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Abstract: - The Processing data from remote sensing has practical uses with high social worth. For example, the use of remotely sensed 

multispectral or radar imagery for urban monitoring, fire detection, or flood prediction can have a significant influence on both 

environmental and economic concerns. Remote sensing has developed into a diverse discipline that relies heavily on machine learning 

and signal processing techniques to handle the collected data effectively and provide accurate outputs. Some towns have been able to 

lessen the issue by using the various advantages provided by digitalization, which is facilitated by the internet of things and wireless 

connectivity. These are cyber-physical systems (CPS), which are systems in which many gadgets work together to control tangible 

objects. This study offers a unique method for analysing remote sensing data in metropolitan areas while modelling cyber-physical 

systems with wireless IoT as well as machine learning. Here, wireless IoT model in cyber-physical system has been studied using remote 

sensing data from metropolitan areas. Next, the environment data from the metropolitan zone was examined and categorised using 

regressive stochastic Gaussian modelling with Quantile adversarial neural networks (RSG-QANN). The experimental study is done in 

terms of precision, packet delivery ratio, end-to-end latency, recall, and accuracy of categorization. The findings demonstrate that social 

activity perceived signatures and physically sensed picture data, which at first glance appear to be unrelated, can in fact work in concert to 

improve accuracy of urban region function detection. 
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1. Introduction: 

The rate at which the global population is growing is double that of urbanisation, as evidenced by recent studies 

[1]. Urban convergence is a superpower that advances scientific and technical advancements as well as cross-

cultural interactions. However, as wealth becomes more unequally distributed, this rapid development is 

creating a number of sustainability issues for resource management, urban residents' well-being, and 

environmental sustainability [2]. These issues include biodiversity loss, rising greenhouse gas emissions, water 

scarcity, and pollution. In addition, a number of systems—including those related to public morality, work, 

housing, transportation, and privacy—face significant obstacles and pressures, which has a detrimental impact 

on human existence. Urbanisation is common and often haphazard in poor nations, where the effects of urban 

expansion are most severe [3].As a result, it is now necessary to concentrate on urban studies and build research 

strategies. Regular and timely monitoring and mapping of human settlements at many spatial scales—from local 

to global—is vital to realising geographical and temporal diversity of population distribution and supporting 

global initiatives such as 2030 Agenda for Sustainable Development. Majority of this growth is anticipated to 

occur in emerging nations in Asia and Africa, who are presently dealing with many issues related to 

development, such as finding enough housing for their growing populations [4]. As a result, the global south's 

urbanisation causes a significant increase in urban poverty, which in turn causes impoverished and unofficial 

urban regions to grow (slums). This makes it abundantly evident that improved planning is required in order to 

achieve relevant Sustainable Development Goal (SDG), which is Sustainable Cities as well as Communities. 

Furthermore, swift influx of people into urban areas and the corresponding disparities have intensified the 

intensity and consequences of natural calamities in these regions, necessitating the implementation of efficient 

disaster risk mitigation tactics in line with SDG, specifically Climate Action. One of the primary 

elements/phases of disaster risk management is post-disaster recovery. After a disaster, recovery is typically 

defined as the years- or decades-long process of rebuilding as well as restoring communities to their pre-impact 

and normal state.Meanwhile, post-debacle recuperation brings a potential open door for the impacted region, 

permitting them to recognize as well as address their previous weaknesses, including disparity, better remaking 

of settlements, working on foundations and day to day environments in denied (ghetto) regions. This likewise 

addresses one of the activity needs of Sendai Structure, which is to improve debacle readiness through form 
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back better idea in recuperation as well as reproduction method [5]. Thus, giving data in regards to the 

recuperation cycle, including harm evaluation after a catastrophe as well as remaking of denied/ghetto regions, 

is basic to help leaders and recuperation organizers to go with choices toward execution of the form back better 

objective successfully. Considering that the metropolitan denied regions are one of the most weak regions to 

fiascos, diminishing of their size during post-debacle recuperation process is a sign of fruitful form back better 

idea execution.One of the primary geographic information sources for assisting with the evaluation of various 

disaster risk management components, such as damage as well as vulnerability assessments, is remote sensing 

(RS) data. In order to enhance disaster risk management, several data processing and ML techniques were 

created to extract data from RS data. Connecting "Things" (machines and objects) to the internet and eventually 

to one another is the goal of the IoT, whereas CPS integrate networking, computing, and physical processes. 

