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Abstract: - Seemingly unrelated regression equations (SURE) model and it’s associated inferential aspects have been generating 

substantial applications in various fields such as Statistics, Advanced Econometrics, Data Science Techniques; Business, Management 

and Marketing fields; physical sciences and Engineering etc. Among the regression based data science techniques, a few data engineers 

have applied SURE models in their data analysis. Researchers can use SURE techniques as advanced data science techniques in the fields 

of electrical systems, computer engineering and other areas of engineering and technology. The classical SURE model deals with the sets 

of linear regression equations by which establishing relationships among the sets of dependent variables and explanatory variables. 

Several advanced feasible estimation methods exist in the literature used either OLS or GLS residuals in their estimation. In the present 

research study, due to shortcomings of these residuals, new iterative feasible OLS and feasible GLS estimators have been proposed to 

estimate the parameters of SURE model with nonspherical first order vector autoregressive errors by using studentized residuals. 
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1. Introduction 

SURE model has both theory and practical applications in Applied Mathematics, Statistics, Econometrics, 

Engineering and various fields of Applied Sciences. There are mainly two types of SURE model namely, Linear 

SURE model and Nonlinear SURE model. Zellner introduced linear SURE model in which each of linear model 

is correlated with each other, even though superficially they may not seem to be.  Statistical inference in these 

models is an advanced fertile area of research to the data engineers, statisticians and econometricians. At 

present, most of the regression based data science techniques are using basic applied regression analysis 

methods.    

 There is an urgent need of applications of both linear and nonlinear advanced SURE models to cater the needs 

of Data Scientists, Artificial Intelligence Engineers and Business Intelligence Engineers.  

A few data scientists have been using certain types of basic linear SURE model. In the context of time series 

data, generally the errors are assumed to be generated by some autoregressive schemes. Further, the cross errors 

intertemporal correlations can be considered by using vector autoregressive schemes for errors in the SURE 

model. 

 An Iterative method of estimation of Linear SURE model with nonspherical Vector Autoregressive (VAR) 

errors has been developed in the proposed work. This method has various applications in electric networks of 

electrical systems.  

2. Related Work 

Zeller systematically discussed in his seminal research papers about linear SURE model. A feasible iterative 

generalized least squares (GLS) estimation was also proposed for model [1,2]. Mehta and Gibber have estimated 

model with vector autoregressive schemes for errors by using GLS estimation [3]. Srivastava and Giles have 

considered almost all problems of model together with different estimation methods [4]. Nagabhushana Rao 

presented various forms of SURE models [5].  

Kakwani proved the unbiasedness and efficiency properties of Zellner’s estimation [6,7]. Narayana discussed 

about the inferential aspects of sets of linear models [8]. Several researchers have developed different estimation 

methods for the model involving serially and contemporaneously correlated disturbances [9,10,11,12].  

Certain problems of modelling such as non-normal disturbances and nonspherical errors respectively considered 

by Olamide and Sireesha with their proposed estimation methods [13,14]. Iterative efficient estimation methods 

for model  

have discussed in research papers [15,16]. Margolin defined studentized residuals with their distribution via 

Laplas transform inversion [17]. Philips derived exact distribution of SURE estimator [18]. Hemmingren and 

Hamann have given a software package ‘system fit’ for estimating the system of simultaneous equations in R-

Language [19]. Grigoras Gheorghe and Bogdan Neagu have proposed regression based load modelling for 

electric distribution networks [20]. 
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3. SURE model 
 

With usual matrix notation, a linear system containing m equations which may be expressed in the compact 

form: 

1 1 1 1

2 2 2 2

m m m m

Y X 0 .... 0

Y 0 X .... 0

Y 0 0 X

        
       

 
       = +
       
       

        

    (3.1) 

* *mnx1 mnx1mnxk k x1
Y X =  +      (3.2) 

Where  is k*x1 regression coefficients;  

  is mnx1 unobservable disturbances and k*= 
m

i

i 1

K
=

  

