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Abstract: - Electroencephalogram (EEG) data can be challenging to classify for motor imagery (MI) tasks in brain-computer 

interfaces (BCI) due to low signal-to-noise ratios, complex patterns, and subject variability. This study aims to overcome 

these issues by evaluating various Transfer Learning (TL) and advanced machine learning models to improve EEG data 

classification accuracy. We pre-processed raw EEG signals into scalogram images by Continuous Wavelet Transform (CWT) 

and fed them into TL models like DenseNet, VGG19, ResNet, and InceptionV3. Features from these models were classified 

using advanced machine learning classifiers, including Random Forest, K-Nearest Neighbours, Decision Tree, and XGBoost. 

Using the BCI Competition IV 2a raw dataset, DenseNet combined with XGBoost achieved 99.2% classification accuracy 

on both training and validation datasets. According to the study, TL-based architecture can be used for controlling 

rehabilitation devices using EEG data for post-stroke patients, improving their quality of life and facilitating a more 

convenient way for individuals with severe physical disabilities to manage their healthcare via hybrid TL and advanced ML 

integrated BCI systems. 

Keywords: Transfer Learning, Machine Learning, Motor-Imagery (MI), Brain-Computer Interface (BCI), 

Electroencephalogram EEG Signal. 

 

I. INTRODUCTION 

With a brain-computer interface that uses an electroencephalogram (EEG), a computer can interpret the brain's 

electrical activity into commands. In cases of people with severe physical limitations, such as stroke victims, it 

offers a promising solution that offers them a chance of recovery. These limitations significantly impact their 

quality of life, making daily tasks and therapeutic exercises challenging. BCIs enable these individuals to 

communicate and control devices through brain signals, gaining some degree of control and independence [1]. 

However, BCIs heavily depend on the accurate extraction and classification of these signals. This is inherently 

complex due to EEG signals' noisy and variable nature [2]. Despite advancements in BCI technology, feature 

extraction and signal classification remain challenging tasks. Traditional methods often struggle to achieve 

accuracy and reliability for effective real-world applications. There are many challenges to an accurate and 

reliable MI classification, including subject-to-subject variability, low signal-to-noise ratios, and EEG patterns 

that are complex in nature. This study strives to improve those challenges. Existing methods struggle to address 

these issues comprehensively, leading to suboptimal performance in real-world applications [3]. A notable 

research gap exists in the application of Transfer Learning (TL) for EEG signal classification within BCI systems. 

While TL has demonstrated success in various fields by utilizing pre-trained models to extract relevant features, 

its use in BCI applications, especially with EEG data, is still underexplored [4]. EEG signal classification needs 

to be enhanced in terms of accuracy and efficiency using TL models to close this gap. Bridging this gap could 

significantly improve the performance of BCI systems and expand their practical utility. In this work, the goals 

are to assess the effectiveness of many different TL models in terms of extracting features from wink-based EEG 

data and to categorise these features using a variety of machine learning classifiers once the evaluation has been 

completed [5]. Specifically, the study examines TL models such as DenseNet, VGG19, ResNet, and 

InceptionV3. To begin, we use Continuous Wavelet Transform (CWT) to convert the raw EEG signals into 

scalogram pictures. This gives us a better idea of the signal's time-frequency properties. In order to extract 

features, the TL models are fed these modified signals. The extracted features are classified using Random Forest, 

K-Nearest Neighbors, and XGBoost classifiers, with hyperparameter optimization to enhance performance [6]. 

This research is essential because it addresses a critical need in the development of BCI technology for stroke 

rehabilitation. By integrating advanced TL models and ensemble learning techniques, the study aims to improve 

the precision and reliability of EEG signal classification. Enhanced classification accuracy directly translates to 

more effective control of rehabilitative devices, offering stroke patients better management of their physical 

limitations and a higher quality of life [7]. The use of scalogram images and advanced TL models represents a 

novel approach in this field, potentially setting a new standard for BCI systems [8]. The study's findings are 
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expected to make a significant contribution to the field of BCI technology. By demonstrating the effectiveness 

of TL models and ensemble learning in classifying EEG signals, the research advocates for the broader adoption 

of these techniques in BCI applications. This integration has the potential to revolutionize the way stroke 

rehabilitation is approached, providing patients with more reliable and precise control over assistive devices [9]. 

The advancements proposed in this study could lead to substantial improvements in the autonomy and well-

being of individuals with severe physical disabilities [10]. 

A. Motivation 

As a consequence of the development of the brain-computer interface technology (BCI), individuals with severe 

physical disabilities, such as stroke survivors, can greatly enhance the quality of their lives through increased 

functionality [11]. Stroke often results in debilitating motor impairments, leaving patients unable to perform 

basic daily tasks or control assistive devices. BCIs offer a non-invasive method for these individuals to regain 

control by translating brain signals, EEG signals converted into commands for external devices are a critical 

topic [12]. Effective control of devices using EEG signals can enhance independence and rehabilitation outcomes 

for stroke survivors [13][14]. However, accurately extracting and classifying EEG signals remains a challenge. 

EEG signals are inherently noisy and complex, requiring sophisticated techniques to decode the intended 

commands reliably. Traditional methods for feature extraction and signal classification often fall short, leading 

to suboptimal performance in real-world applications. Transfer Learning (TL), one of the most recent 

advancements in machine learning, have shown promise in improving the accuracy of signal classification by 

leveraging pre-trained models to extract relevant features from complex data [15][16]. Despite these 

advancements, the application of TL in BCI, especially for EEG signal classification, remains relatively 

unexplored. Transfer Learning (TL) has the potential to revolutionize EEG signal classification by utilizing the 

knowledge gained from large, pre-trained models on diverse datasets. TL models such as DenseNet, VGG19, 

ResNet, and InceptionV3 have demonstrated exceptional performance in various domains, including image and 

speech recognition. Applying these models to EEG signal classification can potentially improve the accuracy 

and reliability of BCIs, making them more effective for stroke rehabilitation. This study aims to fill the research 

gap by evaluating the performance of these TL models in classifying wink-based EEG data, thereby contributing 

to the development of more efficient BCI systems. 

