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Abstract: - The massive developments of gaming devices as well as mobile apps have increased the demand of bandwidth. In wireless 

communication, cognitive radio (CR) technique has shown a significant amount of improvement in optimal utilization of spectrum band.  

Spectrum sensing is a very important strategy through which new scope for spectrum sharing can be detected. In CR, spectrum sensing is 

crucial. To estimate spectrum sensing performance, two metrics are mostly considered, i.e., probability of detection (PD) and probability of 

false alarm (PFA).  Traditional sensing approaches often face problems due to PD and PFA. These two constraints can affect spectrum 

utilization. Spectrum sensing is a type of binary classification problem and researches have shown that neural network has achieved high 

accuracy in this aspect. This research work focuses on the utilization of deep neural network (DNN) for accurately sensing unoccupied 

spectrum band. The benefits of convolutional neural networks (CNN) and recurrent neural networks (RNN) are combined in our proposed 

hybrid model i.e. ResNet-LSTM. In our study, RadioML2016.10b dataset is used for the experiments. The results showed that proposed 

model found to be efficient when compared to the existing techniques such as CNN, ResNet, LeNet, LSTM, CLDNN. Further, while 

compared with earlier models like CNN-LSTM, DetectNet and DLSenseNet, the proposed hybrid model “ResNet-LSTM” has shown better 

spectrum sensing performance. Proposed ResNet-LSTM framework achieved 96.97% prediction accuracy with 96.52% precision and 

96.83% recall. The prediction time reduced by 0.14 msec than CNN-LSTM model.   

Keywords: Cognitive radio, deep learning, deep neural networks, long short-term memory, spectrum sensing. 

 

I. INTRODUCTION  

The amalgamation of wireless communications, Internet of Things (IoT) and Artificial Intelligence (AI) result 

exponential growth of wireless devices. This caused the scarcity of spectrum resources [1–3]. Nowadays CR 

technique has come up as a remarkable approach to develop spectrum utilization. Basically spectrum access 

strategies are of two types, i.e., Concurrent spectrum access (CSA) and Opportunistic spectrum access (OSA). 

The prime idea of CR is OSA. The transmission of PU is unpredictable. This is why it is found that during some 

time slots, geographic directions or frequency bands PUs remain idle or inactive. Such type of spectrum band 

where the PU is inactive is called “spectrum hole”. If any PU or legacy user is not using a channel at certain time 

slot, then it can be termed as spectrum opportunity [4]. In OSA model, if any spectrum opportunity or spectrum 

hole is discovered, SU utilizes the carrier frequency, bandwidth as well as modulation scheme and makes a 

configuration so that these unutilized spectrum bands which are known as spectrum holes can be utilized for 

transmission. Temporarily, SU is allowed to use PU’s spectrum band, such that no interference is created. When 

the PU becomes active or it opts to transmit then the SU instantaneously stops its transmission and the spectrum 

band is released to the PU immediately. In this way, in OSA technique, without having any dedicated spectrum 

band SU can utilize PU’s spectrum for transmission and also, PU’s integrity as well as transmission is 

safeguarded. For smooth implementation of OSA technique, SU should be aware of spectrum holes’ information. 

This is done to ensure PU’s quality of service (QoS) [5]. Consequently, to keep an eye on the condition of the 

distinguished spectrum band is very important. This periodic observation of the spectrum band is called spectrum 

sensing (SS) [6]. For detecting the spectrum holes and monitoring primary spectrum periodically, this spectrum 

sensing is performed by SUs. It is a signal detection method; existence of noise may affect its accuracy. Large-

scale shadowing and small-scale fading are very popular examples of channel impairments that cause inaccuracy 

in sensing the spectrum [5].  
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CR technique has done massive improvement in utilization of spectrum band. Spectrum sensing is very important 

in cognitive radio. Spectrum sensing which is co-operative in nature can be used when numerous SUs prevail for 

improving the sensing accuracy [7-12].  Due to the insufficient spectrum resources in the 3G and 4G network, 

advancement of wireless applications has been affected. Spectrum scarcity is a major short coming of 3G and 4G 

network [13]. To achieve good wireless communication system proper utilization of spectrum band is very 

essential. Mitola et al. studied cognitive radio technique to improve spectrum utilization [14]. In this technique 

when PU is idle, SU can access the unused band opportunistically. In this way, without having any dedicated 

spectrum band, SU can transmit keeping PU’s transmission unhampered.  Haykin et al. identified some of the 

major roles of cognitive radio like, transmitted power control, channel-state estimation, radio scene analysis & 

spectrum management etc. [15]. At present researchers should focus to increase the utilization of spectrum band.  

There are some traditional spectrum hole detection techniques such as, cyclostationary feature detection, energy 

detection, match filter etc. [16, 17]. Here, statistical information of noise as well as signal is required to perform 

sensing. Hidden terminal problems, multipath fading, shadowing, etc. are some major drawbacks of wireless 

communication system. Due to these drawbacks, the result of radio scene analysis for individual base stations 

might be erroneous. This is why spectrum sensing is not flawless [18]. As the noise and signal are very complex 

in nature, AI based deep learning approach is highly appreciated. 

