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Abstract: - This study seeks to estimate the remaining life span of lithium-ion batteries, which is an essential component of early 

failure prevention. The paper demonstrates how advanced machine learning tools like CatBoost and LightGBM are superior when it 

comes to handling complex data patterns. In assessing the accuracy of prediction, several key performance metrics such as Mean 

Squared Error (MSE), Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were used. Experimental validation using 

NASA's 18650 lithium-ion battery datasets reveals a 25% improvement in prediction accuracy, with CatBoost consistently 

outperforming LightGBM. This implies that these approaches have the potential to improve RUL predictions and thus battery 

management policies. 
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I.  INTRODUCTION  

Electric propulsion systems cannot do without Energy Storage Systems (ESS) that are also essential in running 

drones and aircraft. The growing environmental concerns and unpredictable oil prices have led to a soaring demand 

for electric propulsion technology in the aviation sector. This boom highlights why ESS should be used to improve 

efficiency as well as minimize environmental footprints.  

Therefore, many attempts have been made to predict the Remaining Useful Life (RUL) of lithium-ion batteries, 

which are the indispensable components of ESS necessary for ensuring their reliability and longevity. For example, 

[1] suggest applying machine learning for predicting lifetime of NMC-LCO batteries using data from Hawaii 

Natural Energy Institute. Similarly, [2] present LightGBM-based system to forecast battery life under specified 

operating conditions involving electrochemical impedance spectroscopy (EIS), impedance-capacity discharge 

voltage (IC-DV) curves for accurate estimations on RUL. 

To build on this, a CatBoost model introduced by [3] helps improve prediction accuracy and diagnosis of Li-ion 

battery. [4] also combined stream learning with LightGBM to estimate SOH and RUL, resulting in better 

performance over the existing models. These studies underscore the need for accurate battery life prediction 

especially when it comes to electric propulsion systems. 

These are not the only applications of machine learning in battery prognosis. For in-stance, [8] examine deep 

learning and machine learning paradigms applied solar radiation forecasting while [10] use machine learning 

algorithms to assess ecological suitability demonstrating how versatile these methods can be. 

Nevertheless, despite several approaches available, accurately predicting the lifespan of Lithium-Ion batteries 

remains a significant hurdle. This research employs CatBoost as well as LightGBM algorithms for battery life 

prediction based on their strong feature se-lection capabilities and suitability in handling time series data. The study 

compares and evaluates the forecast performance of LightGBM and CatBoost using NASA dataset about 18650 

Lithium-ion Batteries. 

In the preliminary results, it was observed that CatBoost is better than LightGBM as it consistently gives much 

lower RMSE values and more precise predictions on RUL [17]. These approaches have improved long-term 

forecasting capabilities and outperformed existing ones. 

The next paragraphs present a concise overview of the CatBoost and LightGBM algorithms, after which they take 

an in-depth look at the RUL estimation methods with NASA’s data on 18650 lithium-ion batteries. The accuracy 

and efficiency of predicting remaining useful life for lithium-ion batteries using CatBoost and LightGBM are 

demonstrated through experimental results and performance comparisons. 
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II.  METHODOLOGY 

Gradient boosting algorithms, such as CatBoost and LightGBM, offer several advantages over neural network or 

LSTM algorithms, particularly in the context of predicting the Remaining Useful Life (RUL) of lithium-ion 

batteries. Here are the key reasons, [25] 

When dealing with structured, tabular data, gradient boosting algorithms excel by efficiently capturing complex 

feature interactions with minimal feature engineering. In contrast, neural networks, and LSTMs, while powerful 

for unstructured data like images, text, or time-series, often necessitate significant preprocessing and feature 

extraction when applied to structured data. 

Gradient boosting models, such as CatBoost and LightGBM, are advantageous due to their interpretability. They 

provide clear insights into feature contributions through feature importance scores and partial dependence plots, 

making them easier to understand and explain. Neural networks and LSTMs, on the other hand, are often 

considered "black boxes" because of their complex architectures, making it challenging to interpret individual 

feature influences on the output. 

Regarding handling missing values and outliers, gradient boosting algorithms are robust and can manage these 

issues effectively without extensive preprocessing. For instance, CatBoost can directly handle missing values, and 

robust loss functions help mitigate the impact of outliers. Conversely, neural networks and LSTMs typically 

require additional preprocessing steps like imputation or normalization, adding complexity to the modeling 

process. 

