144 0.0001 0.025 3.179 -0.287 416.96*** -9.82*** 

Asphalt 972 0.095 -0.102 0.0004 0.021 2.792 -0.230 319.65*** -9.46*** 

Coke 972 0.070 -0.110 0.0004 0.023 2.287 -0.519 252.19*** -9.81*** 

Coking Coal 972 0.110 -0.104 0.0005 0.024 3.146 -0.155 399.12*** -9.68*** 

Methanol 972 0.073 -0.100 0.0001 0.018 2.331 -0.224 224.80*** -9.94*** 

Energy 1947 0.067 -0.105 -0.0001 0.018 4.038 -0.668 1458.40*** -11.86*** 

Carbon  1947 0.176 -0.164 0.0004 0.030 4.648 -0.031 1742.00*** -13.60*** 

Interest Rate 1947 1.490 -0.628 -0.0003 0.111 29.228 2.461 70895.00*** -15.92*** 

Exchange Rate 1947 0.018 -0.014 0.0000 0.002 5.441 0.288 2413.20*** -11.10*** 

Bond 1947 0.398 -0.229 0.0159 0.039 9.769 0.515 7784.00*** -9.61*** 

Gold 1947 0.050 -0.062 0.0003 0.008 5.555 -0.074 2489.6*** -11.79*** 

Stock 1947 0.056 -0.089 0.0000 0.014 7.459 -1.157 4920.10*** -11.80*** 

Note: Jarque-Bera stands for normality test, ADF stands for unit root test, and *** stands for 1% level of 
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significance. 

B. Static Characteristics of Risk Spillovers in Energy Finance Markets 

1) Analysis of internal aggregate spillover characteristics under different market states: In terms of model order, 

the optimal lag order of the QVAR-DY spillover index model selected in this paper is order 1 according to the 

AIC criterion, and the number of periods for the forecast error variance decomposition is 10. The conditional 

mean-based spillover index approach is first introduced to analyze the factor market within energy and used to 

compare with the risk spillover under the conditional median (0.5 quantile). The total spillover index under the 

conditional mean in Table 2 is 53.2%, a figure that is almost identical to the 53.01% under the conditional median 

in Table 3, indicating a significant total risk spillover effect within the energy market. A further look at the values 

across multiple markets reveals a high degree of similarity in volatility spillovers for both. At the directional 

spillover level, the size of the spillover and spillover into the different markets fluctuate within the range of 37.7% 

(methanol) to 67.1% (fuel oil) and 45.8% (coking coal) to 61.3% (fuel oil), respectively. It is worth noting that 

fuel oil accounts for a large share of both risk spillovers and spillovers, and is an important source of systemic 

risk in China's energy internal market. The main reason for this may be that fuel oil is widely used in a number of 

industries including power, steel, building materials and petrochemicals, and holds an important position in the 

overall energy system. In terms of the strength of inter-market relationships, there are strong levels of volatility 

spillovers between crude oil and fuel oil, crude oil and bitumen, fuel oil and bitumen, and coking coal and coke, 

while the relationships between crude oil and coking coal, coke and methanol are relatively weak. From a net 

spillover perspective, crude oil, fuel oil and bitumen have higher spillover effects on several other markets thus 

making their net spillover values positive and thus are net risk exporters in the overall risk network; in contrast, 

coking coal, coke and methanol are net risk receivers. 

 

Table 2 Total spillover index at conditional mean(%) 

 Crude Oil Fuel Oil Asphalt Coke Coking Coal Methanol From 

Crude Oil 39.3 28.8 21.2 1.8 1.6 7.4 60.7 

Fuel Oil 28.5 38.7 20.4 2.3 1.9 8.1 61.3 

Asphalt 22.4 21.8 41.1 3.1 2.8 8.9 58.9 

Coke 2.1 2.9 3.7 53.7 30.9 6.7 46.3 

Coking Coal 1.9 2.5 3.3 31.4 54.2 6.6 45.8 

Methanol 10 11.2 11.5 7 6.6 53.7 46.3 

To 64.9 67.1 60.2 45.6 43.8 37.7 TCI 

Net 4.2 5.8 1.3 -0.8 -1.9 -8.6 53.2 

 

Table 3 Total spillover index under the median condition(%) 

 Crude Oil Fuel Oil Asphalt Coke Coking Coal Methanol From 

Crude Oil 39 28.41 21.48 1.92 1.58 7.62 61 

Fuel Oil 28.07 38.5 20.49 2.71 2.11 8.12 61.5 

Asphalt 22.83 22.05 40.96 2.86 2.66 8.65 59.04 

Coke 2.44 3.04 3.82 54.33 29.89 6.48 45.67 

Coking Coal 2.09 2.52 3.56 30.34 55.04 6.44 44.96 

Methanol 10.44 11.36 11.17 6.47 6.47 54.09 45.91 

To 65.87 67.38 60.52 44.31 42.71 37.31 TCI 

Net 4.87 5.88 1.48 -1.37 -2.25 -8.61 53.01 

 

