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Abstract: - The Pervasive adoption of face masks during the pandemic of COVID-19 has introduced significant complexities for facial 

recognition systems, particularly in the realms of security and authentication. This paper tackles the intricate problem of incomplete facial 

data resulting from mask occlusion, a pervasive issue across various image processing and recognition domains. Our approach centers on 

a sophisticated high-resolution face image completion technique utilizing Generative Adversarial Networks (GANs). The Generator 

network, meticulously crafted in a U-Net architecture fashion, integrates crucial skip connections to retain vital spatial information from 

the U-Net’s encoder path. We optimize our methodology through a holistic total Generator Loss function, augmented with Mean Absolute 

Error (MAE) loss and a regularization term (λ) to prevent overfitting. Training our model on the esteemed CelebA-HQ dataset, we generate 

synthetic masked faces by realistically simulating mask placements on original images. Our method showcases exceptional performance, 

achieving a Peak Signal-to-Noise Ratio (PSNR) of 22.25 and a Structural Similarity Index Measure (SSIM) of 0.874. These results surpass 

conventional GANs, non-learning-based patch-matching methods, and even certain diffusion-based techniques by a significant margin of 

1.16%. This capability to reconstruct human faces despite masks plays a pivotal role in enhancing security protocols during the ongoing 

pandemic. 

Keywords: Generative adversarial network; Face Image Inpainting; U-Net. 

I. INTRODUCTION 

The extensive adoption of face coverings as a preventive measure against COVID- 19 transmission presents a 

notable dilemma for law enforcement agencies. Facial recognition systems, integral for perpetrator identification, 

face diminished accuracy due to obscured facial features. This issue is especially worrisome as individuals resort 

to masks to obscure their identities while engaging in criminal activities. Law enforcement requires swift access 

to technologies capable of identifying individuals involved in unlawful acts or breaches of security, even when 

their faces are partially concealed by masks. 

Image inpainting is a crucial aspect of computer vision, particularly in scenarios where incomplete or damaged 

images need restoration. One of the notable applications of image inpainting is in face reconstruction from masked 

images. This task involves filling in missing or obscured parts of a face image, which is essential for various 

applications such as privacy protection, forensic analysis, and digital image restoration. Conventional inpainting 

methods often rely on patch-based techniques using low-level features like RGB values or SIFT descriptors [12, 

13]. However, these methods may struggle with complex structures and overlapping foreground objects in face 

images. Deep learning-based approaches, including GANs [5], have shown promise in accurately reconstructing 

facial features from incomplete data. By learning from large-scale datasets, GANs can generate realistic and 

coherent facial reconstructions, contributing significantly to the field of face image inpainting. 
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Fig. 1: Central Intelligence Agency’s Watchlist for Masked Offenders 

 

While it is commonly understood that obscured or partially covered faces can reduce identification accuracy, there 

is a noticeable gap in research regarding the effects of facial coverings on perceptual face matching (PFM) tasks 

[2]. Previous studies exploring how occlusion impacts identification accuracy have primarily centered on tasks 

related to recognition memory, which differ significantly from PFM tasks where learned and test faces are 

presented sequentially [3]. These studies have emphasized the varying importance of facial features in recognition, 

with the peri- orbital region, especially the eyes, playing a more significant role in face recognition accuracy 

compared to other facial features like the nose, mouth, and chin [1, 3]. 

In the field of face image inpainting, researchers have explored various strategies to achieve high-quality 

reconstructions. Traditional approaches focused on patch matching and low-level feature synthesis, often resulting 

in perceptual defects and unrealistic outcomes, particularly with complex facial structures. Recent progress in 

deep learning-based inpainting methods [6, 7, 14, 15] has transformed face image inpainting into an end-to-end 

mapping task. Among these techniques, GAN-based methods excel in producing visually realistic and structurally 

coherent reconstructions. By utilizing adversarial training, GAN-based inpainting networks can generate novel 

facial features while maintaining attribute consistency and topological structure. However, challenges persist in 

accurately predicting structures within voids, especially in situations where foreground and background elements 

overlap. Overcoming these obstacles is essential for advancing the effectiveness and applicability of GANs-based 

approaches in face image inpainting. 