While the IoT is somewhat more abstract as well as enables the integration of services in addition to physical 

things, CPS is more closely associated with machines and physical objects. CPS does not aim to provide data 

outside of the initial scenario; instead, it is primarily focused on specific development scenarios. IoT increases 

the openness of its data and services. Cyber Physical Systems, or CPSs, are what make up IoT, although they are 

not same as IoT devices because they are not always linked to it. CPS is a mechatronic system [6] in which 

things are networked to one another using information and communication technologies, either wirelessly or by 

wired methods. Take note that Industry 4.0, or the fourth generation of the Industrial Revolution, is a synonym 

for CPS. Cyber-Physical Systems use sensors to gather a great deal of environmental data. All of the dispersed 

knowledge in the surroundings is coupled to these sensors. A more precise action or activity may be made 

possible by this procedure. Cyber-Physical Systems, properly defined, are systems of computing, 

communication, control that are closely integrated with physical processes from several domains, including 

mechanical, electrical, chemical. In the realm of geoscience and remote sensing research, classification of urban 

visual as well as thermal hyperspectral data is a novel topic, with little research having been done thus far. The 

hierarchical classification technique for combining visual and thermal hyperspectral data was the main topic of 

the winning article in the classification area. In this case, a binary SVM classifier on concatenated feature 

descriptors identifies land cover classes one after the other.Furthermore, the resulting pixel-based land cover 

categorization map is enhanced by the use of several semantic rules, adaptive mean shift segmentation, and 

majority voting. The development of multiresolution as well as multisensor image analysis as well as data fusion 

was contributed by the paper contest winners. To enhance the spatial resolution of thermal images, visual data 

are used in a guided filtering method. Following the competition, the data remain openly accessible as a 

demanding opportunity for more image analysis research. These days, new tools like artificial intelligence (AI) 

as well as ML make it easier to track, comprehend, forecast growth of metropolitan regions.In order to address 

the intricate sustainability issues that cities face, urban analytics and modelling have grown in importance [7]. 

 

2. Related works: 

In the last ten years, rapid advancements in machine learning techniques in computer vision have greatly 

improved land-cover-based land use categorization studies. In one study [8], for instance, a novel semitransfer 

deep convolutional neural network (STDCNN) method was built to handle multispectral remote sensing images 

with more than 3 channels as well as identify land uses at the street block level in Shenzhen and Hong 

Kong.Author describes a unique object-based convolutional neural network (OCBN) technique that enables 

more accurate and efficient categorization of urban land use from extremely fine spatial resolution remotely 

sensed data [9]. Notably, deep neural networks have also been used to incorporate or fuse with land cover 

information additional physical information about individual land parcels [10]. To train a SVM classifier, for 

example, [11] extracted GIST, HoG, scale-invariant feature transform-Fisher (SIFT-Fisher), other visual 

characteristics from street-view pictures. Residential and non-residential structures can be distinguished by the 

SVM classifier, which can further categorise the former into single-family and multiple homes.In work [12], 

land use maps at building, region, and city sizes were created by classifying roof structures using remote sensing 

photos and façade structures from street-view images. The author [13] evaluated the efficacy of a parcel-based 

land use classification technique using a RF classifier that incorporated airborne light detection and ranging 

(LiDAR), HRO, Google Street View (GSV) photos.Additionally, they calculated application of GSV to 

differentiate between other land use lots and parcels with a mix of residential and commercial buildings. 

Recovery assessment using RS has only recently been addressed in a few research.For example, [14] used 

recurrent imagery to assess Mississippi's post-Katrina reconstruction efforts. Work [15] evaluated damage as 

well as early recovery following an earthquake using survey and RS data. They demonstrated how RS data may 

offer quick assistance in assessing physical damage. But they had to manually extract the majority of the data, 

such building damage. In order to track post-disaster urban recovery, author [16] combined information from 

ground survey data with binary categorization of RS data. High-resolution remote sensing photos and ground 

data were used in work [17] to track the Italian recovery progress following the 2009 L'Aquila earthquake. In 

order to monitor structures following the Pakistani earthquake in Kashmir, work [18] developed a semi-

automated object-based change detection approach employing extremely high-resolution optical pictures and 
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pre-disaster map data.Furthermore, throughout the post-earthquake recovery period, [19] monitored changes in 