However, the spillover effects based on the conditional mean and conditional median can only reflect the risk 

spillover characteristics under normal market conditions, and in the face of extreme market upside and downside 

pressures, the risk of the entire financial system often shows short jumps in a short period of time, when the 

spillover effects generated under normal conditions may not accurately reflect the true volatility spillover 

characteristics among markets, so further calculations at the 0.05 and The risk spillover at the 0.05 and 0.95 

quartile is further calculated to portray the more likely transmission mechanism in the event of a major event. By 

looking at Tables 4 and 5, we can see that the total spillover indices in the left and right tails are as high as 78.05% 
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and 77.59%, respectively, and the data are significantly higher than the spillover values based on the conditional 

mean or conditional median and have a high degree of symmetry, probably because with the deepening energy 

financialization of the economy, the markets are more closely connected and the submarkets are in a state of 

sensitive warning, thus The submarkets are in a sensitive state of alert and thus more responsive to shocks from 

extreme events. At the directional spillover level, the elements within the energy market show high levels of 

spillover and spillover at both the 0.05 and 0.95 quartiles, indicating that the risk caused by extreme shocks does 

not have a large heterogeneity due to the difference in positive and negative directions, and some small changes 

tend to exist only in the relationship between the magnitude of risk among the submarkets, for example, in the 

face of positive shocks, fuel oil shows the highest premiums and spillovers in the face of negative shocks, while 

the maximum value of spillovers shifts to crude oil and bitumen in the face of negative shocks. In addition, from 

a net premium perspective, fuel oil and crude oil are almost tied as the largest net risk transmitters at the 0.05 

quantile, while coking coal is the most risk-receiving market at this time; while at the 0.95 quantile, fuel oil's net 

premium is well ahead of crude oil in first place, while coke becomes the center of risk reception. Overall, the 

role played by each market remains consistent across market states, and the overall risk transmission system is 

relatively stable. 

 

Table 4 Total spillover index at 0.05 quantile (%) 

 Crude Oil Fuel Oil Asphalt Coke Coking Coal Methanol From 

Crude Oil 21.13 19.32 18.3 13.14 13 15.12 78.87 

Fuel Oil 19.47 21.06 17.94 13.2 13 15.33 78.94 

Asphalt 18.26 17.81 21.37 13.5 13.59 15.48 78.63 

Coke 14.16 14.42 13.96 22.91 19.23 15.33 77.09 

Coking Coal 14.01 14.24 14.07 19.39 23.04 15.25 76.96 

Methanol 16.01 16.22 15.98 14.99 14.59 22.21 77.79 

To 81.91 82 80.24 74.22 73.42 76.5 TCI 

Net 3.04 3.05 1.6 -2.87 -3.54 -1.29 78.05 

 

Table 5 Total spillover index at 0.05 quantile (%) 

 Crude Oil Fuel Oil Asphalt Coke Coking Coal Methanol From 

Crude Oil 21.53 19.5 18.08 13.02 13.01 14.87 78.47 

Fuel Oil 19.46 21.64 18.08 12.99 12.99 14.85 78.36 

Asphalt 18.14 18.19 21.53 13.48 13.75 14.92 78.47 

Coke 13.45 13.84 13.93 23.27 19.96 15.56 76.73 

Coking Coal 13.55 13.76 14.33 19.69 23.5 15.17 76.5 

Methanol 15.39 15.55 15.64 15.23 15.19 23.01 76.99 

To 79.98 80.83 80.05 74.4 74.9 75.36 TCI 

Net 1.51 2.46 1.58 -2.33 -1.6 -1.63 77.59 

 

2) Analysis of external aggregate spillover characteristics under different market states: As with the internal 

market fixed-order approach, the lag order of the QVAR-DY spillover index model is chosen to be order 1 and 

the number of periods for the forecast error variance decomposition is 10. Here, four main aspects are analyzed. 