Also, 
i  is such that 

T

i i j ij nE( ) 0, ( ) I , i, j 1, 2,....m =  =   =      (3.3) 
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     =  = = 
   
   
        

 

or 
T

n mnxmnE( ) I =  =   and   is mxm symmetric positive definite matrix.    (3.4) 

Here,
T

i i ij nE( ) I =   implies the disturbance in any single regression equation as homoscolastic and non 

autocorrelated.  
T

i j ij nE( ) I , i j =     gives a non zero correlation between contemporaneous disturbances in the ith  and jth 

equations but all lagged disturbances are uncorrelated with each other; and the symbol denotes Kronecker 

product which gives that each element in   is multiplied by Identity matrix 
nI . 

The system of linear regression equations with the aforementioned assumptions is known as “Seemingly 

Unrelated Regression Equations (SURE) model”. 

 

Remark:  

If 
1 2 mX X ......X= = and Rank (

iX ) = K,   i=1,2,….m  then the SURE model will be coincide with the 

standard multivariate linear regression model. 

 

4. Some important estimators of parametric vector of SURE model with the variance-covariance matrices 
 

Consider the SURE model (3.2) as * *mnx1 mnx1mnxk k x1
Y X=  +  

Such that E( ) 0 =  and 
TE( ) =

nI=       (4.1) 

 

Where 

11 21 mm

21 22 2m

m1 m2 mm

   
 
  
  =
 
 
   

     (4.2) 

 

(a) The ordinary least squares (OLS) estimator: 
T 1 T

OLS
ˆ (X X) X Y− =       (4.3) 

     Var ( )T 1 1 1 T 1

OLS n
ˆ( ) (X X) [X I X](X X)− − − =             (4.4) 

(b) Aitken’s estimator or GLS estimator 

( ) ( )T 1 T 1

GLS n nX I X X I Y− −  =    
 

    (4.5) 

Var
T 1 1

GLS n( ) [X ( I )x]− − =        (4.6) 

 

Remarks: 

(i) If   is diagonal matrix, then GLS reduces to OLŜ  

(ii) If 
1 2 mX X ......X= = =X for 

iK K, i 1,2,.....m=  =  and Rank(X) =K, then the GLS  reduces to OLŜ  
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(iii) From the Generalized Gauss-Markoff Theorem (Aitken’s theorem) when  is known non-stochastic 

matrix, it  

        follows that GLS is b.l.u.e. for  .         

(c)  Zellner’s Feasible GLS estimator: 

Generally,   is unobservable. Zellner replaced  with an observable sample variance-covariance matrix 
mxmS  

and proposed the Zellner’s feasible GLS estimator for    as 

T 1 1 T 1

FGLS n n[X (S I )x] X (S I )Y− − − =        (4.7) 

Var
T 1 1

FGLS n( ) [X (S I )x]− − =          (4.8) 

Where S= (( ijS )) is a non-singular sample variance-covariance matrix such that ijS is some estimator of  the 

corresponding element ij  of  . For many possible choices of S, various types of feasible GLS estimators have 

been proposed by several statisticians, Mathematicians and Econometricians. Most of these feasible GLS 

estimators are based on OLS and GLS residuals.  

Some important feasible GLS estimators for   in SURE model are given by: FGLS estimators, Momentless 

FGLS estimators, The Telser-Conniffe estimator, Iterative Zellner’s FGLS estimator, Iterative OLS estimator, 

Maximum likelihood estimator (MLE), Pretest and Stein-Rule estimators, corrected FGLS estimators and 

restricted least squares estimators, 

Remark: By choosing S=
mI , then Zellner’s FGLS estimator. FGLS reduces to OLS estimator OLŜ for   in 

SURE model. 

 

5. Estimation of SURE model with nonspherical first order vector autoregressive errors 
 

Suppose that the SURE model containing m linear regression equations with usual matrix notation is given by 

such that ( ) 0E  =           (5.1)  

We assume that the elements si ’s of error vectorare contemporaneously correlated. Here, si  is 
ths element 

of ith  error vector i in the ith equation of the SURE model. 