Deep learning is used for big data analysis that helps in pattern recognition, natural language processing 

application, bioinformatics, computer vision etc. [19]. In wireless communication systems like, spectrum sensing, 

resource allocation schemes, signal modulation recognition, deep learning based algorithms are greatly 

implemented for better outcome [20]. Deep learning base approaches efficiently reduce the classification error 

also it can enhance channel identification. Such techniques are independent of signal features; it can automatically 

learn those features. This automatic feature learning capacity of deep learning approaches facilitate to improve 

classification metrics [21, 22].   

In this study, a deep learning based spectrum sensing approach is implemented. The main motive of our study is 

to improve spectrum utilization by correctly identifying the unutilized spectrum band. The residual part of the 

manuscript has been arranged as follows. Existing deep learning based spectrum sensing approaches are described 

in section 2. The system model is elaborated in section 3. Our proposed framework is presented in section 4. 

Experimental setup is presented in section 5. Experimental outcomes along with discussions are elaborately 

represented in section 6, while conclusion of the study is presented in section 7. 

II. EXISTING DEEP LEARNING BASED APPROACHES FOR SPECTRUM SENSING 

Application of deep learning based approaches has shown significant improvement in various fields. In this study, 

we only focused on spectrum sensing with the help of deep learning. Some of those remarkable approaches are 

discussed in this section. 

An artificial neural network (ANN) model was designed by Vyas et al. [23] for sensing. Here the signal’s energy 

and the likelihood ratio test factor are utilized as training feature. Han et al. [24] designed a CNN model which 

trains data depending on cyclostationary feature detection and received energy signals.  To achieve distinct SU, 

Lee et al. [25] designed a novel CNN model that operates on any kind of sensing decision. In this study, a deep 

learning based cooperative sensing technique called deep cooperative spectrum sensing is proposed, that might be 

hard or soft combined achieving more accurate sensing than other traditional approaches. Chandhok et al. [26] 

designed a model “SenseNet” for wideband sensing. They have utilized this model for automatic modulation 

classification. To train the model quadrature-phase, amplitude-phase and in-phase were utilized. Here 

performance is evaluated over Rayleigh, AWGN and Rayleigh having doppler channels. Spectrum sensing is a 

type of classification problem, Zheng et. al. [27] designed a transfer learning based technique where training is 

done based on the power of the received signal to overcome noise power ambiguity issue. It showed better result 

than maximum minimum eigen value ratio as well as frequency domain entropy base technique. Peng et al. [28] 

also incorporated a transfer learning based sensing framework. The deep spectrum sensing model’s outcome is 

validated. 

For better outcome,  Xie et al. [29] designed a novel framework named CNN-LSTM detector. To design this 

model they used convolutional neural network (CNN) and long short term memory (LSTM). Here, initially the 

covariance matrices derived from sensing data, are considered as input which is fed to CNN. Then LSTM is 

utilized for final outcome. The proposed detector shows superiority in such a scenario where presence of noise is 

uncertain. Cheng et al. [30] designed a novel deep learning based model for OFDM system. For feature 
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extraction, here a stacked auto-encoder is used. The result of this study helped Gao et al. [31] to design another 

deep learning based novel framework. Here, authors designed two models named ’DetectNet’ and 

’SoftCombinationNet’ respectively, for spectrum sensing as well as cooperative spectrum sensing (CSS). 

Information regarding the basic structure of the modulated signal is used here. The proposed framework is 

compared with the energy detection technique. A significant gain in performance is also observed than any other 

existing CSS techniques. Solanki et al. [13] suggested a deep learning based approach and designed a model 

named DLSenseNet for sensing. Here, the received signal’s structural information is considered.  

 Geng et al. [32] proposed a novel deep learning based feature extractor that extracts features under varying SNR 

condition. The feature matrix is used for training the CNN model. When various features were combined, the 

accuracy was significantly improved. Authors claimed that, performance of their model was better than traditional 

approaches. To regulate the energy consumption for transmission, Sivaranjani et al. [33] used Improved LSTM 

(ILSTM) and Improved Extreme Learning Models (IELM) to design a hybrid model named HILSTM-IELM. 

Conventional approaches used to suffer from various drawbacks like, due to the change of SNR value the energy 

detector’s performance usually degrades, for match filter detector PU signal’s knowledge is very essential. Cyclo-

stationary detectors are sophisticated. This framework achieved superior performance in terms of accuracy and 

sensitivity. Kumar et al. [34] studied the CNN and RNN based spectrum sensing approaches and analyzed their 

performance in CR systems. According to their study, RNN can capture the temporal dependencies from the 

sequential data that is vital for sensing task while the signals evolve over the time. Deep learning based 

approaches have good adaptation as well as generalization capacity to various signals and in different conditions. 

This flexibility helps to improve accuracy even in the challenging scenario while spectrum condition is also 

diverse. As per their study, it is evident that CNN and RNN are two deep learning techniques which are gaining 

popularity for their efficient performance than traditional methods. Zhang et al. [8] studied that, deep learning 

based approaches could automatically extract as well as learn the features of the signals and the correlation 

information between those signals. Usually, any prior knowledge regarding the detected signal is not required 

here. This quality of deep learning techniques offers great opportunity for applications. To enhance sensing 

accuracy, Sumithra et al. [35] combined the advantages of Long Short-Term Memory (LSTM) and Multilayer 

Perceptron (MLP) to design a hybrid framework called LSTM-MLP. Here, signal noise is considered as the 

primary feature for observation as well as prediction of channel. It reduces the sensing delay also improves the 

prediction time for unoccupied channel detection. 