land cover in urban areas using indices based on remote sensing data. They demonstrated the value of these 

indicators in assessing overall recovery. Each of these studies showed how crucial it is to use RS to lessen the 

amount of ground data needed for post-disaster recovery assessments. Recently, ML techniques are used to 

monitor post-disaster recovery. SVM was primary classifier employed in Work [20] to evaluate post-disaster 

recovery. Additionally, they developed the recovery assessment concept based on RS data as well as supplied 

data needed to convert changes in land cover and land use generated from RS data into positive and negative 

recoveries. A new automatic water extraction index (AWEI) was created by author [21] and can offer a 

threshold value that is quite consistent. AWEI outperformed the maximum likelihood classification (MLC) and 

MNDWI in the studies in terms of accuracy. Water bodies have also been delineated using colour space 

transformation techniques like HSV (hue, saturation, value) and HIS (hue, intensity, saturation). Work [22] 

separated water bodies from shadows using the HIS transformation and index composition. Work [23] 

introduced in-scene atmospheric adjustment to thermal hyperspectral data. Moreover, the land cover classes are 

identified using an SVM classifier (based on the previously described thermal feature-level fusion and visual 

data), and the resulting pixel-based land cover classification map is then refined using object rule-based 

postprocessing. A cuckoo search optimisation approach with mixed binary-continuous coding was presented by 

the author [24] in order to concurrently find an appropriate subset of feature representations of joint spectral-

spatial dataas well as SVM hyperparameters. A hierarchical classification technique for integrating thermal 

spectral-textural and visual spectral-spatial feature descriptors was reported in work [25]. Using the feature 

descriptors listed above as a basis, a binary SVM classifier is used in this context to identify urban land cover 

mapping in steps.Additionally, an object rule-based postprocessing enhances resulting pixel-based land cover 

classification map. Road pixels are initially classified using thermal spectrum data, remaining classes are 

subsequently recognised by sensor fusion using the Dempster-Shafer classifier in concert with one another. 

 

3. Contribution: 

Global urbanisation is causing a rise in the difficulty of precisely mapping and monitoring these intricate 

landscapes. Conventional mapping techniques frequently find it difficult to keep up with the continuous changes 

that urban environments are experiencing. However, the strength of machine learning algorithms combined with 

advances in remote sensing technologies present interesting ways to get over these restrictions. At a fine 

geographical scale, high-resolution remote sensing data—such as photography obtained from satellites or 

airborne platforms—offers comprehensive information on metropolitan areas. Numerous details regarding urban 

elements, such as structures, roads, vegetation, and land use patterns, are captured by these data 

sources.Researchers may learn a great deal about urban features, spatial dynamics, and their effects on the 

environment by deciphering and properly interpreting this data. Use of remote sensing data to extract vegetation 

and built-up land is shown in this work. Visual interpretation has been utilised in previous research to delineate 

land use maps. We think that the traditional methods of providing geographical data are laborious and prone to 

human mistake. This research use machine learning in particular as a form of artificial intelligence. 

 

4. Proposed wireless IoT model in cyber physical system for urban region remote sensing data: 

A wireless control system is made up of wireless mesh networked feedback control loops that link sensors, 

controllers, and actuators. Plant variables are measured by sensors, which transmit the data to a controller via a 

wireless mesh network. The physical processes are then controlled by the actuators receiving control orders 

from the controller. Industry plants have challenging wireless communication settings because of physical 

barriers, coexisting wireless devices, multipath fading, and high channel noise. The network manager is in 

charge of organising, planning, setting up the routes, and managing the network.As seen in Fig. 1, network 

devices consist of a gateway, numerous access points, and a collection of field devices. The Gateway is where 

the controllers and network management are placed or linked. The wireless sensors and actuators are the field 

devices. Every field device has an IEEE 802.15.4-compliant half-duplex omnidirectional radio transceiver 

installed. To offer redundant pathways between the wireless network and the Gateway, several access points are 

linked to it. 
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Figure-1 wireless IoT based CPS architecture 

 