Our main contribution to this face reconstruction research lies in the following key points: 

• Proposing a novel approach that automatically removes masks from facial images and replaces 

the affected areas with detailed reconstructions, while preserving the original facial structure. 

• Improving structural and visual consistency in the reconstructed faces was achieved by 

introducing a penalty for High Mean Absolute Error loss during generator training. This penalty helped the model 

focus on learning the unmasked regions of the face accurately, utilizing the U-Net architecture’s Skip connections 

to facilitate a coarse-to-fine image completion process specifically for the deep missing regions. 

• Addressing the challenge of limited data availability for masked images by curating a synthetic 

paired dataset, combining resources from the widely used CelebA-HQ [6] dataset and the Mask-The-Face [7] 

Script. 

 

This paper employs a structured methodology, beginning with an introduction that outlines the scope of our 

research. Section II elaborates on the proposed system for reconstructing masked and damaged face images. In 

Section III, we delve into the methodology, detailing the techniques and algorithms utilized. Following this, 

Section IV presents the results of our experiments, while Section V concludes with significant findings and 

provides suggestions for future research directions. 

 

II. LITERATURE REVIEW 

Traditional image inpainting techniques, such as patch-based methods [18] and diffusion-based approaches [19], 

traditionally functioned by identifying and integrating similar image patches into the missing regions. Patch-based 

methods search for pixels in unaffected areas to complete the missing regions, relying on the availability of 

relevant content in these areas. Conversely, diffusion-based methods propagate neighboring content to fill in the 

gaps but may struggle with reconstructing meaningful structures, especially in larger missing areas. For example, 

Patch Match [20] is a rapid nearest-neighbor field algorithm widely utilized in various image editing applications, 

including inpainting. Although patch-based methods have their utility, they are limited in generating semantic or 

innovative content due to their reliance on basic features for patch matching. 

In comparison, conventional techniques, notably convolutional neural networks (CNNs), have garnered 

substantial attention in various image processing applications, including image inpainting. The Context Encoder 

[21] stands out as an early CNN-based method for image inpainting, showing promising results. However, its 

effectiveness is primarily observed in fixed-size and low-resolution tasks, often leaving noticeable traces during 

repairs [22]. Recent advancements by researchers like Iizuka et al. [23] have improved the ability to repair 

irregularly shaped images and areas with significant defects. Nevertheless, these methods may require additional 

post-processing steps to achieve the desired repair effects. Wang et al. [24] have proposed further enhancements 
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through a generative multi-column CNN architecture and a confidence-driven image inpainting algorithm, 

demonstrating impressive visual outcomes. However, challenges persist, particularly in dealing with complex 

datasets containing diverse objects or scenes. 

Pathak et al. [25] utilized a context encoder within a GAN framework for image restoration tasks. Their approach, 

dividing the generator into an encoder and decoder, emphasizes feature compression and extraction from 

incomplete images for restoration. Although effective, this method’s utilization of generation antagonism losses 

primarily addresses local information rather than holistic semantic coherence within incomplete regions. 

Subsequent studies by Iizuka et al. [23] introduced a global-local double discriminator to augment the context 

encoder’s performance, ensuring both accurate restoration in incomplete areas and coherence in the final results. 

However, challenges persist in accurately predicting repairs for large areas in facial images. 

Yang et al. [26] introduced networks for content and texture generation aimed at addressing high-resolution image 

restoration tasks. Their approach, which utilizes separate networks for semantic inference and high-frequency 

detail generation, successfully addressed challenges encountered in prior methods, especially in high- resolution 

scenarios. Additionally, they extended the U-Net network by incorporating a shift-connection layer to facilitate 

pixel information transfer between known and missing regions. However, despite these advancements, limitations 

persist in restoring facial images with blurred edges due to structural shortcomings in the algorithm. 