Firstly, it can be seen from Tables 6 and 7 that the conditional mean and conditional median based spillover indices 

are more similar in terms of net spillover value, directional spillover and total spillover index. Secondly, in terms 

of intra-market correlation, the energy market and the stock market are much more strongly correlated than other 

markets, probably due to the increased financialization of energy, with more energy commodity transactions 

reacting through stocks or related indices, making it more closely related to the stock market showing a stronger 

spillover effect between the two markets. Then from the perspective of directional spillover, the level of external 

risk spillover is higher in equity and energy markets, reaching 43.9% and 41.3% respectively, not only that, their 

risk spillover values are also larger than other markets, 39% and 38.5% respectively, indicating that energy and 

equity markets occupy an important position in the overall financial system and play a pivotal role as the primary 

source of systemic risk contagion. Finally, from a net spillover perspective, the equity, energy, interest rate and 

carbon markets are mainly risk exporters, while the exchange rate, bond and gold markets are mainly risk receivers. 
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Table 6 Total spillover index at conditional mean(%) 

 Energy Carbon Interest Rate Exchange Rates Bonds Gold Stock From 

Energy 61.5 0.9 0.5 0.8 0.6 1.1 34.6 38.5 

Carbon 1.1 94.7 0.6 1 0.7 0.8 1 5.3 

Interest Rate 0.6 0.6 95.8 0.8 0.7 0.9 0.6 4.2 

Exchange Rates 2.3 1.2 0.8 86.8 0.8 3.6 4.5 13.2 

Bonds 1.5 0.8 1.3 0.7 92.7 1.6 1.4 7.3 

Gold 1.5 1 1 3 1.3 90.5 1.7 9.5 

Stock 34.3 0.9 0.6 1.1 1 1.1 61 39 

To 41.3 5.4 4.8 7.5 5.1 9 43.9 TCI 

Net 2.8 0.1 0.6 -5.8 -2.2 -0.5 4.9 16.7 

 

Table 7 Total spillover index at 0.5 quantile(%) 

 Energy Carbon Interest Rate Exchange Rates Bonds Gold Stock From 

Energy 62.53 0.86 0.68 0.88 0.9 1.41 32.74 37.47 

Carbon 1.03 95.31 0.55 0.97 0.53 0.65 0.97 4.69 

Interest Rate 0.41 1.02 96.19 0.56 0.49 0.76 0.56 3.81 

Exchange Rates 1.96 1.56 1.16 86.88 0.77 3.93 3.73 13.12 

Bonds 1.4 0.68 1.55 0.59 92.83 1.39 1.55 7.17 

Gold 1.94 1.22 1.05 3.62 1.26 88.76 2.15 11.24 

Stock 32.47 1.22 0.76 1.47 1.25 1.37 61.48 38.52 

To 39.21 6.56 5.75 8.08 5.2 9.52 41.7 TCI 

Net 1.74 1.87 1.94 -5.03 -1.97 -1.72 3.17 16.57 

 

Compared to the conditional mean and conditional median based spillover indices, the total spillover indices in 

the left and right tails rise to 77.18% and 77.6%, respectively, in the face of positive and negative major event 

shocks, which is more than three times higher and the correlation effect is more significant. Looking at the 

directional spillover, we find that the directional spillover is above 70% for all markets at both the 0.05 quantile 

and 0.95 quantile, and even above 80% for a few markets, indicating that extreme event shocks further deepen the 

vulnerability of the market and the whole system shows a "weak" sensitivity. This indicates that extreme events 

have further increased the vulnerability of the market, and the whole system is in a "weak" and sensitive state. 

From the perspective of the net spillover index, the spillover roles played by some markets in different market 

states have changed, such as the carbon and interest rate markets are risk exporters in normal market states and 

become risk receivers at the 0.05 percentile, while the bond and gold markets switch from risk receivers to risk 

transmitters in the face of negative shocks. In contrast, the energy market, exchange rate market and stock market 

always remain stable exporters. 

Table 8 Total spillover index at 0.05 quantile(%) 

 Energy Carbon Interest Rate Exchange Rates Bonds Gold Stock From 

Energy 21.78 12.12 11.68 11.79 11.8 12.26 18.56 78.22 

Carbon 13.23 22.35 12.48 13.15 12.99 12.68 13.12 77.65 

Interest Rate 12.98 12.67 23.9 12.77 12.41 12.26 13.02 76.1 

Exchange Rates 13.3 13.03 12.35 22.91 12.78 12.3 13.32 77.09 

Bonds 13.03 12.55 12.1 12.7 23.39 13.02 13.21 76.61 

Gold 13.31 12.75 12.03 11.79 13.23 23.57 13.31 76.43 

Stock 18.43 11.97 11.97 11.89 11.95 11.94 21.86 78.14 

To 84.27 75.08 72.61 74.09 75.17 74.47 84.55 TCI 

Net 6.05 -2.56 -3.49 -3 -1.44 -1.96 6.41 77.18 

 

Table 9 Total spillover index at 0.95 quantile(%) 