For CPSN systems, precise output decision prediction and sensing information dependability are deemed 

essential. As a result, it is imperative to precisely specify the network demand parameters for both the physical 

and cyber domains (Figure 2). QoS foundation for developing a real-time intelligent system for high-stress and 

limited situations, such as mining, healthcare, and warfare, is likewise formed by these elements. For cyber 

systems, quality of service (QoS) elements like prompt delivery to the monitoring station and smooth data flows 

over the cloud are deemed essential. When CPS is combined with additional methods, such as semantic agents 

as well as cloud-based hybrid system states, situation gets more complicated.Positioning of sensor as well as 

actuator devices at strategically important locations, together with clever methods for node localization as well 

as geolocation recognition, are necessary for the deployment of CPSN architectural components. When 

negotiating between nearby data collecting devices and sensors, Medium Access Control (MAC) on sensing side 

should take into account need to save resources like as bandwidth, number of channels, buffer storage, 

transmission energy. 

 
Figure-2 wireless sensor network setup with central monitoring 

 

Here, virtual sensors Sc, virtual actuators Ac, functional units Fc, observed events Ec, virtual interfaces Nc, 

virtual power supply Pc, and data storage Dc make up c = (Sc, Ac, Fc, Ec,Nc, Pc, Dc). Here, the virtual power 

supply denotes that cloud-based process may be simply installed or deleted from cloud, virtual interface is the 

digital twin's communication medium that is connected to the actual object. The observable outputs of a 

physical item are the virtual sensors of a cyber entity, often known as a digital twin. These observations can be 

either the events themselves or raw data that will be processed by a cyber thing's cloud-based functional units to 

detect happenings. The link between a cyber object and a physical thing is represented by equation 6.A physical 

object can always function on its own without the assistance of a cyber object. On the other hand, it is not 

feasible to replace a physical object entirely with a cyber one (1−1 c 6= 1c).A cyber object expands a physical 

object's capabilities. Thus, in a C2PS, there need to be a minimum of one cyber entity for every physical entity, 

|C| ≥ |P|. Finite state machine in sequence Equations 1 apply to the cyber objects in the same way. 
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𝐶 = {𝑐𝑗, 𝑗 = 1… . . |𝑐|}                          (1) 

In general, any spatial database has three types of data: spatial vectors, attribute features, metadata. 

Additionally, there are three different kinds of spatial data: (1) spatial vector data, which are typically points, 

lines, polygons; (2) raster data, which is also referred to as data grids; (3) picture data, which include data from 

remote sensing, which is a more sophisticated concept. The size of attribute data, which are indexed data, 

typically consists of n items arranged in rows and j attributes listed in columns. The columns contain the 

attributes of entities, and each row represents an item. This traditional form of data might originate from surveys 

as well as various sources based on sensors.Because attribute data have better model correctness, they are 

simpler to analyse using statistical techniques or basic learning algorithms. They do, however, have the 

drawback of being costly or difficult to procure over a wide geographic area. As a result, they make it possible 

to perform tasks on a small size with increased precision and accuracy because these kinds of data sets are 

frequently combined to provide information on a larger scale.Apart from the aforementioned two types of data, 

metadata are the most often overlooked data type, despite their frequent usage, particularly in cases where 

another user will subsequently access the database. They provide details regarding the data's generation, 

projection, accuracy, scale, and/or datum as well as their acquisition, collection, and processing methods. 

Regressive stochastic Gaussian modelling with Quantile adversarial neural networks in environment data 

analysis: 

It is comparable to ridge regression, but with minor but significant variations. The definition of the lasso 

estimate is as follows by eqn (2) 

𝛽̂Lasso = min
𝛽

 ∑  

𝑁

𝑖=1

 (𝑦𝑖 − 𝛽0 −∑  

𝑝

𝑗=1

 𝑥𝑖𝑗𝛽𝑗)

2

 

 s.t. ∑  
𝑝
𝑗=1   |𝛽𝑗| ⩽ 𝑡                                          (2) 

where restriction on total absolute value of all coefficients β is t > 0. After data are standardised, y¯, or the mean 

value of y, is the solution for β0, and a model without an intercept can then be fitted. The Lasso problem has an 

equivalent Lagrangian form that is by eqn (3) 

𝛽̂Lasso = min
𝛽

 ∑  𝑁
𝑖=1   (𝑦𝑖 − 𝛽0 −∑  

𝑝
𝑗=1   𝑥𝑖𝑗𝛽𝑗)

2
                      (3) 