While GANs are widely employed in image inpainting tasks, challenges persist in addressing complex texture 

structures, fuzzy appearances, and semantic inconsistencies, particularly in facial image contexts [26]. To 

overcome these challenges, this research introduces a method for facial image inpainting using a multistage GAN 

with a global attention mechanism (GAM) referred to as CLGN.  Standardizing feature layer outputs and 

leveraging the guiding function of the attention mechanism, enhances training speed and stability. Incorporating 

U-Net skip connections reduces information loss during down-sampling, thereby improving texture coherence. 

Additionally, a comprehensive loss function, comprising weighted reconstruction, perceptual, style, and total 

variation losses, optimizes the network training for superior image quality [27]. 

Despite these advancements and insights from traditional and deep learning-based methods, existing works have 

not fully addressed the challenges inherent in recovering missing facial data within security settings. While 

traditional patch-based and diffusion-based methods offer valuable insights, deep learning approaches, although 

promising, still face limitations in capturing global structures and achieving ideal repair effects, particularly in 

scenarios with large defect areas. Therefore, there is a clear need for further research and development, especially 

in GANs- based approaches like the Unet-based Encoder-Decoder with a penalty for L1 loss, to specifically 

address these challenges and improve missing facial data recovery within security settings. 

 

III. METHODOLOGY 

A. Synthetic Dataset 

To facilitate our research, we assembled a unique dataset by overlaying face masks onto images sourced from the 

CelebA-HQ dataset [6], which offers 30,000 high- resolution images at 1024×1024 pixels. Due to the lack of 

publicly available paired images showing masked and unmasked faces for unsupervised training, we utilized the 

MaskTheFace[7] computer vision script to generate our masked face dataset. This dataset comprises masks of 

varying types, including surgical masks, N95 masks, KN95 masks, cloth masks, and gas masks. Figure 2 illustrates 

the diversity of these mask types, which played a crucial role in assessing the effectiveness of advanced image 

inpainting techniques for facial reconstruction. The flexibility of the tool in accommodating factors like facial tilt, 

angle, and positioning was enhanced by offering a range of mask options, making the dataset highly relevant for 

our research. 

 
Fig. 2: Various Masks in Our Training Dataset. 

 

B. Network Architecture 

Our image inpainting framework utilizes a generator architecture similar to U-Net, as depicted in Figure 3, 

comprising approximately 46.9 million trainable parameters and 10,880 non-trainable parameters. This network 

incorporates both downsampling and upsampling paths connected by skip connections to gradually extract high-

level features and reconstruct missing image regions. The downsampling path includes eight downsample blocks 

with strides of 4 and increasing filter counts (ranging from 64 to 512), effectively capturing semantic information 

from the input image. Notably, skip connections are established at each downsampling stage to preserve these 

intermediate outputs. 
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Fig. 3: An illustration showcasing a U-Net-based GAN’s architecture with skip connections for optimized 

information flow and model performance. 

 

During the upsampling phase, seven upsample blocks with transposed convolutions and strides of 2 progressively 

enlarge the feature maps and spatial resolution. Notably, these upsampled features are then combined with their 

corresponding skip connections, allowing the generator to integrate both high-level semantic information and 

detailed information from earlier stages. This fusion process empowers the network to produce realistic and 

contextually aware inpaintings within the masked regions. Skip connections play a crucial role in this process, 

accelerating training, addressing the vanishing gradient issue [7], and facilitating direct information transmission 

from the downsampling to the upsampling path. This ensures the preservation of precise details in non-masked 

areas while facilitating the generation of authentic content within the mask. 

The discriminator network utilizes a CNN architecture with approximately 2.7 million trainable parameters to 

discern real image pairs from fake ones. It takes both the masked image and its corresponding ground truth image 

as inputs, concatenating them to assess the relationship between the masked region and its surrounding context. 