  Energy Carbon Interest Rate Exchange Rates Bonds Gold Stock 

Energy 22.06 12.27 11.5 11.48 12.4 12.11 18.17 77.94 

Carbon 12.96 21.85 11.86 13.46 13.57 13.7 12.61 78.15 
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Interest Rate 12.9 13.33 22.53 12.8 13.23 13.01 12.19 77.47 

Exchange Rates 12.56 13.39 12.34 23.12 13.47 12.8 12.32 76.88 

Bonds 13.01 13.27 12.35 12.92 22.21 13.58 12.66 77.79 

Gold 12.99 13.55 12.16 11.96 13.58 23.03 12.72 76.97 

Stock 18.04 12.16 11.5 11.29 12.61 12.39 22 78 

To 82.47 77.98 71.7 73.9 78.87 77.59 80.67 TCI 

Net 4.54 -0.17 -5.76 -2.98 1.07 0.62 2.68 77.6 

 

Both in the internal and external markets, we can see that when faced with extreme event shocks, the risk of the 

entire system rises significantly compared to the normal market state, warning us that when faced with major 

event shocks, we should not use the risk spillover characteristics of the normal market state as the reference 

standard for risk prevention, but should re-evaluate the risk correlation of the entire market so as to formulate 

reasonable and effective countermeasures. 

C. Dynamic Characteristics of Risk Spillover in Energy Finance Market 

The results of the static analysis alone cannot observe the time-varying characteristics of the spillover effect, so a 

rolling time window (of length 200) is further added to the model to analyze the dynamic evolution pattern of the 

risk spillover. 

1) time-varying characteristics of internal aggregate spillover in different market states: Figure 2 shows the time-

varying characteristics of the two extreme market states, the normal market state, and the total spillover index 

based on the conditional mean, and the overall trend shows that the trend of risk spillover fluctuations based on 

the conditional mean and on the 0.5 quantile is almost the same, mainly showing: rising (before 2020) - falling 

(from 2020 to the second half of 2020) - rebounding (from the second half of 2020 to the sample period The main 

reasons may be as follows: on the one hand, on October 8, 2018, the IPCC released the Special Report on Global 

Warming of 1.5°C, which pointed out the path to achieve the temperature control target, and energy, as a key 

element that has an impact on climate, has been widely concerned in terms of commodity pricing and market 

transactions, etc. The market tolerance rate has decreased, vulnerability has increased and thus the risk premium 

index has been climbing, and this It took more than a year for this situation to slow down. On the other hand, the 

full-scale outbreak of the epidemic in 2020 exposes several markets to the risk of collapse and dilutes the links 

between external markets, leaving the risks generated by energy markets to be absorbed and transferred internally, 

resulting in a rapid increase in total spillover risk. This may be due to the fact that investors react more quickly to 

good news as the epidemic gradually improves, and thus the risk premium in the 0.05 quantile rises earlier. 

 

 
Fig. 2 Characteristics of aggregate spillovers within energy finance markets in different market states 

 

2) Analysis of internal dynamic directional spillover characteristics under different market states: Figures 3 to 5 

show the dynamic spillover, dynamic spillover, and dynamic net spillover effects of the Chinese energy finance 

internal market at the 0.5 quantile, 0.05 quantile, and 0.95 quantile, respectively, with the risk spillover and risk 

spillover in each submarket showing strong volatility, and the major jump points in the sample period almost all 

occurring around 2020 when the epidemic is in full swing, and it is worth noting that each submarket exhibits 

different long-term spillover trends after It is worth noting that the submarkets exhibit different long-term spillover 
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trends after being hit by the epidemic, and that such trends are significantly heterogeneous across market states. 

Specifically, at the 0.5 quantile, crude oil and fuel oil exhibit smooth fluctuations; coke, coking coal, and methanol 

exhibit a sustained upward trend; while asphalt exhibits a peculiar up-and-down fluctuation. In the 0.05 and 0.95 

quartiles, the trend of volatility in all six markets after the outbreak is less pronounced, probably because the risk 

premium level remains high in extreme market conditions, so that the risk level does not switch significantly in 

the face of the outbreak, but only slightly fluctuates. In terms of the net premium index, crude oil and fuel oil have 

always played the role of risk transmitters over time in the three market states, while the other four markets have 

seen a shift in risk premium status. In addition to this, there are also role shifts at the same point in time across 

market states, e.g., until 2020, the asphalt market is as a net exporter at the 0.5 quantile but a net receiver at the 

0.05 quantile; around 2021, the coke market acts as a risk transmitter at the 0.5 quantile but switches to a risk 

receiver at the 0.05 and 0.95 quantile. 