Alternatively, the lasso signal approximator (LSA) is expressed as eqn (4) 

min
𝑥

 
1

2
∥ 𝑥 − 𝑦 ∥2

2+ 𝜆1 ∥ 𝑥 ∥1+ 𝜆2 ∥ 𝐷𝑥 ∥1                     (4) 

where ∥. ∥1 is 𝑙1 norm, and 𝐷 ∈ 𝑅(𝑛−1)×𝑛 is defined as eqn (5) 

𝐷 = [

1 −1 0 …0 0
0 1 −1 …0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 1 −1

]                         (5) 

Since x_i is only one if 𝑥𝑖 > 0 and −1 otherwise, the derivative of ∥ 𝑥 ∥1 is not defined at zero. As a result, one 

may write by eqn (6) 

𝑤𝑖 = {

𝜆1  if 𝑥𝑖 > 0

∈ [−𝜆1, 𝜆1]  if 𝑥𝑖 = 0
−𝜆1  if 𝑥𝑖 < 0

                                   (6) 

The popular projection operator is utilized to restate requirements in (7) as 

𝑤 = 𝑃𝜆1(𝑤 + 𝑥), 

where 𝑃𝜆1(𝑎) = [𝑃𝜆1(𝑎1), 𝑃𝜆1(𝑎2), … , 𝑃𝜆1(𝑎𝑛)], and  

𝑃𝜆1(𝑎𝑖) = {

𝜆1  if 𝑎𝑖 > 𝜆1
∈ [−𝜆1, 𝜆1]  if |𝑎𝑖| ≤ 𝜆1
−𝜆1  if 𝑎𝑖 < −𝜆1.

                                  (7) 

p(𝑥) = ∑𝑗=1
𝐾  𝜋𝑗𝑝(𝑥; 𝜃𝑗),⬚𝑗 = 1,… , 𝐾.⬚ 

𝑝(𝐱) = ∑𝑐=1
𝐶  𝜋𝑐𝑓𝑐(𝐱 ∣ 𝜃)                                (8) 

Mixture method has a vector of parameters,𝜃 = {𝜃1, … , 𝜃𝑘 , 𝜋1, … 𝜋𝑘} 

𝑝(𝑧, 𝑥) = 𝑝(𝑧)𝑝(𝑥 ∣ 𝑧) 
𝑝(𝑧𝑘 = 1) = 𝜋𝑘                                         (9) 

PDF of X is described by equation (10). 

𝑝(𝑥 ∣ 𝜇𝑘, Σ𝑘) =
1

√2𝜋|Σ−1|
exp⁡ (−

1

2
(𝑥 − 𝜇𝑥)Σ𝑥

−1(𝑥 − 𝜇𝑥)
𝑇) 

𝑓𝑐(𝐱 ∣ 𝝁𝑐 , 𝚺𝑐) =
1

(2𝜋)
𝑑
2|𝚺𝑐|

1
2

exp⁡ (−
1

2
(𝐱 − 𝝁𝑐)

𝑡𝚺𝑐
−1(𝐱 − 𝝁𝑐))                     (10) 

Equation (11) represents a Gaussian mixed distribution using a linear superposition of Gaussians. 
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𝑝(𝑥) = ∑𝑘=1
𝐾  𝜋𝑘𝑝(𝑥 ∣ 𝜇𝑘 , Σ𝑘) 

𝜋̂𝑐 =
𝑛𝑐
𝑛
, 

𝜇̂𝑐 =
1

𝑛𝑐
∑{𝑓∣𝑦𝑖=𝑐}

 𝐱𝑖 

𝚺̂𝑐 =
1

(𝑛𝑐−1)
∑{𝑖∣𝑦,=𝑐}  (𝐱𝑖 − 𝝁𝑐)(𝐱𝑖 − 𝝁𝑐)

𝑡                     (11) 

Given a specific value of z, conditional distribution of x is now a Gaussian by eqn (12): 

𝑝(𝑥 ∣ 𝑧𝑘 = 1) = 𝑝(𝑥 ∣ 𝜇𝑘 , Σ𝑘) 
𝑝(𝑥 ∣ 𝑧) = ∏𝑘=1

𝐾  𝑝(𝑥 ∣ 𝜇𝑘, Σ𝑘)
𝑧𝑘                              (12) 

Equation (13) can be used to derive marginal distribution of x by summing joint distribution of all possible 

states of z. 