Three consecutive downsample blocks with LeakyReLU activations progressively extract features, while zero-

padding and batch normalization layers pre- serve spatial information and enhance training stability. A final 

convolutional layer with 512 filters learns to distinguish between real and fake pairs, followed by a layer with one 

filter that outputs the probability of the input pair’s authenticity. This feedback loop guides the generator during 

GANs training. 

 

C. Loss Function 

In our study, the generator loss function combines Binary Cross-Entropy (BCE) and Mean Absolute Error (MAE 

or L1) losses, essential for training the generator effectively. The BCE loss assesses the adversarial or GAN loss, 

ensuring that the generator can convincingly deceive the discriminator by generating images that are classified as 

real. Additionally, the MAE loss calculates the pixel-wise difference between the generated output (G) and the 

target image (T), preserving structural details and features in the reconstructed images. The total generator loss is 

formulated as follows: 

𝐵𝐶𝐸 = −
1

𝑁
∑  𝑁

𝑖=1 (𝑇𝑅𝑖
⋅𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐺𝐺𝑖

)  + (1 − 𝑇𝑅𝑖
) ⋅𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐺𝐺𝑖

) )  (1) 

 

𝑀𝐴𝐸 =
1

𝑛
∑  𝑛

𝑖=1 |𝑦𝑅𝑖
− 𝑦𝐺𝑖

|       (2) 

 

𝑇𝑜𝑡𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠 = 𝐵𝐶𝐸 + (𝜆 ⋅ 𝑀𝐴𝐸)     (3) 

 

Here, λ determines the trade-off between the adversarial loss and the reconstruction fidelity, allowing for fine-

tuning the importance of each component in the training process. 

𝐿𝑑𝑖𝑠𝑐 = −
1

𝑁
∑  𝑁

𝑖=1 (𝑙𝑜𝑔 𝑙𝑜𝑔 (𝐷𝑅𝑖
)  +𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝐷𝐺𝑖

) )    (4) 

The discriminator incorporates Ldiscivotal loss components: the real loss (DR) and the generated loss (DG), 

crucial for effective discriminator training. The real loss (DR) is determined using the BCE loss, assessing the 

model’s accuracy in classifying real images. Conversely, the generated loss (DG) is also computed using BCE 

loss, but for generated images, evaluating the discriminator’s ability to distinguish between real and generated 

samples. The overall discriminator loss (Ldisc) is the sum of these losses, guiding the discriminator’s training to 

improve its discrimination accuracy, a critical aspect in GANs’ adversarial training dynamics. 
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IV. RESULTS AND DISCUSSIONS 

The GANs-based approach proposed for unmasking masked faces was executed on a Kaggle GPU-P100 platform. 

Our experimental setup involved partitioning a synthetic dataset comprising 30,000 images, each depicting five 

types of face masks, for training and testing the SecureGAN model. To train the generator module in producing 

realistic images of unmasked faces, we utilized 80% of the dataset, amounting to 24,000 images with and without 

masks, converted to 256×256 pixels to strike a balance between image detail and computation. The discriminator 

module, responsible for distinguishing between real and generated images, was trained using this set alongside 

24,000 real images depicting unmasked faces. 

To assess the effectiveness of our method, we set aside 20% of the dataset, specifically 6,000 images of masked 

faces, for testing purposes, excluding them from the training phase. The GAN model underwent training for 

70,000 iterations using a batch size of 16 and the Adam optimizer with a learning rate set at 2e-4 and a beta value 

of 0.5. This configuration allowed us to evaluate the performance and accuracy of our approach in revealing faces 

and distinguishing between authentic and generated facial images. 

   
Fig. 4: Results of the Proposed Model 

A. Evaluation Metrics 

Our evaluation of image inpainting methods centered on assessing the quality of reconstructed face images and 

their alignment with ground truth. We conducted comparisons between reconstructed faces from the MaskedFace-

CelebA-HQ dataset, Ground Truth images, masked images, and original images. For quantitative assessment, we 

utilized non-linear full reference image quality metrics such as PSNR and SSIM. PSNR gauges human perception 

of reconstruction quality, where higher values signify superior inpainting quality. SSIM evaluates image similarity 

by analyzing structural and perceptual features, with higher values indicating greater likeness between images. 