 

 
Fig. 3 Internal dynamic directional spillover index on the 0.5 quantile 

 

 
Fig. 4 Internal dynamic directional spillover index on the 0.05 quantile 
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Fig. 5 Internal dynamic directional spillover index on the 0.95 quantile 

 
3) Time-varying characteristics of external aggregate spillover under different market states: In terms of the 

overall volatility trend, unlike the volatility characteristics of the energy intra-market, the aggregate spillover 

characteristics based on the conditional mean and conditional median show a gradual risk retreat in the face of an 

epidemic shock, and this downward trend is only buffered in 2022. The reason for this is that after the outbreak, 

economic development is at a standstill, the whole system nearly stops functioning, and the correlation between 

different markets quickly fades, so that risks generated within the market cannot be transmitted to other markets, 

and the overall level of risk spillovers between markets rapidly decreases. In 2020, the total spillover risk rises 

due to unconventional monetary policy measures and global interest rate cuts, as well as the initial containment 

of the epidemic, but this situation does not last long before falling back into a "liquidity trap". At the 0.05 and 

0.95 quartiles, total spillover levels oscillate back and forth between 70% and 85%, with stronger aggregation and 

a faster transition from low to high spillover levels, suggesting that risk spillover effects are more sensitive in 

extreme conditions. In addition to this, the overall risk level decreases after the outbreak, with the volatility 

decreasing to between 70% and 80%, suggesting that the outbreak weakens the inter-market connectivity. 

 
Fig. 6 External aggregate spillover characteristics of energy finance markets in different market states 

 

4) Analysis of external dynamic directional spillover characteristics under different market states: Figures 6 to 8 

show the spillover, spill-in and net spillover effects among multiple external markets in different market states. It 
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can be seen that the directional spillover indices of each market are subject to a certain degree of uncertainty and 

volatility, and the external spillover and internal reception of risk in each market move in the same direction when 

subjected to external shocks. The next section focuses on three specific aspects to analyze the risk spillover 

characteristics and the possible underlying reasons for their changes. 

First, the spillover and spill-in characteristics of each market are analyzed in terms of time-varying characteristics. 

The energy finance market goes through four main phases at the 0.5 quantile: a decline from late 2015 to late 

2017, a rebound from 2018 to 2019, a fall from late 2019 to late 2021, and a further rise from late 2021 to the end 

of the sample period, with the possible intrinsic cause being the adoption of the Paris Agreement at the end of 

2015, which increased restrictions on traditional fossil energy combustion and weakened the The rapid fall from 

2019 to the end of 2021 is attributed to the full spread of the domestic epidemic, economic stagnation and a 

significant weakening of the correlation across the system. These characteristics of the energy markets are also 

validated in the equity markets, as the economy gradually recovers, markets gradually regain connectivity, and 

spillover risks begin to rise. Market spillover sizes for carbon, exchange rates, interest rates, bonds and gold 

fluctuate mainly between 0% and 30%, with significant points of change occurring between late 2019 and early 

2020, with the full-scale outbreak of the epidemic also being a key prying board for their changes. At the 0.05 and 

0.95 quartiles, the overall level of risk premia is well above the normal market state and remains at high levels 

with small fluctuations across markets, probably because the entire market is uniformly in a state of high vigilance 

and even in the face of extreme upside and downside risks is considered within the range of normal shocks as it 

does not cause large disruptions. 

Secondly, looking at the cross-sectional spillover levels in different markets, the energy and equity markets have 

been the two markets with higher risk spillovers, dominating the overall market, with several other markets having 

more similar levels of risk spillovers. In addition to this, each market has higher levels of spillovers in extreme 

market conditions than in normal market situations. 

Finally, from a net spillover perspective, each market has a state shift in the risk premium system. At the 0.5 

quantile, the energy, equity and carbon markets play the role of risk transmitters most of the time, the exchange 

rate, bond and gold markets mainly play the role of risk receivers, while the interest rate market switches back 

and forth between the two roles and is less stable. In extreme upside and extreme downside states, energy and 

equity markets still play risk exporters most of the time, but carbon, exchange rate, gold and bond markets turn 

out to be unstable, and notably interest rate markets start to play risk receivers at this point. 

 
Fig. 7 External dynamic directional spillover index at the 0.5 quantile 
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Fig. 8 External dynamic directional spillover index at the 0.05 quantile 

 
Fig. 9 External dynamic directional spillover index at the 0.95 quantile 

 

D. Complex Network Analysis of Energy Financial Risks in China 

In order to further clarify the dynamic interaction process of volatility spillover between each market, the 

following will visualize the inter-market correlation by drawing network correlation diagrams (Figure 9 and 

Figure 10) for different market states, and calculating the density of each sub-network to illustrate the tightness 

of the network. 