B. Contributions 

As a result of this study, the following contributions have been made: 

To improve the quality and interpretability of EEG data classification tasks, the study generated scalogram 

images from raw EEG signals by using Continuous Wavelet Transform (CWT). 

To investigate advanced Transfer Learning (TL) models, including DenseNet, VGG19, ResNet, and 

InceptionV3, for EEG feature extraction, and to fill a significant research gap. 

With the combination of TL and advanced classification techniques (Random-Forest, K-Nearest Neighbors, 

Decision Tree, and XGBoost), features were classified using hybrid ensemble learning classifiers. 

Implemented hyperparameter optimization for the classifiers, enhancing their performance and robustness in 

EEG signal classification tasks. It used a well-known benchmark dataset, BCI Competition IV-2a, for 

experimental evaluations, ensuring reliability and relevance of the study's findings. 

To classify both the training and validation datasets with high accuracy using DenseNet and XGBoost. We 

achieved a classification accuracy of 99.2%, demonstrating that this combination of techniques allows for highly 

accurate EEG signal classification. 

C. Paper structure 

The paper is structured as follows: Section II provides a literature review, examining various studies and 

methodologies that contribute to current knowledge. Section III outlines the study's methodology, detailing the 

experimental design and data analysis approaches. Section IV presents an in-depth discussion of the study's 

results, including comparisons with state-of-the-art approaches. Finally, Section V concludes the study by 

summarizing the key findings and identifying potential future research opportunities. 

II. RELATED WORKS 

There have been recent advances in the field of Brain-Computer Interface (BCI) which have improved the 

accuracy of the classification of EEG signals, largely due to the implementation of machine learning and transfer 

learning techniques. Studies have shown that integrating these approaches can significantly improve the 

performance of motor-imagery (MI) BCIs by leveraging pre-trained models to extract relevant features and 

reduce calibration time. Despite these improvements, challenges remain in effectively applying these methods 

across different datasets and user populations. A transfer learning-based algorithm was introduced by Zheng et 

al. [17] for enhancing the motor-imagery brain-computer interface (MI-BCI) system by expanding the set of 

commands and decreasing the calibration times of the system. This was achieved by creating combinations of 

traditional motor imagery (MI) commands as distinct commands and designing a feature extractor using data 

from these traditional commands. The learned patterns were transferred to the updated commands, improving 
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system accuracy, especially for low-quality datasets. Additionally, this approach significantly reduced the time 

required for collecting EEG signals and training the model, enabling quicker system use. However, limitations 

include varying performance with high-quality datasets, implementation complexity requiring substantial 

computational resources, and the need for further validation across diverse user groups and tasks. 

As part of a study done by Turnip et al. [18] a comparison of 3 different EEG processing methods was conducted 

in order to determine which one is the best one for optimized brain-computer interfaces (BCIs). NPCA proved 

effective in reducing noise, JADE excelled in identifying independent components, and SOBI was particularly 

good at separating sources with time-delayed correlations. However, despite these advantages, the classification 

accuracy was often limited by unforeseeable signal variations caused by artifacts and the feedback loop between 

the recognizer and the subject, highlighting the need for more robust methods to handle such variability. For the 

classification of motor imagery EEG data using a transfer learning algorithm, Zheng, M., et al. [19] have 

proposed an approach that can be applied across sessions and subjects and takes advantage of the unique feature 

of motor imagery EEG data. EEG data is analyzed to analyze shared features among sessions or subjects, such 

as the variance and mean of model parameters. Following that, it updates these shared features based on 

Euclidean distances between relevant datasets. With these shared features combined with subject- or session-

specific features, an algorithm allows for greater accuracy. Advantages of this approach include superior 

performance over traditional algorithms, effective application across sessions and subjects, and robust model 

creation by utilizing both shared and specific features. However, limitations include the substantial 

computational resources needed for analyzing and selecting relevant datasets, and the algorithm's variable 

effectiveness depending on the quality and consistency of EEG data. 

According to Zanini et al. [20], an affine transformation can enhance transfer learning for EEG-based BCI 

classification across sessions or between subjects. They use SPD matrices derived from the Riemannian manifold 

of EEG data, employing spatial covariance matrices to represent EEG data, thereby improving classification 

accuracy. It also involves applying an affine transformation to center these matrices around a reference 

covariance matrix estimated separately for each session and subject. This approach models task-related changes 

in covariance matrices as shifts from a reference (resting) state, aligning data from different sessions and subjects 

for better classification. Advantages of this method include significant improvements in classification accuracy, 

consideration of the Riemannian structure of the covariance matrix manifold, and avoidance of dependencies on 

task order and unknown class structures, which were limitations in prior work. However, the limitations of the 

current method include computational complexity and the need for precise estimation of reference covariance 

matrices. A study by Ilyas, M.Z., and colleagues [21] identified logistic regression (LR) and support vector 

machines (SVMs) as the most accurate classifiers for analyzing EEG signals in brain-computer interface (BCI) 

applications. Using data from BCI Competition IV, they evaluated and compared four different techniques: 

SVM, Nearest Neighbor (k-NN), Multilayer Perceptron Artificial Neural Network (MLP-ANN), and LR. Thus, 

LR achieved 73.03 % classifier accuracy and SVM reached 68.97 % classifier accuracy as a result of this study. 