This comprehensive methodology enriches our comprehension of perceptual fidelity in image reconstruction. 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝑋𝜇𝑌+𝐶1)(2𝜎𝑋𝑌+𝐶2)

(𝜇𝑋
2 +𝜇𝑌

2 +𝐶1)(𝜎𝑋
2 +𝜎𝑌

2+𝐶2)
    (5) 

Here, X and Y denote the Generated and Target images, respectively. 𝜇X and 𝜇Y represent their mean intensities, 

σX
2 and σY

2 stand for their variances, σXY signifies the covariance between them, and C1 and C2 are predefined 

constants utilized in the computation of the Structural Similarity Index (SSIM). 

𝑃𝑆𝑁𝑅(𝑋, 𝑌) = 10 ⋅ (
𝑀𝐴𝑋2

𝑀𝑆𝐸
)      (6) 

where MAX denotes the maximum pixel value, and MSE represents the Mean Square Error between images X 

and Y. 

Table 1: Analyzing Method Performance: SSIM & PSNR Comparison 

Papers MaskedFace (CelebA & CelebA-HQ) 

SSIM PSNR 

[17] - 19.4dB 

[10] 0.789 18.02dB 

[12] 0.833 25.91dB 

[9] 0.864 26.19dB 

[Proposed] 0.874 22.25dB 
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Our model’s performance is illustrated in Figure 4, showcasing its effectiveness across a diverse range of real-

world test images. These samples encompass various backgrounds, from simple to complex, and diverse mask 

attributes including size, shape, color, and texture. Each test image includes a mask covering significant facial 

features, challenging our model to accurately remove the masked region and produce realistic outputs while 

ensuring structural coherence. 

Quantitatively, our proposed net achieves an average PSNR of 22.25 and an average SSIM of 0.874 across 70,000 

iterations (refer to Table 1 for detailed results), utilizing the available credits in our Kaggle free account. A 

comparative analysis against other training models reveals that our modified model significantly enhances image 

quality. For instance, Iizuka et al. [23] successfully generate plausible new content in scene images but struggle 

with producing realistic results for facial images with substantial missing regions, characterized by significant 

structural and appearance variations. 

V. CONCLUSION 

Our research represents a significant advancement in image inpainting, specifically designed to tackle the 

challenges brought about by the widespread adoption of face masks during the COVID-19 pandemic. Through 

the integration of fully convolutional and generative adversarial network principles, our model prioritizes both 

comprehensive semantic comprehension and the harmonization of global and local attributes in image 

reconstruction. A pivotal contribution lies in our innovative methodology, seamlessly removing mask elements 

from facial images while preserving intricate facial structural details. We emphasize structural and visual 

consistency through penalty mechanisms during training, enhancing the efficacy of skip connections within the 

U-Net architecture embedded in GANs. Noteworthy is our use of Mean Absolute Error to prevent excessive 

penalties in the loss function, ensuring comprehensive learning of facial attributes within manageable constraints. 

This strategy yields perceptually high-quality results that outperform existing methods, laying the groundwork for 

robust and adaptable image inpainting solutions relevant across various domains and dynamic challenges. 

While our techniques demonstrate satisfactory inpainting outcomes using incomplete images, there exist inherent 

differences in color and texture nuances when compared to real values. The assistance of structural information 

helps in enhancing overall structure to a certain degree; however, accurately reproducing precise details for high-

level semantic restorations such as human eyes and mouths remains a formidable task. Utilizing extensive datasets 

improves network adaptation during training but can result in prolonged training durations. Hence, future 

endeavors should concentrate on enhancing facial image inpainting with a focus on higher-level semantics to 

elevate result authenticity. Designing networks for large datasets should prioritize efficiency while minimizing 

training time. Moreover, we aspire to achieve a balanced dataset representation, including equal proportions of 

male and female subjects, to alleviate potential data biases, particularly evident in the predominance of female 

celebrities in the CelebA-HQ dataset.
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