Deep learning based techniques achieve significantly high accuracy in sensing task than the conventional 

approaches. The research work of Xie et al. [29] and Solanki et al. [13] and the outcome of their study is the 

motivation of our implementation which is presented in this paper. 

III. SYSTEM MODEL 

In this study, we considered multiple antenna base CR system. To transmit PU signals, there is a PU transmitter 

which consists of multiple antennas. A hybrid DNN framework is designed for spectrum sensing. Proposed 

approach has two phases ie. sampling phase and network training phase. Fig. 1 represents the proposed DNN 

model. Initially, during sampling phase the PU signal is modified. In training phase the proposed model is trained 

so that, at the arrival of any unknown samples it can take robust decision. 

 
Figure. 1. DNN Architecture 

Let us assume that, S(k)=[𝑠1(k),𝑠2(k),…..,𝑠𝑥(k)] 𝑇  

Here, 𝑥  denotes sample length of the signal, 𝑘 = 0, 1, … . , 𝐾 − 1  indicates the 𝑘𝑡ℎ received signal and 𝑠𝑖(k) 

represents the 𝑘𝑡ℎ distinct time sample present at 𝑖𝑡ℎ antenna of cognitive radio terminal. Spectrum sensing at a 
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cognitive radio terminal that consists of multi-antenna system, is represented as binary hypothesis testing problem 

[20, 36]: 

𝐻0: S(k)=N(k) 
                                                                            𝐻1: S(k)=X(k)+N(k)                                                                           (1) 

Here, 𝐻0 denote that, received signal contains only noise and 𝐻1  signifies that both signal and noise are present in 

the received signal. S(k)  denotes signal vector suffering from path loss and channel fading. The circularly 

symmetric complex Gaussian (CSCG) noise vector having zero mean is denoted by N(k). Hypothesis 𝐻0 denotes 

the absence of PU, whereas 𝐻1 implies PU’s presence. Here, to get customized set of received signal Ŝ the in-

phase (I) and quadrature (Q) components are obtained from 𝐾 signals received from multi-antenna system. 

S𝐼 = Imag S(k) 
                                                                             S𝑄  = Real S(k)                                                                                            (2) 

Ŝ  = (S𝐼  , S𝑄)    

To obtain training and testing vectors, the received signals are labeled as follows: 

                                              (Ŝ,R) = (ŝ(1), 𝑟(1)), (ŝ(2), 𝑟(2)), … . . , (ŝ(𝑗), 𝑟(𝑗))                                                       (3) 

The input to the proposed model with the I-Q element is denoted by Ŝ. R belongs to the set {1,0} having labels 

[0,1] and [1,0] representing the hypothes is 𝐻0 and 𝐻1, respectively. 𝑗 denotes number of observations or samples. 

𝑠(𝑗) denotes the 𝑗𝑡ℎ sample and 𝑟(𝑗) is the level of the 𝑗𝑡ℎ observation that indicates the status either vacant or 

busy. DNN efficiently extracts the features. Feature extraction is done from training set furnished in a data driven 

mode. Now the test statistic is designed depending on binary classification problem. In this classification problem 

the label is determined as a one-hot vector: 

                                                        𝑅 = {
[0,1]𝑇 , 𝐻0

[1,0]𝑇 , 𝐻1

                                                                                         (4) 

IV. PROPOSED FRAMEWORK 

PU transmission is very random. Due to this sporadic transmission, PU becomes inactive in some time slots, 

geographic directions or frequency bands. Spectrum sensing is performed by SU to find unoccupied or vacant 

spectrum band. These unutilized spectrum bands are termed as spectrum hole. For maximum spectrum utilization, 

accurate detection of spectrum hole is very important and for this, periodic monitoring of PU is very essential. In 

our approach we have designed a hybrid model that consists of Residual Network (ResNet) and LSTM. Deep 

learning is a special type of machine learning technique having a number of intermediary layers of interconnected 

nodes for non-linear processing for the complex representation of data. The technique is very useful for big data 

analysis which is very helpful for bioinformatics, computer vision, natural language processing application, 

pattern recognition etc. [19]. Deep learning based algorithms are implanted to a great extent in various aspects of 

wireless communication systems like, signal modulation recognition, resource allocation schemes, spectrum 

sensing etc. [20]. 

Spectrum sensing is a binary classification problem and researches have shown that deep learning based 

approaches have achieved high accuracy in this aspect. We have utilized this technique and designed a hybrid 

model that has combined the advantages of ResNet and LSTM to achieve a significant accuracy. Fig. 2 presents 

the diagram of our proposed hybrid model. Performance of CNN is better and the outcome is more accurate than 

any other conventional machine learning model. 

The benefits of CNN and RNN are combined in our proposed hybrid model names ResNet-LSTM. It consists of 

two major components. The first part consists of convolutional layer and pooling layer. The primary task of this 

part is feature extraction. The second part contains LSTM and dense layer. This part utilizes the features for 

classification. LSTM layer is added to identify the chronological dependency in data. LSTM is very efficient for 

classification. ResNet is a CNN model which is trained for extracting the features from input. CNN layers are 

present for investigating the spatial relations also, it can learn complex features that leads to more accuracy in 

classification task. The detection performance is improved predominantly after utilizing this proposed ResNet-

LSTM model. It contains several layers like convolutional layer, max pooling layer and fully connected layers. 