Advantages include LR and SVM's high accuracy and the study's clear comparison of classifiers, aiding 

researchers in selecting effective algorithms. The study is limited by the fact that it only assessed a specific 

dataset, which might limit its generalizability. In addition to that, the accuracy rates of the proposed algorithm 

indicate that further advancements are required to be able to achieve better results in real-life scenarios.  

According to Dose, H., et al. [22], a new method using deep learning has been introduced for classifying motor 

imagery EEG signals in brain-computer interfaces, achieving high classification accuracy and outperforming 

previous methods. The researchers employed a convolutional neural network (CNN) with two convolutional 

layers: the first layer applied a linear pre-filter to each EEG channel, and the second layer combined information 

across channels by performing 2D convolutions along the channel axis. In the final stage, a fully connected layer 

is applied to turn these generalized features into classifications. Gradient descent optimization and 

backpropagation were used to train the model. Advantages include high classification accuracy and effective 

dimensionality reduction, showcasing the potential of deep learning in enhancing EEG signal classification for 

BCIs. Limitations are the potential for further improvement in the neural network architecture. In particular, 

LSTMs are suitable for real-time applications involving online feedback, and it is essential to validate them using 

datasets other than the Physionet dataset.  

A method of processing and classifying motor imagery (MI) EEG signals was introduced by Sreeja, S.R., et al. 

[23]. For feature extraction, the method uses Common Spatial Pattern (CSP) and employs two methods for 

feature selection. It involves selecting EEG channels, applying a band-pass filter, and applying two different 

feature selection techniques. Gaussian Naive Bayes (GNB) classifier is used for the final classification. This 

approach effectively addresses inter-subject variability in MI-based BCIs by extracting user-specific features, 

which improves classifier accuracy. Notably, this proposed methodology had not been previously applied to MI-

based BCI applications. Advantages include improved accuracy through user-specific feature extraction, 

enhanced feature quality using CSP and multiple selection techniques, and promising performance with the GNB 

classifier. As well as the complexity and computational demands of the method, additional refinement and testing 

will be required to determine whether the method is effective and reliable in practical applications, as well as the 

need for further validation across diverse datasets and real-world scenarios. 
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To find characteristics that may be used to operate brain-computer interfaces (BCIs) made for people with 

disabilities or paralysis, the authors of Rashid, M., et al. [24] analysed EEG data from various cognitive states. 

The entropy, standard deviation, power spectral density, and spectral centroids were calculated using 

electroencephalogram (EEG) signals captured during mental workouts such as relaxation and rapid arithmetic 

solutions. K-Nearest Neighbours (k-NNs), Linear Discriminant Analysis (LDA), and Support Vector Machines 

(SVMs) were among the classification techniques used in the research. Advantages include the identification of 

relevant EEG features for BCI control, the use of diverse mental exercises to capture a broad range of cognitive 

states, and the robust evaluation of multiple classification methods. Limitations involve the need for further 

validation with larger and more diverse datasets, potential limitations of the study's specific mental exercises to 

other tasks, and the necessity for more comprehensive testing to ensure the consistency and quality of EEG data 

in real-world scenarios. 

He, H., et al. [25] proposed a novel Euclidean space data alignment (EA) approach to tackle the challenge of 

individual differences in EEG-based BCIs, aiming to enhance learning performance for new subjects with 

minimal or no subject-specific data, thereby facilitating transfer learning in BCIs. The technique makes 

advantage of any signal processing, feature extraction, and machine learning methods by directly matching EEG 

data from several participants in Euclidean space. EA outshines the Riemannian space alignment (RA) method 

due to its use of the arithmetic mean rather than the Riemannian mean, its cheap computing cost, and the fact 

that it works unsupervised without requiring labelled data from fresh subjects. However, EA only addresses 

covariate shift and ignores prior probability shift and concept shift, which may lead to large discrepancies in per-

class input data distributions among different subjects. The use of EA to compensate for covariate shift may 

increase concept shift for some participants, resulting in decreased differentiation between classes. EA's 

performance can also be affected by bad trials and outliers in the data used to compute the reference matrix R, 

potentially reducing classification accuracy. Due to the fact that the simulated online supervised classification 

studies did not fully generalize to real-world online trials, it is possible that the findings will not be completely 

relevant in real-world circumstances. 

III. PROPOSED METHODOLOGY 

The process of categorizing EEG data involves four primary steps: signal collection, pre-processing, feature 

extraction, and classification. Initially, EEG signals are collected using standardized electrode placement systems 

to ensure consistent and reliable data across different sessions and subjects. In the pre-processing step, signals 

are amplified and filtered to remove noise and artifacts, with wavelet transforms applied to capture both time 

and frequency information, enhancing signal quality. Feature extraction is then performed using pre-trained 

neural networks built with transfer learning methods to identify meaningful patterns in the EEG data. Finally, 

the extracted features are classified using optimized machine learning algorithms and pre-trained transfer 

learning models. This comprehensive approach aims to enhance brain-computer interface (BCI) performance, 

making BCI applications more effective and reliable. 

 
Figure 1. The basic work flow of an EEG-based MI-BCI system 

Figure 1 illustrates the basic process of analyzing EEG signals from the BCI Competition IV 2a dataset using 

EEG-based MI-BCI. The raw EEG data is pre-processed using Continuous Wavelet Transforms (CWT), which 

provide time-frequency representations of the raw EEG data that can be used to further interpret the results. In a 

feature extraction phase, scalogram images are fed into neural networks that have been trained to extract relevant 

features using transfer learning techniques. Finally, the extracted features are input into an combined machine 

learning and transfer learning classifiers to accurately classify the EEG signals into their respective categories. 