Define the first order stationary autoregressive error process as 

( )si i sis 1 i
u ,

−
=  +   s = 1,2,…..,n and i = 1,2,….,m    (5.2) 

Here i |   is a constant and usi is an error random variable such that   

( )siu 0.E =  s and i,   ( )si tj iju uE = for s=t and ji, ,  

                             = 0, for s  t and   i, j.                    (5.3) 

Equation (4.2) reveals that si  depends stochastically upon only the preceding  error term (si 1)i− . Also si 's  

and siu ’s are contemporaneously correlated but the si 's  are no longer temporarily independent. It should be 

noted that siu ’s are temporarily independent. By defining U as an mnx1 vector as  is defined,   

     we have, E(U)=0 and ( )T

nE UU I=                  (5.4) 

     and hence ( )E 0 =  and ( ) ( )( )T

ij
m n

E


 = =                    (5.5) 

Where 

n 1

j j

n 2
ij i j

ij

i j

n 1 n 2

i i

1

1

(1 )

1

−

−

− −

  
 

    =
 − 
 
   

      (5.6) 

Without loss of generality, the first order vector autoregressive process for the SURE model’s errors in matrix 

notation as  

(s 1)1s1 s111 12 1m

(s 1)2s2 s221 22 2m

(s 1)msm smm1 m2 mm

u

u

u

−

−

−

        
               = +
     
     
          

        (5.7) 

or  (s) (s 1) (s).u− =  +     

mn 1 mn 1mn k k 1Y X   = +
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Here,  is an m x m  matrix of unknown autoregressive parameters and the 
siu ’s are  errors assumed to have the 

same properties as in (5.3). 

If the absolute values of all the characteristic roots of  are les than unity, then the vector autoregressive process 

is a stationary process. 

Further, we have, 
T

(s) (s)E( ) ,  =  which can be written as 
T( ) =  +                 (5.8) 

Here,   is symmetric matrix. 

If 
T( )  =  , then there exists a non-singular matrix 

mnxmnG such that  

1 T 1

nG ( I )G− − =    

By solving equations (5.8), the elements of   can be obtained in terms of  and . 

Using transforming matrix G, the transformed SURE model can be written as  

GY Gx G= +  or 
* * *Y X= +           (5.9) 

such that 
*E( ) 0 =  and ( )

T* *

nE I =   

Where, Y*=GY, X*=GX and * G =  

Now, for a choice of G = G*, we can directly obtain estimators for  by using OLS and FGLS estimators: 

(i) 
* *T * 1 *T

OLS
ˆ (X X ) X Y− =  or 

T* T * * 1 T T *

OLS
ˆ (X G G X) X G G Y− =      (5.10) 

(ii) 
* *T 1 * 1 *T 1 *

FGLS n n[X (S I )x ] X (S I )Y− − − =      or 

      
* T *T 1 * 1 T T 1 *

FGLS n[X G (S I )G X] X G (S )G Y− − − =        (5.11) 

    where ij mxmS ((S ))= which is sample variance-covariance matrix based on OLS residual vectors. 

Here, G* is a particular choice of G, a block-diagonal matrix which was suggested by parks [12] as 

           

*
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*

* 22

*

mm

G 0 .... 0

0 G .... 0
G

0 0 G

 
 
 =
 
 
  

 and 

2

i

* i
ii

i

i

1
0 0 ... 0 0

1

1 0 0 0
G

0 1 0 0

0 0 0 1









 
 

− 
 −
 =

− 
 
 
 − 

  i=1,2,….,m        (5.12) 

where i ’s are unknown autoregressive parameters. 

Since, ij 's  of matrix 
*G and ij 's of matrix  are unknown, several researchers have used some consistent 

estimators for ij 's  and ij 's ; hence obtained the Feasible GLS estimators for  in the SURE model. Most of 

them have used either OLS or GLS residuals in estimating ij 's and ij 's . 