In general, the network correlations in extreme market states are larger than the normal market state cases for both 

internal and external markets, and show an overall complex and multithreaded character, which is verified by the 

results of network density in Table 10. 

The structural characteristics of the spillover network within the energy finance market can be summarized into 

the following four features: firstly, from the node color, the red nodes in the figure represent the net risk exporters 

and the green nodes represent the net risk receivers, and the spillover identities of the six submarkets are more 

stable; secondly, from the size of the nodes, the nodes of crude oil, fuel oil and bitumen are larger compared to 

the other submarkets and occupy an important They are also the primary targets of risk prevention and control. 

Then, in terms of the coarseness of the edges, the correlation between the two markets is more consistent across 

the three different market states, with the spillover between crude oil and fuel oil, crude oil and bitumen, fuel oil 
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and bitumen, and coke and coking coal being more pronounced, and it is worth noting that in the face of a positive 

shock (at the 0.05 quantile) the spillover effect between the three markets of crude oil, fuel oil and bitumen and 

methanol is significantly higher compared to the other two market state is significantly higher. Finally, in terms 

of degree centrality and side weights, the magnitude of spillovers between submarkets in the extreme market state 

is less volatile than in the normal market state, reflecting the greater connectivity and similarity across markets in 

the face of extreme event shocks. 

The structural characteristics of the external network of energy finance markets are also analyzed from four 

perspectives. First, in terms of node color, unlike the robustness of the submarkets in the internal market, some 

markets shift state under different market states, e.g., the carbon market and the interest rate market, which act as 

risk receivers in extreme market states, start to act as risk transmitters when the market returns to normal 

conditions. The gold and bond markets act as risk receivers at the 0.05 and 0.5 quantile and turn into risk spillovers 

at the 0.95 quantile. Secondly, in terms of the size of the nodes, energy and equity markets show larger nodes in 

different market states and always occupy a significant position. Besides, in the extreme volatility upside state, 

gold, bond and carbon markets gradually become the central nodes of the network as their correlations with other 

submarkets increase relative to both the normal market state and the extreme volatility downside state. Then from 

the coarseness of the edges, the energy market and the stock market are more significantly correlated in all three 

market states, and the spillover effect of both is higher. The intrinsic reason may be the gradual financialization 

of energy in recent years, the stock market is a representative of the financial market, and the whole financial 

system is interconnected and interacts with each other, thus making the correlation between the two substantially 

higher relative to other markets. Finally, from the perspective of degree centrality and side weights, the minimum 

values of network correlation of nodes in extreme market states are much larger than the maximum values in 

normal market states, indicating that the contagion effect among markets is more severe in extreme market states, 

the overall network is more closely connected, and the collapse of a single market is more likely to trigger systemic 

risks and thus cause serious impacts on the real economy. 

 

Table 10 Internal and external market network density values 

Internal Market Status Network Density External Market Status Network Density 

0.05 0.8 0.05 0.786 

0.5 0.6 0.5 0.675 

0.95 0.933 0.95 0.905 

 

 
Fig. 10 Energy Finance Internal Market 

 

 
Fig. 11 Energy Finance External Markets 
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E. Robustness Tests for Different Quantile Selection 

In order to exclude the possible instability of the randomness of quantile selection on the risk spillover results, 

this paper takes the total internal and external market spillover index as the experimental object and further selects 

all quantile points on 0~1 for robustness analysis. In Figure 11, (a) and (b) denote the time-varying values of risk 

spillovers at different quartiles for the internal and external markets of Chinese energy finance, respectively. 

Warmer shades represent higher network correlations, and it can be seen that for extreme downward markets 

below 20% and extreme upward markets above 80% the connectivity of both internal and external markets is 

stronger. Specifically, the overall average connectivity for the internal market is around 50% and increases year 

by year, and the overall average connectivity for the external market is around 20%. These trends are consistent 

with the analysis done above, indicating that the extreme quantile points selected are robust. 

 

 
Fig. 12 Time-varying values of risk spillover at different quartiles 

F. Energy Finance Risk Early Warning Study 

1) Early warning indicator selection: After analyzing the internal and external risk spillover characteristics of the 

energy financial market, we observe that there are certain correlation effects among different markets and sub-

markets within the energy market, and that these connectivity effects show significant heterogeneity, so that 

solutions can be developed based on the characteristics of new information when risks occur. Therefore, this paper 

further analyzes the early warning of energy financial risks in China and constructs an effective risk warning 

system to predict and stop the outbreak of risks in advance. In terms of data selection, considering that the spillover 

effect in the face of positive or negative shocks is much larger than the risk value under normal market conditions, 

and the impact of systemic risk would be the collapse of the entire economic system, the time-varying value of 

the total risk spillover under extreme market conditions is selected as the proxy variable for risk warning. 