Several techniques are integrated into EEG-based brain-computer interfaces for improving classification 

performance, such as advanced signal processing, deep learning, and machine learning. Figure. 2 illustrates the 

architecture of the proposed scheme. 
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Figure 2. Overview architecture of proposed scheme 

A.Data collection 

This study's EEG signals were acquired using the well-recognised BCI Competition IV-2a Dataset, which is a 

standard for research on brain-computer interfaces (BCIs). The nine participants in this study recorded their 

electroencephalograms as they imagined moving their left and right hands, feet, and tongues, among other motor 

imagery activities. In order to ensure that all patients had identical electrode placement, the data were gathered 

using 22 Ag/AgCl electrodes that were positioned according to the worldwide 10-20 system. The signals were 

first filtered to eliminate baseline drift and high-frequency noise after being captured at 250 Hz. Each subject 

participated in several sessions, providing a comprehensive set of data for training and evaluating BCI systems. 

The dataset's rigorous collection protocol and variety of motor imagery tasks make it ideal for developing and 

testing machine learning algorithms for EEG signal classification. 

B. Preprocessing method 

Data loading and filtering are the first steps in preprocessing raw EEG signals from the BCI Competition IV 2a 

dataset. First, the EEG data is loaded using appropriate libraries such as MNE, which provides tools to handle 

EEG data formats efficiently. The raw signals are then subjected to filtering to remove noise and artifacts. A 

common approach is to apply a bandpass filter within the frequency range of interest (e.g., 0.5 Hz to 40 Hz) to 

eliminate power line noise and other irrelevant frequencies. It is also possible to detect and eliminate ocular or 

muscle artefacts that could skew EEG data by using methods like Independent Component Analysis (ICA). 

Consistent amplitude ranges between channels and participants are achieved by data normalisation as well. The 

next stage, after data pre-processing, is to use the Continuous Wavelet Transform (CWT) to convert the cleaned 

EEG signals into scalogram pictures. In order to extract the time-frequency components from the filtered EEG 

data, the CWT is used, providing detailed information about the signal's frequency content over time. By 

selecting an appropriate wavelet, such as the complex Morlet wavelet ('cmor'), and defining a range of scales 

corresponding to the frequencies of interest, the CWT generates coefficients that represent the signal's energy 

distribution across time and frequency.  

These coefficients are then used to create scalogram images, which visually depict the power of the signal in 

different frequency bands over time. Normalization adjusts the amplitude of the signals to a standard range, 

reducing variability caused by differences in electrode placement or individual subject characteristics. This step 

is essential for maintaining the integrity of EEG data throughout the analysis and classification process. By 

ensuring that the EEG signals are clean and standardized, the preprocessing method sets a solid foundation for 

accurate feature extraction and classification. A brain-computer interface (BCI) is a system that allows a person 

to use their brain to interact with a computer. 

The EEG signals 𝑥(𝑡)  can be convolutioned with the impulse response of bandpass filters ℎ(𝑡) in order to obtain 

the bandpass filter. As a result of filtering 𝑦(𝑡), we get: 

                                                𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡)                                    (1) 

where * denotes the convolution operation. For a digital implementation, the discrete-time version of the 

convolution is: 

                                                𝑦[𝑛] = ∑  ∞
𝑘=−∞ 𝑥[𝑘] ⋅ ℎ[𝑛 − 𝑘]                                    (2) 
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A mixed signal X is separated into independent components S using Independent Component Analysis (ICA). 

The following can be expressed in this way: 

                                                             X = AS                                                         (3) 

In this case, A represents the mixing matrix and S represents the source matrix. As a result of ICA, the unmixing 

matrix W should be estimated as follows: 

                                                             S = WX                                                    (4) 

Normalization involves scaling the EEG signal x[n] the mean should be zero and the variance should be one. 

The normalized signal z[n] is given by: 

                                                           𝑧[𝑛] =
𝑥[𝑛]−𝜇𝑥

𝜎𝑥
                                                (5) 

where 𝜇𝑥 is the mean and 𝜎𝑥 sigma  is the standard deviation of the signal 𝑥[𝑛]. 

The CWT of a signal 𝑥(𝑡) is defined as the convolution of 𝑥(𝑡)with a scaled and translated version of the mother 

wavelet ψ(t): 

                                              𝐶(𝑎, 𝑏) =
1

√𝑎
∫  
∞

−∞
𝑥(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡                                   (6) 

In signal processing using Continuous Wavelet Transform (CWT), the scale parameter a adjusts the wavelet's 

frequency, while the translation parameter b shifts it along the time axis. The complex conjugate of the mother 

wavelet, ψ, is used to capture localized signal features. 

It is possible to write the CWT for discrete signals x[n] as follows: 

                                     𝐶(𝑎, 𝑏) = ∑  ∞
𝑛=−∞ 𝑥[𝑛]𝜓∗ (

𝑛−𝑏

𝑎
)                                         (7) 

A scalogram represents the energy distribution in the time-frequency domain of a signal as its squared magnitude 

of CWT coefficients: 

                                                      Scalogram (𝑎, 𝑏) = |𝐶(𝑎, 𝑏)|2                                 (8) 

In the Continuous Wavelet Transform (CWT), EEG signals are transformed into scalogram images by means of 

these equations.  

 

C. Feature extraction 

By using Continuous Wavelet Transform (CWT) to transform raw EEG signals into scalogram images, the BCI 

Competition IV 2a dataset is processed for features, which provides a rich time-frequency representation of the 

data. These scalogram images are resized to meet the input requirements of pre-trained convolutional neural 

networks (CNNs) such as DenseNet, VGG19, ResNet, and InceptionV3. By removing the fully connected layers 

and retaining the convolutional bases of these CNNs, high-level feature maps are extracted from the scalogram 

images. The output feature maps are then flattened or pooled to form feature vectors, capturing the essential 

characteristics learned by the CNNs. These feature vectors are combined if multiple CNN architectures are used, 

and subsequently fed into an optimized machine learning classifier for effective EEG signal classification, 

leveraging the sophisticated feature extraction capabilities of the pre-trained CNNs. 