The fully connected layer is the final layer which generates the feature vector as output. LSTM is type of RNN 

which is trained to predict a sequence of labels based on inputs. ResNet-LSTM model contains five convolutional 

layers having 64, 128, 256, 512, 1024, and 2048 filters of size (3,3), followed by max pooling layer, an LSTM 
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layer of 2048 units, a fully connected layer having 512 neurons and an output layer having one neuron. Fig. 3 

represents the detailed architecture of  ResNet-LSTM model which is proposed in our study. 

 

 
Figure 2 : Proposed hybrid model 

 
Figure 3: Proposed ResNet-LSTM architecture 

 

Here, input denotes in-phase as well as quadrature component of received signal. The proposed model comprises 

of a ResNet and the LSTM block along with a fully connected layer that generates predicted result as output. The 

optimized hyper-parameters for ResNet-LSTM model is presented in table 1. 

Table 1 : Optimized hyper-parameter 

Hyper-parameters Proposed ResNet-LSTM model 

Neurons in the dense layer 512 

Batch size 64 

Initial learning rate 0.001 

Dropout ratio 0.2 

Optimizer Adam 

 

Here, received signal from the system having multiple antenna, is considered as the input to the system. 

Depending on PU’s existence it is labeled. The predicted output is accurately labeled based on previous unnoticed 

observation. As we are working on the in-phase as well as quadrature components, these two time domain details 

constitute the input vector. Equation (5) shows the input as Ŝ. From equation (2) we can write: 

Ŝ=(S𝐼  , S𝑄)   

Hence,  

S𝐼 ←  𝐼𝑚𝑎𝑔 (𝑆) 
                                                       S𝑄 ←  𝑅𝑒𝑎𝑙 (𝑆)                                                                                                    (5) 

 

Proposed model is independent of energy, even in varying background noise its generalization capacity is very 

good. This is why normalization is performed. Also, the signal’s structure could be well utilized, even in the 

absence of interference. The received signal is complex in nature. Hence, before the received signal is separated 

into training and testing sets, energy normalization is performed on this signal [37]. This is represented in 

equation (6): 

                                                      𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ (|Ŝ𝑖|)
2

   
𝑥

𝑖=1
                                                                              (6) 

Ŝ𝑛𝑜𝑟𝑚 =  Ŝ /𝐸𝑛𝑒𝑟𝑔𝑦 
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Here, Ŝ𝑛𝑜𝑟𝑚 is the input and designed model performs sensing operation for CR node. Equation (7) represents the 

convolution operation. Here, 𝐶𝑖 is the output of the 𝑖𝑡ℎ convolution layer. In the following expression σ represents 

activation function, ꞵ denotes the bias and weight is denoted by Ꞷ𝑐𝑜𝑛𝑣  . 

                                                          𝐶𝑖  = 𝜎(ꞵ + ∑ Ꞷ𝑐𝑜𝑛𝑣   Ŝ𝑛𝑜𝑟𝑚)                                                                 (7) 

Equation (8) denotes max-pooling operation where X  is the pooling size. 

                                                                𝜌 =  𝑚𝑎𝑥𝑥∈X (Ŝ𝑛𝑜𝑟𝑚)                                                                        (8) 

In any typical deep neural network, signals from each layer are passed only to the higher layer for sample 

processing. At different time intervals, these sample are independent of each other. Here, encoding can be done 

only with the vectors of fixed dimensionality. But modeling of variations in time sequence is not possible. IQ data 

pertains to the time domain data character. Hence, LSTM layer is connected with the network to decide long term 

dependency. Moreover, signals modulated by various modulation techniques shows the sign of different 

characteristics features. LSTM can learn these temporal dependencies very efficiently [38]. 

Output of the ResNet model is sent to the LSTM layer to learn temporal features. Equation (10) represents the 

detailed calculation of the outputs of LSTM layer. LSTM learns long term dependency by determining 

information to be remembered and forgotten. 

 𝛼𝑡 = 𝑡𝑎𝑛ℎ (Ꞷ𝑐𝐶𝑖 +  𝑥𝑐ℎ𝑡−1) 
𝑖𝑡 =  𝜎(Ꞷ𝑖𝐶𝑖 +  𝑥𝑖ℎ𝑡−1 
𝑓𝑡 = 𝜎(Ꞷ𝑓𝐶𝑖 +  𝑥𝑓ℎ𝑡−1 

𝑂𝑡 = 𝜎(Ꞷ𝑂𝐶𝑖 +  𝑥𝑂ℎ𝑡−1 
𝐶𝑡 = 𝑖𝑡 ⊙ 𝛼𝑡 +  𝑓𝑡 ⊙ 𝐶𝑡−1 

                                                                ℎ𝑡 = 𝑂𝑡  ⊙ 𝑡𝑎𝑛ℎ (𝐶𝑡)                                                                           (10) 

Here, 𝑖𝑡 , 𝑂𝑡 , 𝑓𝑡 ,  ℎ𝑡  and 𝐶𝑡  denote the input gate, output gate, forget gate, short term state, long term state, 

respectively. Also, sigmoid function, hyperbolic tangent activation function and component-wise multiplication 

are denoted by σ, tanh, and ⊙ respectively. Ꞷ∗ and 𝑥∗ represents weight matrices for different gates, where * 

represents 𝐶, 𝑖, 𝑓, 𝑂. Now,  𝛼𝑡 analyzes the previous state and the current input. After analysis is done by  𝛼𝑡, 

particularly which section of  𝛼𝑡 is necessary to add with long term state is decided by input gate. Forget gate used 

to decide unnecessary parts, also erases those redundant parts. It is decided by the output gate which part of long 

term state should be chosen as output. The memories are dropped where long term as well as short term state 

exists. It is added by the gates. The hidden state  ℎ𝑡 and memory state 𝐶𝑡 are considered as input and transmitted 

to the next LSTM layer. The inputs are processed by LSTM layer and output from this LSTM layer is represented 

as  𝑙𝑡 which is sent to the fully connected layer. Now, fully connected layer works on the output of the preceding 

layer. The mechanism is shown in equation (11). Hence, we can get the concluding output related to the spectrum 

occupancy. The plots are elaborately presented in the result section. 