In terms of the selection of early warning indicators, considering the uniqueness of China's economic operating 

system and related market environment as well as the connectivity of energy financial risks among multiple 

external markets, data related to the carbon market, stock market, interest rate market, gold market, exchange rate 

market, and bond market are initially selected, which is more in line with Tobias and Brunnermeier's (2016) study. 

consistent with Tobias and Brunnermeier. The specific proxy variables are shown in Table 11 [39]. 

 

Table 11 China Energy Financial Risk Warning Indicators 

Indicators Proxy variables 

Carbon Hubei Carbon Trading Market Log Yield 

Interest Rate SSE Composite Index Log Yield 

Exchange Rates Overnight shibor log yield 

Bonds Gold Price Log Yield 

Gold RMB to USD Log Yield 

Stock SSE Treasury Index Log Yield 

 

In terms of early warning model design, the parameters of the Attention-CNN-LSTM early warning model are set 
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as follows: the number of convolutional layers is 1, the learning rate is 0.0001, the number of training rounds is 

200, the batch training size is 24, and the optimizer is Adam. the mean absolute error MAE and the root mean 

square error RMSE are selected as a measure of prediction accuracy, and the formulae are calculated as follows, 

respectively. 
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where n denotes the number of forecast periods, iy   denotes the risk forecast, and iy  denotes the true value of 

risk. 

2) Risk warning system construction: After the initial selection of risk warning indicators, the correlation and 

causality between the indicators need to be further considered in order to ensure that the selected indicators have 

certain rationality and validity. Granger causality test has the ability to test the causal relationship between 

variables, but the traditional Granger method is only able to test the linear relationship between variables and is 

not suitable for the deep learning nonlinear early warning model used in this paper, so the nonparametric nonlinear 

Granger causality test is considered to examine whether there is a correlation between the selected early warning 

indicators and China's energy financial risk, and to point out whether it can be used to improve risk forecasting 

ability. It is a key step to determine whether there is a nonlinear dynamic change relationship between variables 

before conducting nonlinear causality tests on the variables. Therefore, a VAR model is used to filter the linear 

relationship between variables, and energy financial risk is added to the regression equation as the explanatory 

variable, and the BSD and RESET methods are applied to test the model residual series, and the original hypothesis 

of the test is that there is no nonlinear The original hypothesis is that there is no nonlinear relationship between 

the variables, and the empirical results show that both are significant at the 1% level, which rejects the original 

hypothesis that there is a nonlinear relationship. The results are shown in Table 12, which shows that all markets 

pass the test and the stock market is significant at the 1% level, indicating that the selected indicator can be used 

as an early warning indicator for energy financial risk in China. 

 

Table 12 Non-linearity test for early warning indicators 

H0 P-value H0 
P-

value 

Carbon Market is not the reason for the 

energy market 
0.083* 

Gold Market is not the reason for the energy 

market 
0.069* 

Stock Market is not the reason for the 

energy market 
0.000*** 

Exchange Rates Market is not the reason for 

the energy market 
0.087* 

Interest Rate Market is not the reason for 

the energy market 
0.090* 

Bonds Market is not the reason for the 

energy market 
0.092* 

Note: * represents the 10% level of significance, *** represents at the 1% level of significance. 

 

In order to fully reflect that the fitting effect of the Attention-CNN-LSTM model is better than other models, six 

models, including LSTM, CNN-LSTM, BP neural network, support vector machine (SVM) and random forest 

(RF), are also selected for comparative analysis of the prediction effect, in addition to this paper, we will also 

study the risk warning indicators before and after the addition of In addition, this paper will also study the change 

characteristics of the prediction effect of the Attention-CNN-LSTM model before and after the addition of risk 

warning indicators, and determine whether the addition of risk warning indicators can improve the fitting 

prediction effect of the model. Figure 12 shows the prediction comparison results of the six models and the 

changes of the prediction results of the Attention-CNN-LSTM model before and after adding the warning 

indicators, from which it can be directly seen that the risk prediction effect of the Attention-CNN-LSTM is better 

than the other five models and is closer to the real risk value, while the SVM and BP significantly deviate from 

the real value of The CNN-LSTM, LSTM and RF models have similar prediction effects, all of which are slightly 

weaker than the Attention-CNN-LSTM model. Figure 13 gives a comparison of the prediction effect of the 
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Attention-CNN-LSTM model before and after the addition of the warning indicators, and it can be seen that the 

prediction effect of the model is further improved with the addition of the warning indicators. The prediction 

effects of different models can only be roughly guessed from the graphs, while for those models that perform more 

similarly on the graphs, further precise comparisons of model evaluation metrics are required. From the level of 

model evaluation metrics in Table 13, the Attention-CNN-LSTM model performs the best, possessing lower MAE 

and RMSE values than the other five models, optimizing 12.9% and 21.4% in MAE and RMSE, respectively, than 

the CNN-LSTM model, which also has better prediction results. Besides, it can be found that the support vector 

machine and BP neural network are not applicable to the study in this paper and have large prediction errors. Table 