D. Classification  

The classification of EEG signals utilizes advanced machine learning classifiers and transfer learning models to 

categorize extracted features. This approach involves methods like k-nearest neighbors (KNN) for generating 

classifications based on the majority class among nearest data points and ensemble methods such as Random 

Forest, which employs multiple decision trees. Additionally, XGBoost, an optimized gradient boosting 
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algorithm, is known for its superior performance. Pre-trained convolutional neural networks (CNNs) like 

DenseNet, VGG19, ResNet, and InceptionV3 are also employed for feature extraction, capitalizing on their 

capability to learn high-level features from EEG signals. 

IV. EXPERIMENTAL DESIGN 

To ensure a thorough and robust analysis, several key steps are involved in the experimental setup for evaluating 

our classification models. Multi-metric metrics including accuracy, precision, recall, and F1-score are used to 

evaluate the classifiers' performance, particularly their ability to cope with imbalanced datasets. Moreover, we 

use confusion matrices and Receiver Operating Characteristics (ROC) curves to provide a visual representation 

of the true versus predicted classification results, providing a deeper understanding of the performance of our 

models. Using k-fold cross-validation, the dataset is divided into k subsets and the model is trained and validated 

k times with different subsets each time, ensuring robust evaluation. This method ensures that our models are 

rigorously tested across various scenarios, providing a reliable assessment of their generalizability and 

performance. By implementing this comprehensive evaluation framework, we can confidently determine the 

effectiveness of our classification models in accurately classifying EEG signals using transfer learning and 

ensemble methods. 

A. Experimental setup 

The experiments were conducted using a high-performance computing setup, which included an Intel Xeon E5-

2698 v4 @ 2.20GHz processor, an NVIDIA Tesla V100 GPU with 32GB of VRAM, 128GB DDR4 RAM, and 

a 2TB SSD for storage. The software environment consisted of Ubuntu 20.04 LTS, Python 3.8, and deep learning 

frameworks TensorFlow 2.4 and PyTorch 1.8. A number of libraries were utilized during the data manipulation, 

model training, and visualization process, including NumPy, Pandas, SciPy, Scikit-Learn, Matplotlib, Seaborn, 

Keras, and XGBoost. GPU acceleration was enabled through CUDA 11.2 and cuDNN 8.1. Jupyter Notebook 

served as the interactive development environment. This robust hardware and software configuration ensured 

the efficient processing of large datasets and complex models, facilitating rigorous testing and validation of the 

classification models for EEG signal classification in BCI applications. 

B. Performance evaluation metrics 

Based on a number of performance evaluation metrics, including accuracy, precision, recall, F1-score, and 

Receiver Operating Characteristics (ROC) curves, we evaluated the performance of the classifiers. Each metric 

provides a unique perspective on model performance, especially when dealing with imbalanced datasets. Here 

are the details and formulas for these metrics: 

Accuracy: The accuracy of the classification can be defined as the percent of instances out of all instances which 

fall into the correct category. 

 

                                                     Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                              (9) 

 

Precision: As a result of selecting only accurate predictions out of all the possible predictions, the precision of 

the model is measured. 

 

                                                               Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                           (10) 

 

Recall: The proportion of true positive predictions within the dataset is called recall. It is also interesting to note 

that true positive rate is also referred to as sensitivity, although it is more commonly used as a term. 

 

                                                                  Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                  (11) 

 

F1-Score: This metric provides a balanced measure between precision and recall. 

There is a measure known as the AUC-ROC that evaluates the performance of ROC analyses across various 

classification thresholds. The area under the curve (AUC) is calculated by plotting the true positive rate (Recall) 

against the false positive rate (False Positive Rate) as part of the ROC analysis. 

 

                                           (12)     

                  

Based on these metrics, multiple classification models were evaluated, such as DenseNet, VGG19, ResNet, and 

InceptionV3, also using Random Forest, K-Nearest Neighbors, Decision Tree and XGBoost. These models were 
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combined with machine learning and transfer learning architectures. In this study, comprehensive metrics were 

employed to assess how accurate each model was at identifying BCI signals based on EEG data. 

C. Experimental analysis and discussion 

The Continuous Wavelet Transform (CWT) is used in the analysis to transform raw EEG signals from BCI 

Competition IV 2a into scalogram images. Using this transformation, brain-computer interface (BCI) 

applications can extract and classify features based on a rich time-frequency representation of the data. Figure 3 

illustrates nine different EEG signals, each with distinct frequencies ranging from 8 Hz to 40 Hz, presented in a 

time-domain format showing amplitude variations over one second. Each subplot represents a different EEG 

signal: Signal 1 (8 Hz) shows smooth oscillations indicative of low-frequency brain activity; Signal 2 (10 Hz) 

has slightly more complex, higher frequency components; Signal 3 (12 Hz) exhibits further complexity and 

variability; Signal 4 (15 Hz) shows increased oscillations typical of higher frequency brain activities; Signal 5 

(20 Hz) increases in complexity with more frequent oscillations; Signal 6 (25 Hz) demonstrates higher frequency 

and greater variability; Signal 7 (30 Hz) displays rapid oscillations; Signal 8 (35 Hz) is densely packed with 

high-frequency oscillations, and Signal 9 (40 Hz) presents the highest frequency with very rapid oscillations and 

high complexity. The transformation into scalogram images via CWT maps these time-domain signals into a 

time-frequency domain, capturing both temporal and spectral information. This detailed representation aids in 

identifying patterns and features not easily discernible in the raw time-domain signals, enhancing the 

effectiveness of subsequent feature extraction and classification processes in BCI systems. 

We used advanced machine learning classes and transfer learning models for classifying these extracted features. 