In the present study, an Iterative estimation procedure has been proposed by using any of studentized residuals 

or predicted residuals in estimating ij 's  and ij 's  to obtain the Feasible GLS estimators for   in SURE 

Model. 

Step (1): First obtain the OLS residuals ij 's  by estimating the original SURE model and then obtain the 

corresponding Internally and Externally studentized residuals  ( )
ij

e I 's  and ( )
ij

e E 's  respectively by using the 

following usual formulae given by Margolin: 

(i) ( ) si
si

i i

s ss

e
e I

ˆ 1 h
=

−
,     s= 1,2,.…, n      (5.13) 

  and 

n
2

si
i s 1

s

e

ˆ
n k

 ==
−


,        i=1,2,….., m      (5.14) 

Here, 
i

ssh is the sth diagonal element of HAT matrix for the ith linear regression equation of SURE model and 

 (ii)       ( ) ( )
( )

1/2

i

si si 2

i si

n k 1
e E e I ,

n k e I

 − −
=  

− −  
    i=1,2,…. m    (5.15) 

 

Step (2): Substitute the values of the estimates ( )sie E 's and 
( ) ( )s 1 i

e E 's
−

 respectively for ( ) ( )s s 1
and

−
  in the 

equation (5.7) and then the OLS estimates of the elements 
ij 's  of the matrix   can be obtained.  
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Step (3): The values of OLS estimates of ij 's can be substituted and then the new transformation matrix 

*Ĝ can be obtained. Replace G by 
*Ĝ in the transformed model (5.9) and then the transformed SURE model can 

be estimated by using OLS estimation. 
 

Step (4): Repeating the steps (1) and (2), the second Iteration estimators of the elements of Transformation 

matrix              G can be obtained. Later, the second Iteration estimated G say *ˆ̂
G can be substituted in the model 

(5.9) and perform    step (3). This Iterative process will be continued. It will be stopped after obtaining 

successive estimates of the 
' s

ij  of G differ by less than some prescribed small quantity. 

The final iteration estimated G say *G (F) can be substituted in the model (5.9) and write the transformed model 

as 
 

( ) ( ) ( )F F F

nm 1 mn k mn 1Y X   = +            (5.16) 

where, 
( ) ( ) ( ) ( ) ( ) ( )F F F* * *Y G F Y,X G F X and G F= =  =   is the final SURE model. 

Further, sample variance-covariance matrix ( )( )ijS S=  can be modified by using the externally studentized 

residuals sum of squares in the place of the usual OLS residual sum of squares. Let the modified S be denoted 

by S(F). 

Now, the proposed Iterative OLS (IOLS) and Iterative FGLS (IFGLS) estimators for   in the SURE model are 

given by: 

(i) 
( ) ( ) ( )( ) ( ) ( )
IOLS

1F T *T * T *T *ˆ X G F G F X X G F G F Y
−

=                             (5.17) 

and (ii) ( ) ( ) ( )( ) ( )
IFGLS

1
F T *T 1 *

nX G F S F I G F X
−

− = 
  ( ) ( )( ) ( )

TT * 1 *

nX G F S F I G F Y−          (5.18) 
 

Under certain regularity conditions, these iterative estimators will be consistent for  in the SURE model.  
 

6. Conclusion 
 

In the present research article, Zellner’s Linear SURE model has been specified in a systematic matrix notation 

and some important estimators such as OLS, GLS and Zeller’s Feasible GLS estimators for the parametric 

vector of SURE model have been given along with their variance – covariance matrices. The SURE model with 

nonspherical first order vector autorregressvie errors has been difined and an Iterative method has been 

developed and obtained Iterative FOLS and Iterative FGLS estimators by using externally studentized residuals. 

Under certain regularity conditions, these iterative estimators will give consistent estimators. The proposed 

iterative method can be extended by applying it to the nonlinear SURE model. Several statistical package 

programs such as R, SAS, Stata, Limdep, Python and Greti etc., are available to implement SURE estimation 

methods by data Scientists, AI and BI engineers. The Linear SURE model can be specified by considering 

multiple electrical outputs and multiple electrical inputs in electrical systems. Then the model can be estimated 

by using the proposed Iterative FGLS estimation, applying the statistical package programmes.  
 