𝑝(𝑥) = ∑𝑧  𝑝(𝑧)𝑝(𝑥 ∣ 𝑧) = ∑𝑘=1
𝐾  𝜋𝑘𝑝(𝑥 ∣ 𝜇𝑘, Σ𝑘)                         (13) 

A significant derived quantity eqn(14) is "posterior probability" on a mixture component for a given data vector: 

𝛾(𝑧𝑘) ≡ 𝑝(𝑧𝑘 = 1 ∣ 𝑥) =
𝑝(𝑧𝑘=1)𝑝(𝑥∣𝑧𝑘=1)

∑𝑗=1
𝐾  𝑝(𝑧𝑗=1)𝑝(𝑥∣𝑧𝑗=1)

=
𝜋𝑘𝑝(𝑥∣𝜇𝑘,Σ𝑘)

∑𝑗=1
𝐾  𝜋𝑗𝑝(𝑥∣𝜇𝑗,Σ𝑗)

                         (14) 

Examine the following examples for a binary classification problem: z = (x, y) ∈ R d −1,+1}. The fundamental 

cost function is reduced in order to produce linear Q-learning classifier by eqn (15) 

𝑃𝑛(𝐰) =
𝜆

2
∥ 𝐰 ∥2+

1

𝑛
∑𝑖=1
𝑛  ℓ(𝑦𝑖𝐰

⊤𝐱𝑖) =
1

𝑛
∑𝑖=1
𝑛   (

𝜆

2
∥ 𝐰 ∥2+ ℓ(𝑦𝑖𝐰

⊤𝐱𝑖))         (15) 

𝒰̅ = {𝐮 ∈ ℝ𝑛 such that 𝐮 = ∑𝑗=1
𝑚  𝛼𝑗𝐮𝑗; 𝛼𝑗 ∈ ℝ+(∀𝑗);∑𝑗=1

𝑚  𝛼𝑗 = 1}               (16) 

The corresponding scalar product of a n × n real-symmetric positive-definite matrix by eqn (17) 

(𝐮, 𝐯) = 𝐮𝑡𝐀𝑛𝐯⬚(𝐮, 𝐯 ∈ ℝ𝑛) 

∥ 𝐮 ∥= √𝐮𝑡𝐀𝑛𝐮                                               (17) 

The goal of reinforcement learning (RL) is to select the best course of action over time in order to maximise the 

expected value of the return by eqn (18) 

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯ = ∑𝑘=0
∞  𝛾𝑘𝑅𝑡+𝑘+1                        (18) 

When policy π is followed, long-term value of state s is provided by state-value function vπ(s). State-value 

function is divided into two components: discounted value of successor state γvπ(St+1) as well as immediate 

reward Rt+1. 

The function of action-value The expected return is qπ(s, a), where s is initial state, an is action, and π is policy 

by eqn (19) 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝑛[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]                   (19) 

Our definition of Ra s = E[Rt+1|St = s, At = a] simplifies notations. Link between vπ(s) and qπ(s, a) is also 

discernible by eqn (20) 

𝑣𝜋(𝑠) = ∑𝑎∈𝒜  𝜋(𝑎 ∣ 𝑠)𝑞𝜋(𝑠, 𝑎) 
𝑞∗(𝑠, 𝑎) = ℛ𝑠

𝑎 + 𝛾∑𝑠′∈𝒮  𝒫𝑠𝑠′
𝑎 𝑣𝜋(𝑠

′) 

𝑣𝜋(𝑠) = ∑𝑎∈𝒜  𝜋(𝑎 ∣ 𝑠) (ℛ𝑠
𝑎 + 𝛾∑𝑠′∈𝒮  𝒫𝑠𝑠′

𝑎 𝑣𝜋(𝑠
′))                  (20) 

State-value function of one state and that of other states are related by Bellman equation.  Bellman eqn for qπ(s, 

a),𝑞 ∗ (𝑠, 𝑎) = ℛ𝑠
𝑎 + 𝛾∑𝑠′∈𝒮  𝒫𝑠𝑠′

𝑎 max𝑎′  𝑞∗(𝑠
′, 𝑎′). 