In addition to Random Forest, K-Nearest Neighbors (k-NN), decision trees and XGBoost, there are several other 

traditional classifiers. To improve classification performance, Random Forest employed an ensemble method 

that used multiple decision trees. Data points were classified based on the majority class among the k closest 

neighbors and based on XGBoost, a gradient boosting algorithm optimized for high performance. We also used 

pre-trained neural networks, such as DenseNet, VGG19, ResNet, and InceptionV3, for obtaining high-level 

features from the scalogram images using the capabilities of these networks. 

We converted EEG signals into scalograms via CWT, and then divided each dataset into training, validation, and 

test scenarios using a stratified ratio of 60:20:20. Each dataset was stratified in such a way that a balance was 

maintained between the classes that were evaluated. A combination of CNNs and conventional machine learning 

models was used to classify the images following feeding them into Transfer Learning models (TL). The figure 

4 illustrates raw EEG signals and figure 5 illustrates scalogram transformed images. The raw images provide a 

visual of the original EEG signals, while the scalogram-transformed images showcase the enriched time-

frequency representation used for training the models. This comprehensive approach ensured that the models 

were rigorously tested and validated, resulting in improved classification performance and robust evaluation of 

the EEG signals for BCI applications. 

 



J. Electrical Systems 20-9s (2024): 2168-2181 

 

2176 

 
Figure 3.  EEG signals with distinct frequencies ranging from 8 Hz to 40 Hz 
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Figure 4. Raw EEG Signals 

 

 

 
Figure 5. Scalogram Transformed Images 

 

Figure 4 shows the original EEG signals as they were recorded. The raw images highlight the complexity and 

variability inherent in EEG data, demonstrating the need for effective preprocessing and feature extraction 

methods to make the data suitable for classification. Figure 5 depicts the EEG signals after being transformed 

into scalograms using CWT. In addition to capturing temporal and spectral information, scalograms exhibit a 

representation of the EEG signals in terms of time and frequency. It is crucial to carry out this transformation in 

order to enhance the feature extraction process, which will then allow TL models to learn and classify the patterns 

present in EEG signals effectively. The transformation to scalogram images is a key step in the methodology, as 

it leverages the strengths of wavelet analysis to provide a richer, more informative representation of the EEG 

signals. By converting the raw data into a format that captures both time and frequency characteristics, the TL 

models can better identify and learn from the underlying patterns, leading to improved classification 

performance. 
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D. Performance comparison and discussion 

There are several machine learning models, transfer learning models, and hybrid models discussed in this section. 

In evaluations, methodology merit is assessed based on important measures like F1-score, accuracy, precision, 

and recall. Using machine learning models, we investigated four classifiers and presented their results in Table 

1. Its accuracy rating is 96.58%, the precision rating is 95.59%, its recall rating is 94.23%, and F1 rating is 

96.65% A Random Forest has impressive accuracy, precision, recall, and F1-score scores of 92.7%, 93.0%, 

91.5%, and 92.5%, respectively. On the other hand, KNN achieves 89.1% accuracy, 88.5% precision, 86.4% 

recall, and 88.9% F1-score. The accuracy, precision, recall, and F1-score of a decision tree is 85.8%, 86.3%, and 

84.6%, respectively. The analysis also takes into account additional evaluation metrics. Figure 6 visually 

represents these metrics, highlighting XGBoost's superior performance across all metrics compared to the other 

classifiers. This visual and tabular data collectively emphasize the effectiveness of XGBoost in the given 

classification tasks. 

 

Table 1. Performance comparison of the ML models 

Comparison of ML model performance 

Metrics Random Forest KNN Decision Tree XGBoost 

Accuracy 92.7 89.1 85.8 96.58 

Precision 93.0 88.5 86.3 95.89 

Recall 91.5 86.4 84.6 94.23 

F1 score 92.5 88.9 85.3 96.56 

 
Figure 6. Performance comparison of the ML models 

 

Table 2 presents a comparative analysis of transfer learning (TL) model performance using four different models: 

DenseNet, VGG19, ResNet, and InceptionV3.  When evaluating classification performance, several factors are 

considered, including accuracy, precision, recall, and F1-score. DenseNet achieved the highest scores with an 

accuracy of 98.7%, precision of 98.3%, recall of 98.6%, and an F1-score of 98.5%. VGG19 also performed well, 

with scores of 95.6% accuracy, 94.5% precision, 94.1% recall, and a 95.4% F1-score. ResNet showed strong 

results with 95.8% accuracy, 89.3% precision, 91.6% recall, and a 94.23% F1-score. InceptionV3 achieved an 

accuracy of 96.58% and an F1-score of 96.56%.  Figure 7 visually represents these metrics, highlighting 

DenseNet's superior performance across all evaluation criteria, followed closely by InceptionV3, VGG19, and 

ResNet. This visual and tabular data collectively emphasize the effectiveness of DenseNet in transfer learning 

applications for EEG signal classification. 

 

Table 2. Performance comparison of the transfer learning models 

Comparison of TL model performance 

Metrics DenseNet VGG19 ResNet InceptionV3 

Accuracy 98.7 95.6 95.8 96.58 

Precision 98.3 94.5 89.3 95.89 

Recall 98.2 94.1 91.6 94.23 

F1 score 98.6 95.4 95.7 96.56 
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Figure 7. A comparison of the TL models' performance 

 

Table 3 demonstrates that the XGBoost classifier was used to create hybrid models with DenseNet, VGG19, 

ResNet, and InceptionV3. Among these models, DenseNet+XGBoost outperformed the others, achieving an 

accuracy of 99.2%, precision of 99.0%, recall of 99.1%, and an F1-score of 99.1%. The InceptionV3+XGBoost 

model also showed strong performance with an accuracy of 98.6%, precision of 97.5%, recall of 97.3%, and an 

F1-score of 98.7%. Additionally, ResNet+XGBoost delivered impressive results with an accuracy of 98.6%, 

precision of 98.3%, recall of 98.2%, and an F1-score of 98.5%. Lastly, the VGG19+XGBoost model showed 

effective results with an accuracy of 98.5%, precision of 98.4%, recall of 98.0%, and an F1-score of 98.4%. 