References 
[1] A.Zellner, An efficient method of estimating seemingly unrelated regression equations and test for aggregation bias, 

Journal of Statistical Association, 57 (1962) 348-368. 

[2] Z.Zellner, Estimators for SUREs : some exact finite sample results, Journal of American Statistical Association, 58 

(1963) 977-992. 

[3] J. K.Menta and R.F. Gibber, Estimation of Seemingly unclated regressions with autoregressive disturbances, Journal of 

American Statistical Association, 65 (1970) 186-197. 

[4] Virendra K. Srivastava and David E.A. Giles, Seemingly unrelated regression equations models, Research Gale, ISBN: 

9781000105728, August 2020. 

[5] R.V.S.S. Nagabhushana Rao, P. Balasiddamuni and B. Ramana Murthu, Inference in SURE models, LAP Publishers, 

New Germany, 2013. 

[6] N.C. Kakwani, The unbiasedness of Zellner’s seemingly unrelated regression equations estimators, Journal of the 

American Statistical Association, 62 (1967), 141-142. 

[7] N.C. Kakwani, A Note on the efficiency of Zellner’s seemingly unrelated regressions estimators, Annals of the Institute 

of Statistical Mathematics,  26 (1974) 361-362. 

[8] P. Narayana, P. Balasiddamuni and C.S. Reddy, Statistical inference in sets of linear regression models, LAP 

publishers, New German, 2013. 

[9] P. Foschi, Estimating seemingly unrelated regression models for vector autoregressive disturbances, Journal of 

Economic Dynamics and Control, (2003) 27-44. 

[10] Ye Chen, Jian Li and Quyuan Li, SUR estimation for VAR models with explosive roorts, Oxfored Bulletin of 

Economics and Statistics, 84(4) (2023), DOI: 10.1111/obes.12551. 



J. Electrical Systems 20-7s (2024): 4126-4131 

  

4131   

[11] D.K. Guilkey and P. Schmidt, Estimation of seemingly unrelated regression with vector autoregressive errors, Journal 

of American Statistical Association, 68 (1973), 642-647. 

[12] R.W. Parks, Efficient estimation of a system of regression equations when disturbances are both serially and 

contemporaneously correlated, Journal of American Statistical Association, 62 (1967) 500-509 

[13] E.I. Olamide, Estimation of Seemingly unrelated regression equations with non-normal disturbances, International 

Journal of Social Relevance of concern, 6(11) (2018) 1-5, DOI<10.26821/itsrc.6.11.2018.61 101. 

[14] B. Sireesha, Statistical inference in sets of linear regression models with   Nonspherical Disturbances, unpublished 

Ph.D., Thesis, Dept. of Statistics, S.V. University, Andhra Pradesh, India, 2016. 

[15] L.G. Telser, Iterative estimation of a set of linear regression equations, Journal of American Statistical Association, 59 

(1964) 845-862. 

[16] L.Wang; H. Lian and R.S. Singh, On efficient estimators of seemingly unrelated regressions, Statist. Prob. Letters, 81 

(2011) 563-570. 

[17] B.H. Margolin, The distribution of internally studentized statistics via Laplas transform inversion, Biometrica, 64 

(1977) 573-582. 

[18] P.C.B. Philips, The exact distribution of the SUR estimator, Econometrica, 53 (1985) 745-756.  

[19] A. Henningren and J.D. Hamann, System fit: A package for estimating system of simultaneous equations in R, Journal 

of Statistical Software, 23(4) (2007) 1-40. URI. http://www. Istatsoff.org/v23/104/. 

[20] Grigoras Gheorghe and Bogdan Neagu, Regression analysis – based load modelling for electric distribution networks, 

in book : Numerical methods for energy applications, Edition I, Springer, Chapter 28, (2021) 769-794. 