Using the theorem, we can quickly determine the best course of action by maximising q∗(s, a) across all actions 

by eqn (21) 

⬚𝜋∗(𝑎 ∣ 𝑠) = {
1  if 𝑎 = arg⁡max

𝑎∈𝒜
𝑞∗(𝑠, 𝑎),

0  otherwise. 
 

𝑣∗(𝑠) = max𝑎  𝑞∗(𝑠, 𝑎), 
𝑞∗(𝑠, 𝑎) = ℛ𝑠

𝑎 + 𝛾∑𝑠′∈𝒮  𝒫𝑠𝑠′
𝑎 𝑣∗(𝑠

′) 

𝑣∗(𝑠) = max𝑎   (ℛ𝑠
𝑎 + 𝛾∑𝑠′∈𝒮  𝒫𝑠𝑠′

𝑎 𝑣∗(𝑠
′))                                      (21) 

We also have a Bellman equation for q∗. 

𝑞 ∗ (𝑠, 𝑎) = ℛ𝑠
𝑎 + 𝛾∑𝑠′∈𝒮  𝒫𝑠𝑠′

𝑎 max𝑎′  𝑞∗(𝑠
′, 𝑎′).                                    (22) 

Batch-wise training variations originate from gradient variance. Noisy gradient is a drawback of employing a 

random sample to approximate population; it requires far less computations each cycle. Note that this section 

uses iterations to measure convergence rate. We must first define Lyapunov process to examine training 

dynamics for each iteration by eqn (23) 

ℎ𝑡 = ∥𝐰′ −𝐰∗∥2
2                                        (23) 

Additionally, because it can improve the input data's feature representation quality, model depth is important for 

classification performance. Higher model depths primarily take advantage of more abstract and invariant aspects 

of the original data. In this regard, several comparative experiments are conducted to calculate extent to which 

the classification performance is defined by the depth parameter. 
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5. Experimental results: 

The suggested architecture with fog and cloud nodes is evaluated on a server with a Core E7400 CPU, 3.00 GB 

of RAM, and a 32-bit operating system working at 2.80 GHz. 

Dataset description:A number of such datasets remain private, primarily due to security concerns, although 

some are now available to the public, including DARPA 98, KDD99, and UNSW-NB15. Not many actual IoT 

as well as network traffic datasets that include new Botnet instances have been developed, despite the fact that 

many datasets have been created. Furthermore, several databases lack IoT-generated traffic, while others don't 

incorporate any fresh functionalities. 

 

Table-1 Comparative based on various malicious attack datasets 

Dataset Techniques 
Classification 

accuracy 
Recall 

End-

End 

delay 

PDR Precision 

DARPA 

98 

SVM 89 59 45 81 82 

SYN-DOS 92 62 44 83 85 

RSG-QANN 93 63 42 85 88 

KDD99 

SVM 92 65 48 82 89 

SYN-DOS 94 68 46 84 92 

RSG-QANN 96 72 44 86 93 

UNSW-

NB15 

SVM 95 58 52 85 85 

SYN-DOS 96 72 50 88 88 

RSG-QANN 98 74 45 92 92 

Based on several harmful attack datasets, the comparison study between suggested and current techniques is 

displayed in table 1 above. The datasets studied in this case are UNSW-NB15, KDD99, and DARPA 98. In 

terms of categorization accuracy, recall, PDR, end-end delay, and precision, parametric analysis is conducted. 

 

 
(a) classification accuracy 

 

 
(b) recall 

 

 
(c) end-end delay 

 
(d) packet delivery ratio 
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(e) precision 

Figure-3 Comparative for DARPA 98 dataset  

 

Figures 3(a) through (e) above compare suggested and current methods for the DARPA 98 dataset. While the 

existing SVM achieved classification accuracy of 89%, recall of 59%, end-end delay 45%, PDR of 81%, 

precision 82%, SYN-DOS achieved classification accuracy 92%, recall 62%, end-end delay of 44%, PDR 83%, 

precision 88%, proposed technique achieved these same results. 

 

 
(a) classification accuracy 

 
(b) recall 

 
(c) end-end delay 

 
(d) packet delivery ratio 

 
(e) precision 

Figure-4 Comparative for KDD99dataset  
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The KDD99 dataset-based comparison analysis of suggested and current approaches is displayed in figures 4(a) 

through (e) above. In this case, the suggested method achieved 96% classification accuracy, 72% recall, 44% 

end-end delay, 86% PDR, 93% precision; the current SVM achieved 92% classification accuracy, 65% recall, 

48% end-end delay, 82% PDR, 89% precision; SYN-DOS achieved 94% classification accuracy, 68% recall, 

46% end-end delay, 84% PDR, 92% precision.   