Figure 8 visually represents these metrics, highlighting DenseNet+XGBoost's superior performance across 

all evaluation criteria, followed by the other combinations, emphasizing its effectiveness in combined model 

applications for EEG signal classification. This visual and tabular data collectively emphasize the robustness and 

high classification capability of DenseNet+XGBoost in handling EEG signal data. 

 

Table 3. Performance comparison of the combined models 

Comparison of combined model performance 

Metrics DenseNet+ 

XGBoost 

VGG19+ 

XGBoost 

ResNet+ 

XGBoost 

InceptionV3+ 

XGBoost 

Accuracy 99.2 97.8 98.6 98.5 

Precision 99.0 97.5 98.3 98.4 

Recall 98.9 97.3 98.2 98.0 

F1 score 99.1 97.7 98.5 98.4 
 

 
Figure 8. Performance comparison of the hybrid models 

 

Figure 9 presents a Receiver Operating Characteristic (ROC) curve comparing the True Positive Rates 

(sensitivity) and False Positive Rates (1-specificity) for the hybrid DenseNet+XGBoost model. The blue curve 

illustrates the model's performance, with an Area Under the Curve (AUC) of 0.99, indicating excellent 

classification capability for the DenseNet+XGBoost model. The red dashed line signifies the performance of a 

random guess classifier, serving as a baseline. The substantial area under the ROC curve for the 

DenseNet+XGBoost model highlights its superior accuracy and effectiveness in distinguishing between different 
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classes in the EEG-based motor imagery task. In the context of brain-computer interfaces (BCIs), this high AUC 

value reinforces the model's robustness and reliability. 

 

 
Figure 9. ROC-AUC performance of hybrid DenseNet+ XGBoost model 

V. CONCLUSION 

This study proposed a technique for converting raw EEG signals into scalogram images using Continuous 

Wavelet Transform (CWT) to enhance feature extraction and classification in EEG signal analysis. By employing 

models such as DenseNet, VGG19, ResNet, and InceptionV3, the study demonstrated the superior performance 

of the DenseNet and XGBoost combination, which achieved an impressive 99.2% accuracy. These results 

highlight the potential of transfer learning (TL) applications to support individuals with severe physical 

disabilities by providing precise and reliable control over rehabilitative devices, thereby improving their quality 

of life. Future research could explore the application of TL models to other types of brain signals, the integration 

of real-time processing capabilities, and the development of adaptive algorithms to further enhance the 

robustness and customization of BCI systems. 

ACKNOWLEDGMENT 

The authors are grateful to SRM Institute of Science and Technology (SRMIST), KTR Campus for providing 

the laboratory and facilities necessary for the experiments. The advanced research infrastructure and resources 

at SRMIST significantly contributed to the successful completion of this study. 

REFERENCES 

[1] Prabhu, S., Murugan, G., Cary, M., Arulperumjothi, M., & Liu, J. B. (2020). On certain distance and degree based 

topological indices of Zeolite LTA frameworks. Materials Research Express, 7(5), 055006. 

[2] Nguyen, T., Hettiarachchi, I., Khatami, A., Gordon-Brown, L., Lim, C. P., & Nahavandi, S. (2018). Classification of 

multi-class BCI data by common spatial pattern and fuzzy system. IEEE access, 6, 27873-27884. 

[3] Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2008, June). Filter bank common spatial pattern (FBCSP) in brain-

computer interface. In 2008 IEEE international joint conference on neural networks (IEEE world congress on 

computational intelligence) (pp. 2390-2397). IEEE. 

[4] Lotte, F., & Guan, C. (2010). Regularizing common spatial patterns to improve BCI designs: unified theory and new 

algorithms. IEEE Transactions on biomedical Engineering, 58(2), 355-362. 

[5] Robinson, N., Vinod, A. P., Guan, C., Ang, K. K., & Peng, T. K. (2011, December). A Wavelet-CSP method to classify 

hand movement directions in EEG based BCI system. In 2011 8th International Conference on Information, 

Communications & Signal Processing (pp. 1-5). IEEE. 

[6] Tang, Z. C., Li, C., Wu, J. F., Liu, P. C., & Cheng, S. W. (2019). Classification of EEG-based single-trial motor imagery 

tasks using a B-CSP method for BCI. Frontiers of Information Technology & Electronic Engineering, 20(8), 1087-

1098. 

[7] Amanpour, B., & Erfanian, A. (2013, July). Classification of brain signals associated with imagination of hand 

grasping, opening and reaching by means of wavelet-based common spatial pattern and mutual information. In 2013 

35th annual international conference of the IEEE engineering in medicine and biology society (EMBC) (pp. 2224-

2227). IEEE. 

[8] Campisi, P., & La Rocca, D. (2014). Brain waves for automatic biometric-based user recognition. IEEE transactions 

on information forensics and security, 9(5), 782-800. 

[9] Yap, H. Y., Choo, Y. H., & Khoh, W. H. (2017). Overview of acquisition protocol in EEG based recognition system. 

In Brain Informatics: International Conference, BI 2017, Beijing, China, November 16-18, 2017, Proceedings (pp. 129-

138). Springer International Publishing. 

[10]  Liew, S. H., Choo, Y. H., & Low, Y. F. (2019). Fuzzy-rough classification for brainprint authentication. Jordanian 

Journal of Computers and Information Technology, 5(2). 