                                                    𝑝𝑟𝑜𝑏 =  𝜎(Ꞷ𝑑𝑒𝑛𝑠𝑒
𝑇  𝑙𝑡 + 𝛽)                                                                              (11) 

In this study categorical cross entropy loss function is applied to reduce the error. This loss function is represented 

in equation (12). 

                                   ℒcce(𝑟𝑠𝑠, 𝑟) = − ∑ (𝑟[i] log 𝑟𝑠𝑠 [i] + (1 − 𝑟[i]) log(𝑟𝑠𝑠[i]))𝑖                                       (12) 

Here, 𝑟𝑠𝑠 represents the predicted value. The actual value is denoted by 𝑟. Hence, depending on the amount of 

loss, we can calculate the gradient. It can be utilized to update the weight, represented in equation (13). 

                                             𝜔𝑠𝑠 = 𝜔𝑠𝑠 − 𝜂(𝑡)𝜔𝑠𝑠ℒ𝑐𝑐𝑒                                                                                      (13) 

V. EXPERIMENTAL SETUP 

In this section design methodology is discussed. To establish our proposed model’s accuracy and robustness, it is 

compared with some latest models. 

A. Generation of Dataset and Preprossing  

For dataset we have used RadioML2016.10b [40] which is extensively used baseline dataset for modulation 

recognition [31]. O’Shea and Corgan [41] generated this baseline dataset which is publically accessible. It 

contains ten different types of signals among them eight are digitally modulated and remaining two are analog 

modulation. SNR value ranges from -20 dB to +18 dB maintaining 2 dB intervals. In this proposed approach, for 

simulation purpose, we have used 8 types of signals that are modulated digitally at varying SNR values. These are 

the positive samples and the circularly symmetric complex gaussian (CSCG) noises are the negative samples. We 

have applied a frequently used split ratio of 3:1:1 to partition the whole dataset into three sets for the purpose of 
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training, validation and testing. Each of the training sample consists of ′k'  samples. These samples were fed to 

proposed model in 2 ∗ k vectors with the in-phase and quadrature components that is parted into complex time 

samples. The dataset parameters are presented in table 2. 

Table 2: dataset parameters 

Parameter Value 

Modulation scheme PAM4, QAM16, QAM64, 8PSK, QPSK,   BPSK, GFSK and CPFSK 

Length of Sample 64, 128, 256, 512 

SNR range -20db ~18db maintaining 2 db intervals 

Training sample 153,000 

Validation sample 51,000 

Testing sample 51,000 

B. Metrics for performance evaluation 

To estimate the efficiency of the ResNet-LSTM model, before testing, firstly it is trained and validated. Here 

probability of false alarm (𝑃𝑓) and probability of detection (𝑃𝑑) are considered as the metrics for evaluation [25]. 

For measuring the performance, these two main metrics are also applied. The former one is the probability of 

finding PUs’ existence while they are inactive. On the other hand, the latter one is the probability of PUs’ 

existence while they are really active. This is why, it illustrates the amount of safety to the PUs. High probability 

of detection indicates improved PUs’ safety. Low 𝑃𝑓 implies that there is more transmission opportunity which 

the SUs can utilize, and in this way, efficiency of the SUs is improved and this is how higher throughput is 

achieved. From this perspective, a successful spectrum sensing design must consist of increased PD and reduced 

PFA. These metrics are mostly contradictory. Higher PFA reduces SUs’ scope for accessing the spectrum. Both, 

𝑃𝑑 and 𝑃𝑓 are calculated for varying SNR values of the received signal. 𝑃𝑚 denotes probability of misdetection. It 

is the possibility of declaration of spectrum’s vacant state while PU actually exists. The formulas to calculate the 

performance evaluation metrics are presented in table 3. To evaluate these values, we used the values of 

confusion matrix which is constructed after executing the sensing operation on test set. There are four predictive 

labels that usually analyze the detection performance of ResNet-LSTM model: True positive (TP), True negative 

(TN), False positive (FP) and False negative (FN). TP and TN are the correctly predicted labels. Here, TP 

represent the instances when ResNet-LSTM accurately classified the sensed input as 𝐻1 hypothesis i.e. PU is 

present. Similarly, TN represents the instances when the trained ResNet-LSTM model correctly identified 𝐻0 

hypothesis i.e. PU is absent. FP and FN are the incorrect predictions. Here, FP denotes the case where, the 

proposed model incorrectly labels 𝐻0 hypothesis as 𝐻1. FN refers to the vice-versa cases, where the actual input 

𝐻1 is wrongly classified by ResNet-LSTM model as 𝐻0. 