In terms of training time and resource efficiency, gradient boosting models generally require less computational 

power and time compared to neural networks and LSTMs. Optimized implementations like LightGBM enhance 

efficiency, making them practical for situations with limited computational resources or the need for quick results. 

Neural networks and LSTMs often demand extensive computational resources and longer training times, 

especially for deep architectures, along with careful hyperparameter tuning, which can be time-consuming. 

Gradient boosting models incorporate built-in regularization techniques to prevent overfitting, such as early 

stopping, tree pruning, and shrinkage (learning rate). These methods enhance generalization and help avoid 

overfitting. Although neural networks and LSTMs also have regularization methods like dropout and weight 

decay, they are still prone to overfitting, especially with small to medium-sized datasets, requiring meticulous 

tuning to manage effectively. 

Scalability and parallelization are strengths of gradient boosting algorithms like LightGBM, which are designed 

to handle large datasets efficiently through parallel and distributed training. This capability makes them suitable 

for big data applications. While neural networks and LSTMs can also scale, training large models often requires 

specialized hardware, such as GPUs, and frameworks like TensorFlow or PyTorch to manage parallelization, 

increasing complexity and cost. 

Hyperparameter tuning in gradient boosting models is more straightforward and less sensitive compared to neural 

networks. The process is faster and more reliable, simplifying model optimization and accelerating deployment. 

In contrast, neural networks and LSTMs have numerous hyperparameters, including learning rates, batch sizes, 

and the number of layers and units per layer. Tuning these parameters is complex and time-intensive, demanding 

significant expertise and computational resources to achieve optimal performance. 

In summary, gradient boosting algorithms such as CatBoost and LightGBM offer advantages in terms of handling 

structured data, interpretability, robustness to missing values and outliers, training efficiency, regularization, 

scalability, and ease of hyperparameter tuning. These strengths make them particularly well-suited for tasks like 

RUL prediction of lithium-ion batteries, where structured data is prevalent and model interpretability is crucial. 

While neural networks and LSTMs have their place in machine learning, especially for unstructured data and 

sequential tasks, gradient boosting remains a powerful and often more practical choice for many predictive 

modeling tasks. 

III.  PROPOSED ALGORITHM TECHNIQUES 

The study uses machine learning algorithms, LightGBM and CatBoost, to improve lithium-ion battery lifespan 

prediction, crucial for electric vehicle performance and sustainability. The process involves data importation, 

preprocessing, training, evaluation, prediction, interpretation, and conclusion, providing valuable insights into 

lithium-ion battery forecasted lifespan for electric vehicle applications.  

 

LightGBM 

LightGBM (Light Gradient Boosting Machine) is a high-performance, open-source gradient boosting framework 

developed by Microsoft. It is designed for efficiency and scalability, particularly suitable for large datasets and 

high-dimensional data. LightGBM incorporates several novel techniques to enhance its performance compared to 

other gradient boosting libraries like XGBoost  

Traditional Gradient Boosting: In traditional gradient boosting, the decision trees are built using exact greedy 

algorithms, which can be computationally expensive and memory-intensive for large datasets. 

LightGBM's Approach: LightGBM uses a histogram-based decision tree learning algorithm. It discretizes 

continuous feature values into a finite number of bins (histograms), significantly reducing memory usage and 

speeding up the training process. This approach allows LightGBM to handle large datasets efficiently.[27] 
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LightGBM is a highly effective model for lithium-ion battery lifetime prediction, utilizing advanced techniques 

to optimize model performance and control complexity [9,11,13]  

Mathematical Formulation of LightGBM 

Gradient boosting is an ensemble technique that builds models sequentially, with each new model correcting errors 

made by previous ones. The objective is to minimize a loss function L(y, F(x)), where y is the true value and F(x) 

is the predicted value. For a given iteration t, the objective is to fit a new model ht(x) to the negative gradient of 

the loss function: 

ℎ𝑡(𝑥) =  − 
𝜕𝐿(𝑦,𝐹(𝑥))

𝜕𝐹(𝑥)
|

𝐹(𝑥)=𝐹𝑡−1(𝑥)
                         (1a) 

The model is updated as: 

𝐹(𝑥) = 𝐹𝑡−1(𝑥) + 𝜂 ∙ ℎ𝑡(𝑥)                           (1b) 

where η is the learning rate.  