14 gives the MAE and RMSE of the model improved by 19.8% and 31.9%, respectively, after the inclusion of the 

early warning indicators, which again verifies that the inclusion of the early warning indicators is effective. In 

summary, the Attention-CNN-LSTM model with the inclusion of early warning indicators has better risk 

prediction effects and can be used for risk warning in the Chinese energy finance market. 

 

 
Fig. 13 The prediction effect of several different models 

 
Fig. 14 Comparison of model prediction effects before 

and after adding early warning indicators 

 

Table 13 Comparison of evaluation indicators of different forecasting models 

Evaluation Indicators Attention-CNN-LSTM CNN-LSTM LSTM BP SVM RF 

MAE 0.7686 0.8828 0.8930 2.5178 2.2847 1.0619 

RMSE 0.9077 1.1553 1.2206 2.9687 2.9426 1.3794 

 

Table 14 Comparison of evaluation indicators before and after adding early warning indicators 

Evaluation Indicators Attention-CNN-LSTM(+) Attention-CNN-LSTM(-) 

MAE 0.7686 0.9587 

RMSE 0.9077 1.3326 

V. CONCLUSIONS AND RECOMMENDATIONS 

A. Conclusion 

The main subject of this paper is the internal and external risk spillover characteristics of China's energy financial 

market and the construction of an accurate risk early warning system. The research process includes capturing 

risk spillover effects using a quantile vector autoregressive based spillover index model, visualizing the risk 

transmission mechanism among markets using complex network graphs, conducting robustness tests for quantile 

randomness selection, and constructing a risk early warning system based on Attention-CNN-LSTM model-based 

risk warning system is constructed. The following conclusions are drawn: first, in terms of static spillover 

characteristics, the total spillover characteristics based on conditional mean and conditional median in the internal 

market are similar, 53.2% and 53.01%, respectively, exhibiting a high spillover index, and the value is elevated to 

78.05% (extreme downside) and 77.59% (extreme upside) in extreme market states. Among the unilateral 

submarkets, crude oil and fuel oil both show higher spillover and spill-in effects relative to other markets in 

different market states and occupy a significant position in the market. The total spillover effects in the extreme 

downside (77.18%) and extreme upside (77.6%) market states in the external markets are more than four times 

higher than those based on the conditional mean (16.7%) and conditional median (16.57%), where the energy 

finance and equity markets show more significant risk contagion characteristics in all market states relative to 

other markets and are the main targets of concern for systemic risk. Second, in terms of dynamic spillover 
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characteristics, both internal and external markets exhibit strong time-varying characteristics of aggregate 

spillover in different market states. In terms of net spillover perspective, crude oil and fuel oil in the internal 

market always maintain the risk transmitter status in different market states, while all other four markets have risk 

role shifts; all markets in the external market have risk status shifts and the whole system is more volatile. Third, 

from the complex network diagram, the network correlation in the extreme market state is significantly greater 

than the normal market state situation. Fourth, from the risk early warning model, the Attention-CNN-LSTM 

model has more accurate prediction performance and lower MAE and RMSE values compared with the other five 

models, and the prediction effect of the model is further improved after adding early warning indicators, which is 

suitable for constructing an energy financial risk early warning system in China. 

B. Recommendations 

Based on the above findings, this paper will put forward the following policy recommendations: First, government 

departments should not only consider the risk spillover from external markets to the energy industry when 

formulating energy finance risk prevention and control measures, but also further consider the risk spillover 

between submarkets within the energy finance market, because the risk generated by internal submarkets is 

significantly different from each other, and only by doing a full range of spillover Only by capturing a full range 

of spillover characteristics can we intercept the source of risk more precisely and effectively prevent further 

contagion of risk. Secondly, more attention should be paid to the significant risks arising from extreme market 

conditions, because in extreme market conditions, the risk spillover index between internal and external markets 

rises significantly and the network density increases significantly, which makes the market contagion more 

efficient and thus can cause more serious losses in a shorter period of time. Finally, it is necessary to consider 

various factors affecting the risk of China's energy finance market in a comprehensive and multi-faceted manner, 

taking into account the uniqueness of the Chinese market, to build a more accurate risk warning system, to most 

effectively reduce the harm caused by systemic risks, and to improve the efficiency of energy finance risk 

prevention. 
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