Accuracy (𝑃𝑎): The ration of correctly predicted labels (TP and TN) with respect to total instances. 

Precision (𝒫): The purity of TP labels i.e. the ration of correctly predicted TP labels out of all the positive (TP and 

FP) predicted labels. 

Recall (ℛ): It is also known as true positive rate or the sensitivity. It denotes the completeness of TP labels i.e. the 

ratio of correctly predicted TP to the actual number of TP labels as per the ground truth data. 

Table 3: Formula to calculate performance evaluation metrics 

Metrics Formulae 

Accuracy (𝑃𝑎) 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Recall (ℛ) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 

Precision (𝒫) 𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

Probability of detection (𝑃𝑑) 𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑃𝑈

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠(𝑃𝑈 + 𝑁𝑜𝑖𝑠𝑒 𝑠𝑖𝑔𝑛𝑎𝑙𝑠)
 

Probability of false alarm (𝑃𝑓) 𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑁𝑜𝑖𝑠𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑢𝑠𝑒𝑟𝑠(𝑃𝑈 + 𝑁𝑜𝑖𝑠𝑒 𝑠𝑖𝑔𝑛𝑎𝑙𝑠)
 

Probability of missing ratio (𝑃𝑚) 1 − 𝑃𝑑 
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VI. RESULT AND DISCUSSION 

To show the performance of ResNet-LSTM model the simulation result is presented and analyzed here. The 

outcome of several parameters such as sample length, modulation scheme, and classification model is also 

considered in our study. Outcome of our designed model is compared with some existing DNN models like, 

CNN, convolutional long short-term deep neural network (CLDNN), inception model, LSTM, LeNet, residual 

network (ResNet). Also, we compared the ResNet-LSTM model with previously reported approaches such as 

CNN-LSTM [29], DetectNet [31] and DLSenseNet [13]. According to IEEE 802.22 standard, the 𝑃𝑓 value of any 

desirable sensing model should be between 0 and 0.1, while the value of 𝑃𝑑 is high [39]. 

The performance metrics of QAM16, QPSK signals for sample length 64, 128, 256, 512 are compared with 

proposed model and existing models as well as early reported models and presented in table 4 & 5. In this study, 

for comparison purpose the value of 𝑃𝑑 is considered at -20 dB signal-to-noise ratio (SNR). Proposed ResNet-

LSTM model has achieved the lowest 𝑃𝑓 than any other existing as well as early reported models. Besides having 

the lowest 𝑃𝑓 it achieved the highest 𝑃𝑑 which proved its superiority. From the results it is very clear that, 𝑃𝑓 of 

ResNet is very low but it is incapable of achieving high 𝑃𝑑. Though 𝑃𝑑 of inception model is good but its high 𝑃𝑓 

value is not desirable according to IEEE 802.22 standard. After studying the outcome, desirability of proposed 

approach is obvious as it achieved the highest 𝑃𝑑 while keeping the 𝑃𝑓 very low. Good balance between 𝑃𝑑 and 𝑃𝑓 

is maintained. Hence, it is assured that proposed ResNet-LSTM model have high detection accuracy and very low 

probability of false alarm. Among the existing approaches ResNet-LSTM can detect spectrum occupancy more 

accurately. 

According to the simulation outcome presented in table 4 & 5, it is obvious that our proposed model “ResNet-

LSTM” is superior than the previously reported models [29], [31], [13]. The proposed model shows better 

performance as it has achieved high 𝑃𝑑  and and reduced 𝑃𝑓 . Outcome of the proposed model whether the 

spectrum is vacant or occupied, is considered as a classification problem. 

From the data represented in table 4 & 5, it is clear that our proposed model has proven its superiority over 

previous works. The overall result clearly indicates that in cognitive radio, proposed “ResNet-LSTM” model is an 

excellent option for spectrum sensing. The better performance accurately identifies the PU’s transmission over the 

spectrum. 

Table 4. Performance metrics comparison between proposed model and existing models as well as early reported 

models for QAM16 signals with different sample length 

Models  Proposed by 

Sample Length 

64 

Sample Length 

128 

Sample Length 

256 

Sample Length 

512 

𝑃𝑑(-

20dB) 

(%) 

𝑃𝑓(%) 𝑃𝑑(-

20dB) 

(%) 

𝑃𝑓(%) 𝑃𝑑(-

20dB) 

(%) 

𝑃𝑓(%) 𝑃𝑑(-

20dB) 

(%) 

𝑃𝑓(%) 

CNN 

Existing 

DNN model 

25.78 01.95 27.42 03.84 31.28 08.23 36.21 11.24 

Inception 35.17 15.82 39.89 20.75 37.41 20.14 39.71 17.93 

ResNet 26.12 00.00 25.80 00.00 24.39 00.00 26.21 00.17 

LeNet 25.75 00.05 28.15 0.57 26.43 00.96 28.07 01.85 

LSTM 25.36 00.28 29.98 03.02 28.90 03.81 27.48 01.04 

CLDNN 26.07 01.05 31.79 05.63 35.70 07.54 43.86 05.03 

CNN-LSTM 

[29] 

Xie et al. 24.10 00.45 25.28 01.57 27.10 03.02 26.41 04.03 

DetectNet 

[31] 

Gao et al. 26.37 01.44 27.72 03.41 35.01 09.87 42.07 13.90 

DLSenseNet 

[13] 

Solanki et al. 39.60 00.00 40.97 0.00 42.07 00.00 46.98 00.04 

ResNet-

LSTM 

Present study 40.05 00.00 41.25 0.00 43.72 00.00 47.31 00.03 
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Table 5. Performance metrics comparison between proposed model and existing models as well as early reported 

models for QPSK signals with different sample length. 