For each feature, LightGBM builds histograms and uses them to find the best split points. The split gain for a 

potential split s at node j is given by: 

𝐺𝑎𝑖𝑛𝑠(𝑠) =
1

2
(

𝐺𝐿
2

𝐻𝑙+λ
+

𝐺𝑅
2

𝐻𝑅+λ
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+λ
) − 𝛾                         (1c) 

  

 

 CatBoost 

CatBoost (Categorical Boosting) is a high-performance, open-source gradient boosting on decision trees library, 

developed by Yandex. It is designed to handle categorical features more effectively than other gradient boosting 

libraries. CatBoost incorporates several innovative techniques that enhance its performance and usability, 

particularly in scenarios with a high number of categorical variables. 

Ordinary Gradient Boosting: Traditional gradient boosting algorithms, such as XGBoost or LightGBM, require 

categorical features to be converted to numerical values, often using one-hot encoding or label encoding. This can 

lead to loss of information or significant increase in dataset dimensionality. 

CatBoost's Approach: CatBoost uses a technique called "Ordered Target Statistics". It calculates mean target 

values for categorical features, ensuring that the calculation is performed in an ordered fashion to avoid data 

leakage. This is achieved using a process called "ordered boosting", where each instance is processed based on its 

position within the dataset. [26] 

With customized grid search algorithms and robust parameter setups, CatBoost optimizes hyperparameters to 

improve model performance. Additionally, CatBoost uses sophisticated techniques to manage model complexity 

and choose characteristics to provide reliable and accurate battery lifetime estimates [12,14,15,16] 

In CatBoost, the handling of categorical features involves calculating the target statistics in an ordered manner to 

avoid leakage. For a categorical feature c with possible values {c1, c2, . . . , ck}, CatBoost computes the following 

for each value ci : 

𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐(𝑐𝑖) =
∑ 𝑦𝑗∙𝕀[𝑐𝑗=𝑐𝑖]𝑖∈𝑃𝑎𝑠𝑡𝐷𝑎𝑡𝑎

∑ 𝕀[𝑐𝑗=𝑐𝑖]𝑖∈𝑃𝑎𝑠𝑡𝐷𝑎𝑡𝑎
                    (2) 

where 𝕀 is the indicator function and “Past Data” represents the subset of data points preceding the current data 

point to ensure ordered boosting 

 
Figure 1. Flowchart of the proposed algorithm techniques 
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IV. RESULTS AND DISCUSSION 

Before Remaining Useful Life (RUL) is the maximum battery capacity before capacity loss, while Out of Life 

(EOL) occurs when a capacitor reaches 70%-80% of its nominal capacity) [5,6,7]. 

 

RUL =T_EOL-T_cc (3) 

Where: 

RUL is the Remaining Useful Life, 

T_EOL shows the cycle number at which the End of Life (EOL) criterion is reached by the capacity. 

T_cc indicates the battery's capacity's current cycle number. 

The experimental dataset from NASA's Prognostics Center of Excellence was used to assess 18650 lithium-ion 

batteries during charge, discharge, and impedance operations at a constant temperature. [23,24] 

The experiment was terminated when the measured values were less than 70% to 80% of the battery's rated 

capacity.  

Table 1. Nasa 18650 Lithium-ion battery description 

Battery Constant 

charge 

current 

Discharge 

current 

Minimal 

charge 

current 

Rated 

capacity 

Charge/ 

discharge 

cutoff 

voltage 

BATTERY5 1.5A 2A 20mA 2Ah 4.2/2.7V 

BATTERY6 1.5A 2A 20mA 2Ah 4.2/2.7V 

BATTERY7 1.5A 2A 20mA 2Ah 4.2/2.7V 

BATTERY18 1.5A 2A 20mA 2Ah 4.2/2.7V 

 
The algorithm's performance in RUL prediction is evaluated using various metrics such as MSE, MAE, MSLE, 

RMSE, MPE, EV, MSPE, RE, and R². [19] They are: 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)2

𝑛

𝑖=1
 

 

 

(4) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − ŷ𝑖|

𝑛

𝑖=1
 

 

 

(5) 