 
(a) classification accuracy 

 
(b) recall 

 
(c) end-end delay 

 
(d) packet delivery ratio 

 
(e) precision 

Figure-5 Comparative for UNSW-NB15 dataset  

 

For the UNSW-NB15 dataset, the comparison analysis between suggested and current methodologies is 

displayed in Figure 5(a)–(e) above. The suggested method achieved 98% classification accuracy, 74% recall, 

45% end-end delay, 92% PDR, 92% precision; the current SVM method achieved 95% classification accuracy, 

58% recall, 52% end-end delay, 85% PDR, 85% precision; SYN-DOS method achieved 96% classification 

accuracy, 72% recall, 50% end-end delay, 88% PDR, 88% precision. 

From 2013 to 2015 and from 2017 to 2019, the area of urban areas decreased by 14.14 km2 and 0.79 km2, 

respectively. From 2015 to 2017 and 2019 to 2021, the area of urban areas increased by 15.17 and 2.38 km2, 

respectively. Vegetated land is 60-70 km2 , besides in 2015, which expanded to 82.40 km2 . Except for 2019, 

when it was reduced to 0.00 km2, the water area was between 1.7 and 3 km2. This warming of ocean surface 

reduces precipitation in Indonesian district and increases the focal Pacific Sea's capacity for cloud 

formation.Conditions for the dry season are triggered throughout the entire Indonesian domain by the El Niño 

anomaly. When La Niña occurs, the central Pacific Sea's ocean surface temperatures drop below average. The 

focal Pacific Sea's ability to form clouds is reduced by this dropping of the ocean surface temperature, which 
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also increases precipitation overall in Indonesia.Because the research site is on Bali Island's southern coast, it 

has a lot to do with the effects of climate change and coastal dynamics. Recognizing the functions of the urban 

region is essential to rational urban planning as well as management. It refers to inference of purposes for which 

urban areas are used, including residential, commercial, entertainment, and educational purposes, that are 

directly associated with human activities. It is related to but also distinct from the conventional classification of 

LULC.Former focuses solely on socioeconomic and functional characteristics of urban regions, while the latter 

typically emphasizes physical characteristics of earth's surface. LULC observing utilizing remote detecting 

symbolism is demonstrated to be proficient as well as successful, since these pictures can well catch the normal 

appearance of land surface. In any case, district capability acknowledgment utilizing remote detecting pictures 

alone isn't adequate, particularly in high-thickness urban areas, like Shenzhen, London, and New York. This is 

because of following information: 1) Urban region functions are influenced by related human activities and have 

socioeconomic properties; (2) shadows of various elevated structures in high-thickness urban areas present 

extraordinary difficulties for remote detecting picture handling; ( 3) blended metropolitan capabilities are in 

many cases grouped in one structure or block in east Asian urban communities. 

 

6. Conclusion: 

This research propose novel technique in urban region based data analysis for CPS in remote wireless IoT model 

using machine learning in regressive stochastic Gaussian modelling with Quantile adversarial neural networks 

(RSG-QANN) for environmental data analysis. Measured accuracy values for classification findings show how 

resilient recommended strategy is in extracting slum zones in a challenging environment, even in an event time 

image with debris as well as rubble land coverings. Next, we created related maps of damage and recovery, 

which displayed the slums that were damaged, recovered, not recovered from, and freshly constructed. We then 

spoke about these maps from the perspectives of vulnerability assessment and better building. The created 

techniques may be applied in any other place or during any kind of crisis to monitor and assess urban poor 

communities. The machine learning techniques' parameters need to be adjusted for the particular case study in 

order to extract impoverished regions from multi-temporal remote sensing photos.But adding other forms of 

data, including survey data, can help create a more thorough assessment of societal risk and, consequently, 

better construct back stronger idea assessments. A series of tests was conducted to analyse the execution time as 

well as impact of method depth on aforementioned dataset. To obtain better classification accuracy and 

minimise execution time, we recommend using a deep learning model. In further research, we will examine the 

use of pre-trained networks to reduce the enormous amount of labour needed to retrain the deep learning 

architecture. 
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