Models Proposed by 

Sample Length 

64 

Sample Length 

128 

Sample Length 

256 

Sample Length 

512 

𝑃𝑑(-

20dB) 

(%) 

𝑃𝑓(%) 𝑃𝑑(-

20dB) 

(%) 

𝑃𝑓(%) 𝑃𝑑(-

20dB) 

(%) 

𝑃𝑓(%) 𝑃𝑑(-

20dB) 

(%) 

𝑃𝑓(%) 

CNN 

Existing 

DNN model 

28.54 01.08 28.79 03.26 33.64 09.83 35.62 13.63 

Inception 36.23 15.98 39.27 20.03 39.98 21.93 43.05 16.27 

ResNet 24.17 00.00 27.19 00.00 26.51 00.00 25.33 00.06 

LeNet 24.53 00.08 27.05 00.00 27.08 00.72 27.93 01.96 

LSTM 25.16 01.38 28.96 03.06 30.74 03.84 29.14 01.85 

CLDNN 27.35 01.25 30.18 06.81 36.70 08.79 44.89 07.51 

CNN-LSTM 

[29] 

Xie et al. 26.80 00.97 24.81 01.09 25.23 01.38 28.01 04.10 

DetectNet 

[31] 

Gao et al. 26.38 01.73 26.32 02.87 32.68 08.99 45.90 16.42 

DLSenseNet 

[13] 

Solanki et al. 40.79 00.00 39.77 00.00 43.32 00.00 47.70 00.08 

ResNet-

LSTM 

Present study 41.06 00.00 40.15 00.00 44.81 00.00 48.73 00.06 

The performance comparison of different existing DNN models for varying sample length, on the signal 

modulated by QAM16 modulation technique is presented through figures 4 to 7. Performance of these models for 

SNR -20dB to 18 dB is presented in figures 4 and 5. For QAM16 signal for sample length 64 and 128, Inception 

model has shown good detection performance but its high 𝑃𝑓  value affects its efficiency. Though 𝑃𝑓 of ResNet is 

low but its 𝑃𝑑 value is also very low which degrades the performance. In this aspect, detection performance of 

ResNet-LSTM is better than existing approaches. 

 
Figure. 4. Performance comparison between ResNet-LSTM and 

other existing models for sample length 64 for QAM16 

modulation for SNR -20 dB to 18 dB 

 

 
Figure: 5 Performance comparison between ResNet-LSTM and 

other existing models for sample length 128 for QAM16 

modulation for SNR -20 dB to 18 dB 

Because of distortion, signals at low SNR i.e. -20 dB to 0 dB, contain very less amount of information than high 

SNR i.e 0 dB to 18 dB. The models that have good detection capability at low SNR, can perform significantly 

better in high SNR. For better understanding of the simulation result, figures 6, 7, 10 and 11 represent the 

detection performance of different models at low SNR range from -20 dB to 0 dB, for QAM16 and QPSK signals 

for sample length 256 and 512. Though both ResNet and proposed model achieved the lowest 𝑃𝑓  but low 𝑃𝑑 value 
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of ResNet has proved its inferiority. Here, proposed ResNet-LSTM model has shown outstanding detection 

performance. 

 
Figure: 6 Performance comparison between ResNet-LSTM and 

other existing models for sample length 256 for QAM16 

modulation for SNR -20 dB to 0 dB 

 
Figure: 7 Performance comparison between ResNet-LSTM and 

other existing models for sample length 512 for QAM16 

modulation for SNR -20 dB to 0 dB 

Efficiency of different existing DNN models for varying sample length, of QPSK signal is compared and 

graphically presented in figures 8 to 11. Figures 8 and 9 represent QPSK signal’s detection performance for 

sample length 64 and 128 at SNR -20 dB to 18 dB. ResNet, LeNet and proposed ResNet-LSTM model all the 

three models achieved the lowest 𝑃𝑓  value but the significantly high 𝑃𝑑  of our proposed approach proved its 

superiority than existing approaches. 

 
Figure: 8 Performance analysis of ResNet-LSTM with other 

existing models for sample length 64 for QPSK modulation for 

SNR -20 dB to 18 dB 

 
Figure: 9 Performance comparison between ResNet-LSTM and 

other existing models for sample length 128 for QPSK 

modulation for SNR -20 dB to 18 dB 

 

Proposed ResNet-LSTM performs great because of good understanding capability for considering the modulated 

signals’ structure. Benefits of two DNN architectures are combined in our proposed approach. ResNet performs 

the feature extraction. The CNN layer is there to study the spatial relation then it extracts that necessary 

information and learns the internal representation of the input data. The purpose to include LSTM layer is to 

recognize the temporal dependency for identifying long term as well as short-term dependency. 

 
Figure: 10 Performance comparison between ResNet-LSTM and 

other existing models for sample length 256 for QPSK 

modulation for SNR -20 dB to 0 dB 

 
Figure: 11 Performance comparison between ResNet-LSTM and 

other existing models for sample length 512 for QPSK 

modulation for SNR -20 dB to 0 dB 
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When the characteristic features of the PU signal are changing, the efficiency of ResNet-LSTM is established. 