[11]  Zhang, S., Sun, L., Mao, X., Hu, C., & Liu, P. (2021). Review on EEG‐Based Authentication 

Technology. Computational Intelligence and Neuroscience, 2021(1), 5229576. 

[12]  Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J. (2018). EEGNet: a compact 

convolutional neural network for EEG-based brain–computer interfaces. Journal of neural engineering, 15(5), 056013. 



J. Electrical Systems 20-9s (2024): 2168-2181 

 

2181 

[13]  Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear 

deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording 

region and brain state. Physical Review E, 64(6), 061907. 

[14]  Anugraha, A., Vinotha, E., Anusha, R., Giridhar, S., & Narasimhan, K. (2017, June). A machine learning application 

for epileptic seizure detection. In 2017 International Conference on Computational Intelligence in Data Science 

(ICCIDS) (pp. 1-4). IEEE. 

[15]  Atal, D. K., & Singh, M. (2020). A hybrid feature extraction and machine learning approaches for epileptic seizure 

detection. Multidimensional Systems and Signal Processing, 31(2), 503-525. 

[16]  Bhattacharyya, A., & Pachori, R. B. (2017). A multivariate approach for patient-specific EEG seizure detection using 

empirical wavelet transform. IEEE Transactions on Biomedical Engineering, 64(9), 2003-2015. 

[17]  Zheng, X., Li, J., Ji, H., Duan, L., Li, M., Pang, Z., ... & Tianhao, G. (2020). Task Transfer Learning for EEG 

Classification in Motor Imagery‐Based BCI System. Computational and Mathematical Methods in Medicine, 2020(1), 

6056383. 

[18]  Turnip, A., Soetraprawata, D., & Kusumandari, D. E. (2013). A comparison of EEG processing methods to improve 

the performance of BCI. International Journal of Signal Processing Systems, 1(1), 63-67. 

[19]  Zheng, M., Yang, B., & Xie, Y. (2020). EEG classification across sessions and across subjects through transfer learning 

in motor imagery-based brain-machine interface system. Medical & biological engineering & computing, 58, 1515-

1528. 

[20]  Zanini, P., Congedo, M., Jutten, C., Said, S., & Berthoumieu, Y. (2017). Transfer learning: A Riemannian geometry 

framework with applications to brain–computer interfaces. IEEE Transactions on Biomedical Engineering, 65(5), 

1107-1116. 

[21]  Ilyas, M. Z., Saad, P., Ahmad, M. I., & Ghani, A. R. I. (2016, November). Classification of EEG signals for brain-

computer interface applications: Performance comparison. In 2016 International Conference on Robotics, Automation 

and Sciences (ICORAS) (pp. 1-4). IEEE. 

[22]  Dose, H., Møller, J. S., Iversen, H. K., & Puthusserypady, S. (2018). An end-to-end deep learning approach to MI-

EEG signal classification for BCIs. Expert Systems with Applications, 114, 532-542. 

[23]  Sreeja, S. R., Rabha, J., Nagarjuna, K. Y., Samanta, D., Mitra, P., & Sarma, M. (2017, October). Motor imagery EEG 

signal processing and classification using machine learning approach. In 2017 International Conference on New Trends 

in Computing Sciences (ICTCS) (pp. 61-66). IEEE. 

[24]  Rashid, M., Sulaiman, N., Mustafa, M., Khatun, S., & Bari, B. S. (2019). The classification of EEG signal using 

different machine learning techniques for BCI application. In Robot Intelligence Technology and Applications: 6th 

International Conference, RiTA 2018, Kuala Lumpur, Malaysia, December 16–18, 2018, Revised Selected Papers 

6 (pp. 207-221). Springer Singapore. 

[25]  He, H., & Wu, D. (2019). Transfer learning for brain–computer interfaces: A Euclidean space data alignment 

approach. IEEE Transactions on Biomedical Engineering, 67(2), 399-410. 

AUTHOR CONTRIBUTIONS 

Author biography 

 

P.S.Thanigaivelu obtained his Bachelor’s degree in Electronics and Communication 

Engineering from University of Madras. Then he obtained his Master’s degree in Applied 

Electronics from Anna University and pursuing PhD in Computer Science Engineering majoring 

in Brain Computer Interface, Signal Processing, Machine Learning and Deep Learning at 

Department of Computing Technologies, College of Engineering, SRM Institute of Science & 

Technology, Kattankulathur - Chennai. 

Dr.S. S. Sridhar Professor working in the Department of Computer Science and 

Engineering, Kattankulathur, SRM Institute of Science and Technology, He received his Ph.D. 

Degree in SRM Institute of Science and Technology, India, in 2015, He received his M.S. in 

Software Systems at Birla Institute of Technology and Science, in 1995, He is specialized in 

Artificial Neural Networks, Pattern Recognition and Digital Image Processing. 

Dr. S. Fouziya Sulthana received her B.E degree in Electronics and Communication from 

Bharadhidasan University, Tamilnadu in 2002 and M.Tech and Ph.D in Electronics and 

Communication from Pondicherry University, Puducherry in 2008 and 2017, respectively. 

She has been in teaching profession since 2008. Presently, she is Associate Professor in the 

Department of Mechatronics Engineering, SRM Institute of Science and Technology, 

Kattankulathur Campus. She is the member of IETE, ISTE and IE(I).  she has published many 

papers in refereed journals and conferences. Her current research focuses on radio resource 

management in broadband networks, nano sensors, flexible and wearable electronics. 

 

https://www.srmist.edu.in/department/department-of-computing-technologies/
https://www.srmist.edu.in/college/college-of-engineering-technology/
https://www.srmist.edu.in/college/college-of-engineering-technology/
https://www.srmist.edu.in/faculty/dr-p-madhavan/