𝑀𝑆𝐿𝐸 =   
1

𝑛
∑ (log(𝑦𝑖 + 1) − log(ŷ𝑖 + 1))2

𝑛

𝑖=1
 

 

 

(6) 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 

 

 

(7) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖 − ŷ𝑖

𝑦𝑖
| 𝑥 100%

𝑛

𝑖=1
 

 

 

(8) 

𝐸𝑉 =  1 − 
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − ȳ𝑖)2𝑛
𝑖=1

 

 

 

(9) 

𝑀𝑆𝑃𝐸 =  
1

𝑛
∑ (

𝑦𝑖 − ŷ𝑖

𝑦𝑖
)

2

𝑥 100%
𝑛

𝑖=1
 

 

 

(10) 

𝑅𝐸 =  
∑ |𝑦𝑖 − ŷ𝑖|𝑛

𝑖=1

∑ 𝑦𝑖
𝑛
𝑖=1

 𝑥 100% 

 

 

(11) 

𝑅2 =   1 − 
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − ȳ𝑖)2𝑛
𝑖=1

 𝑥 100% 
 

(12) 

Where: 
n is an observations number, 

𝑦𝑖  is an i-th observation’s true value, 
ŷ𝑖  is an i-th observation’s predicted value, 

ȳ𝑖  is the mean value of true 𝑦𝑖 . 
 

The algorithm consists of three phases: data preparation, training, and validation. It uses hyperparameters like 

n_estimators, random_state, batch_size, learning_rate, epochs, window_size, iterations, and verbose. The average 
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execution time is around 300 seconds for each data set. After training cycles, the algorithms consistently work. 

The RUL prediction results show the End of Life (EOL) threshold, validation data, actual values, and predictions. 

This part compares the accuracy of the LightGBM and CatBoost algorithms in estimating the Remaining Useful 

Life (RUL) of different Li-ion batteries [20] Four batteries (B0005, B0006, B0007, and B0018) are utilized for 

RUL prediction. The datasets are separated between validation and training sets, with each set of data beginning 

at a different point for every battery. 

 
                  Figure 2. Battery degradation curve for NASA dataset                     Figure 3. CatBoost based RUL prediction for B0005 dataset 

 
                           Figure 4. LightGBM based RUL prediction for B0005 dataset                        Figure 5. LightGBM based RUL prediction for B0005 dataset 

 
The B0005 Li-ion battery's Remaining Useful Life (RUL) is estimated using CatBoost and LightGBM algorithms. 

Both methods show good performance during validation, but CatBoost consistently outperforms LightGBM in 

terms of Mean Absolute Error and Root Mean Square Error, indicating better prediction accuracy. 

The CatBoost and LightGBM algorithms are used for the second Li-ion battery, B0006, and their performance is 

compared to LightGBM. CatBoost outperforms LightGBM in terms of capacity deterioration, prediction, and R-

squared values. 

The CatBoost and LightGBM algorithms are evaluated for the third Li-ion battery, B0007. CatBoost higher R² 

value and lower MAE and RMSE values demonstrate better prediction accuracy, as shown in Figure. 7. 

              
                         Figure 6. CatBoost based RUL prediction for B0006 dataset                       Figure 7. LightGBM based RUL prediction for B0006 dataset 
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                           Figure 8. CatBoost based RUL prediction for B0007 dataset                  Figure 9. LightGBM based RUL prediction for B0007 dataset 

  
                             Figure 10. CatBoost based RUL prediction for B0018 dataset                    Figure 11. LightGBM based RUL prediction for B0018 dataset 

 
The fourth Li-ion battery, B0018, faces challenges, but CatBoost outperforms LightGBM in performance, with better fit 

between prediction curves and actual capacity decline curve compared to LightGBM. 

Tables 2 and 3 show that CatBoost outperforms LightGBM in performance indicators like MSE, MAE, MSLE, RMSE, 

MAPE, EV, MSPE, RE, and R-squared for all batteries. CatBoost significantly improves battery performance estimation 

accuracy compared to LightGBM, as it consistently outperforms LightGBM in terms of R-squared values. 

The CatBoost and LightGBM algorithms effectively capture the dynamic characteristics of Li-ion batteries 

[18,21,22]. Comparing our prediction findings with previous NASA datasets, our results show superior 

performance compared to previous articles. However, our suggested approach, which uses CatBoost and 

LightGBM, outperforms the others, highlighting the superiority of our approach in predicting RUL for each 

battery. 