Fig. 12 compares and analyzes the performance of ResNet-LSTM over eight different modulation techniques at 

SNR -20 dB to 0 dB with 64 sample length. The performance variation is very insignificant for different 

modulated signals. It is implied that its performance is not very sensitive to the modulation error. 

 
Figure: 12 Impact of different modulation schemes 

Figures 13 and 14 represent the comparison between “ResNet-LSTM” and the three previously reported models. 

These figures demonstrate that ResNet-LSTM has achieved highest detection accuracy and lowest probability of 

false alarm which is most desirable for any sensing technique. 

 

 
Figure: 13 Performance comparison between early reported 

models and ResNet-LSTM for QAM16 signal with varying 

sample length 

 
Figure: 14 Performance comparison between early reported 

models and ResNet-LSTM for QPSK signal with varying sample 

length 

 

Fig. 15 represents the comparative performance analysis metrics. The comparative analysis of some performance 

metrics like, accuracy, recall, precision showed that ResNet-LSTM found to be superior when compared to other 

models. These metrics are computed for low SNR range (-20dB to 0dB) and presented in table 6. It was found 

that ResNet-LSTM model is desirable for its sensing accuracy. As per the simulation results presented in table 7, 

it is clear that both the training and validation accuracy increased significantly as the number of epochs increases. 

It achieved 97.86% training accuracy and 97.35% validation accuracy. The maximum training and validation 

accuracy reached at 100th epochs. Comparison of training and prediction time between ResNet-LSTM and other 

models are presented in table 6. It was observed that, CNN-LSTM [29] takes 1180 seconds for training and 

required time for prediction is 1.96 msec. Proposed ResNet-LSTM model takes 1496 seconds for training which 

is higher than the previous model. Proposed approach takes very less prediction time i.e. 1.82 msec. The 

prediction time is reduced by 0.14msec than CNN-LSTM [29] model. Though ResNet-LSTM takes more time for 

training but its minimum prediction time proves its superiority. Fig. 16 represents accuracy comparison for 

varying SNR. It is observed that the proposed model demonstrated its consistent superior performance. At low 

SNR (-20dB to 0dB) ResNet-LSTM exceeds the second highest approach [13]. ResNet-LSTM framework 

achieved 96.97% prediction accuracy with 96.52% precision and 96.83% recall. In terms of accuracy, the 

proposed ResNet-LSTM model exceeds the second highest method. 
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Figure: 15 Performance evaluation of ResNet-LSTM 

 
Figure: 16 Accuracy comparison ResNet-LSTM framework 

 

Table 6. Comparison of performance metrics for different models at low SNR range (-20 dB to 0 dB): 

Model details 

Performance metrics Required Time 

Accuracy 

(𝑃𝑎) 

Recall 

(ℛ) 

Precision 

(𝒫) 

Training time 

(sec) 

Prediction time 

(msec) 

CNN 

Existing 

DNN 

models 

0.8502 0.8573 0.8579 1045 2.67 

Inception 0.8741 0.8758 0.8792 1458 2.83 

ResNet 0.8967 0.8902 0.8987 1294 2.99 

LeNet 0.9015 0.9034 0.9063 1278 2.95 

LSTM 0.9247 0.9265 0.9218 1264 2.49 

CLDNN 0.9216 0.9205 0.9243 1862 2.34 

CNN-LSTM [29] Early 

reported 

models 

0.9362 0.9374 0.9389 1180 1.96 

DetectNet [31] 0.9401 0.9473 0.9427 1698 2.31 

DLSenseNet [13] 0.9438 0.9411 0.9426 1792 2.19 

ResNet-LSTM 
Present 

study 
0.9697 0.9683 0.9652 1496 1.82 

 

Table 7. Training and validation accuracy for ResNet-LSTM framework: 

No. of epochs Training accuracy (%) Validation accuracy (%) 

20 95.73% 94.98% 

40 95.88% 95.06% 

60 96.49% 96.04% 

80 97.85% 97.14% 

100 97.86% 97.35% 

VII. CONCLUSION 

In cognitive radio network opportunistic utilization of spectrum resource is highly encouraged. It is very 

challenging to find out vacant spectrum band. Traditional sensing approaches have fundamental drawbacks. The 

two constraints, PD and PFA can affect spectrum utilization. Researchers have shown that, neural network 

achieved high accuracy in spectrum detection. We utilized this technique and designed a hybrid model that 

combined the advantages of ResNet and LSTM to achieve a significant accuracy. In our study, a DNN based 

spectrum sensing model called “ResNet-LSTM” is designed. The proposed approach has shown significant 

improvement compared to the existing techniques like, CNN, ResNet, LeNet, LSTM, CLDNN. While compared 

with some early reported models like, CNN-LSTM, DetectNet and DLSenseNet, our proposed “ResNet-LSTM” 

model demonstrated a better sensing result. It achieved maximum probability of detection while maintaining 

lowest false alarm rate. The performance was examined with standard sensing metrics. ResNet-LSTM framework 

achieved 96.97% prediction accuracy with 96.52% precision and 96.83% recall. The prediction time is reduced by 

0.14 msec than CNN-LSTM model. The designed model has shown significant improvement in efficiency in the 
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same service grade of the PD and PFA. In terms of accuracy, the proposed ResNet-LSTM model exceeds the 

second highest method. Proposed ResNet-LSTM framework is a desirable spectrum sensing approach. 
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