Table 2. CatBoost Error Metrics of RUL Prediction  

 B0005 B0006 B0007 B0018 

MSE 0.00007007 0.00017349 0.00005876 0.00010974 

MAE 0.00603363 0.00924179 0.00560260 0.00728351 

MSLE 0.00001055 0.00002616 0.00000840 0.00001654 

RMSE 0.00837093 0.01317164 0.00766570 0.01047560 

MAPE 0.38627801 0.60004415 0.34368406 0.46809943 

EV 0.99804125 0.99720574 0.99769920 0.99529280 

MSPE 0.00283229 0.00704674 0.00217984 0.00441191 

RE 0.00160704 -0.00416472 0.00080289 0.00117640 

𝑅2 (%) 99.80 99.72 99.76 99.52 

 
Table 3. LightGBM Error Metrics of RUL Prediction 

 B0005 B0006 B0007 B0018 

MSE 0.000162884 0.000761481 0.000141610 0.000510516 

MAE 0.008461430 0.018237383 0.007915726 0.015295248 

MSLE 0.000024731 0.000112987 0.000020584 0.000074834 

RMSE 0.012762600 0.027594943 0.011899987 0.022594610 

MAPE 0.546213303 1.171411934 0.486403094 0.960284776 

EV 0.995446507 0.987735010 0.994455072 0.978098226 

MSPE 0.006655668 0.030673735 0.005352821 0.019613045 

RE -0.007651998 -0.033401813 -0.006006861 -0.021927052 

𝑅2 (%) 99.54 98.77 99.45 97.81 
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Table 4. Comparison of Error metrics in Prediction 

Batteries Methods RMSE R MAE 

BATTERY5 

CNN-LSTM-DNN [28] 0.01457 98.313 0.00826 

LightGBM 0.01276 99.545 0.00846 

CatBoost 0.00837 99.804 0.00603 

BATTERY6 

CNN-LSTM-DNN [28] 0.01992 96.096 0.00872 

LightGBM 0.02759 98.774 0.01824 

CatBoost 0.01317 99.721 0.00924 

BATTERY7 

CNN-LSTM-DNN [28] 0.01722 96.900 0.01199 

LightGBM 0.01190 99.446 0.00792 

CatBoost 0.00767 99.770 0.00560 

BATTERY18 

CNN-LSTM-DNN [28] 0.02033 74.686 0.00966 

LightGBM 0.02259 97.810 0.01530 

CatBoost 0.01048 99.529 0.00728 

 
Table 5 shows the RMSE increase in RUL prediction with CatBoost and LightGBM approaches, focusing on 

top article outcomes. Table VI shows the optimal RUL prediction result, increasing the RMSE improvement 

percentage for both NASA batteries from 33% to 55%. 

 
Table 5. Enhanced RMSE prediction 

 

Battery 

 

Algorithm 

 

RMSE 

 

RMSE Improvement 

CatBoost LightGBM 

BATTERY5 

CNN-LSTM-DNN 0.01457 

42.56% 

 

12.43% 

 

LightGBM 0.01276 

CatBoost 0.00837 

BATTERY6 

CNN-LSTM-DNN 0.01992 

33.89% 

 

-38.51% 

 

LightGBM 0.02759 

CatBoost 0.01317 

BATTERY7 

CNN-LSTM-DNN 0.01722 

55.46% 

 

30.90% 

 

LightGBM 0.01190 

CatBoost 0.00767 

BATTERY18 

CNN-LSTM-DNN 0.02033 

48.46% 

 

-11.12% 

 

LightGBM 0.02259 

CatBoost 0.01048 

 

. 
V. CONCLUSION 

The study compares CatBoost and LightGBM performance with CNN-LSTM-DNN on datasets BATTERY 5, 6, 

7, and 18. CatBoost significantly improves RMSE by 42.56%, 33.89%, 55.46%, and 48.46%, while LightGBM 

shows improvements of 12.43%, -38.51%, 30.90%, and -11.12%. The study concludes that the CatBoost and 

LightGBM technique used in this study is reliable, offering an average increase in prediction accuracy of 25% and 

maintaining long-term predictive capabilities within an execution time average of 300  
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