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Abstract: - Distributed Denial of Service (DDoS) attacks represent one of the most significant threats to network security, capable of 

causing widespread disruption to digital infrastructures. The potential for extensive damage becomes even more critical when these attacks 

are executed on a large scale. Numerous research efforts have been dedicated to understanding and mitigating this formidable threat. This 

study delves into the complex landscape of DDoS attacks, examining a range of strategies proposed for their detection and mitigation. 

Special attention is given to the exploration of advanced deep learning and machine learning techniques, which have emerged as pivotal in 

the development of effective defense mechanisms against DDoS attacks. This research offers a comprehensive understanding of the 

evolving dynamics of DDoS attacks and highlights innovative methodologies, thus contributing to the ongoing discourse on enhancing 

network security. Additionally, the paper discusses future directions in DDoS detection, aiming to provide a roadmap for researchers and 

practitioners in the field. 
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I.  INTRODUCTION 

Cybersecurity threats, particularly Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks, 

continue to pose formidable challenges to the security of Internet of Things (IoT) ecosystems. In recent years, there 

has been a significant uptick in the frequency and severity of DDoS attacks. These malicious attempts have caused 

extensive disruptions in numerous IoT networks worldwide, leading to considerable financial and operational losses 

[4]. DDoS attacks are typically orchestrated by assailants who aim to disrupt the normal functioning of a device or 

network by overwhelming the system with a flood of internet traffic from various sources, effectively making it 

inaccessible to legitimate users. 

A notable instance underscoring the severity of these attacks was the 2016 assault on a DNS provider. This event, 

which became a watershed moment in the history of cyber-attacks, utilized a Mirai-botnet composed of 

compromised IoT devices. It adversely affected over 60 companies and was recorded as one of the largest of its 

kind at the time, peaking at an unprecedented 600 Gbps of traffic [5]. This was subsequently eclipsed in 2018 by 

an even more formidable DDoS attack on GitHub, which saw incoming traffic surge to a staggering 1.3 Tbps [6]. 

The prevalence of such attacks has grown, with various iterations of Mirai botnets causing disruptions across the 

globe [7]. 

The vulnerability of IoT devices is a significant concern. It is estimated that there are around 31 billion IoT devices 

in use, and worryingly, about half of these are susceptible to various types of cyber threats [8][9]. This vulnerability 

is exacerbated by the continuous evolution of DDoS attack methods. Initially, these attacks were primarily 

volumetric, aiming to flood systems with overwhelming traffic. However, they have now evolved into more 

sophisticated application-layer attacks, exploiting specific vulnerabilities in the application's software. The 

emergence of cutting-edge technologies such as 5G and Artificial Intelligence (AI) adds new dimensions and 

complexities to these threats, further challenging existing security paradigms [54]. 

The impact of DDoS attacks is not uniform across all sectors. Critical sectors like healthcare, finance, and 

government are particularly vulnerable due to the sensitive nature of their operations and the critical need for 
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uninterrupted service. In healthcare, for example, a successful DDoS attack can impede access to vital patient data, 

while in the finance sector, such attacks can disrupt trading and cause financial instability [55]. 

Addressing these threats requires a multi-faceted approach, combining advanced technological solutions with robust 

policy-based strategies. However, the task of implementing effective preventive measures is fraught with 

challenges. One of the primary difficulties lies in the ability to distinguish between legitimate traffic and malicious 

attack traffic, a task that becomes increasingly complex with the sophistication of attack methods [55]. The role of 

legislative measures and international cooperation in combating DDoS attacks is vital. Different countries have 

adopted various strategies, with varying degrees of success. There is a pressing need for a concerted global effort 

to establish unified standards and practices to effectively counter these threats [47]. 

Recent case studies and statistical analyses provide a clearer picture of the current landscape of DDoS attacks. They 

highlight not only the frequency and scale of these attacks but also their evolving nature and the diversifying sources 

of these threats. Looking forward, the rapid expansion of IoT devices and advancements in technology are likely to 

introduce new vulnerabilities, raising concerns about the future landscape of DDoS attacks. Furthermore, the 

economic and social implications of DDoS attacks are profound. Businesses, especially those heavily reliant on 

online services, face substantial financial losses due to operational downtime. There is also a broader impact on 

consumer trust and confidence, which can have far-reaching effects on the digital economy. 

This paper aims to delve into the effectiveness of various DDoS attack detection strategies, shedding light on the 

current challenges in this area and exploring potential future directions in an ever-evolving cybersecurity landscape. 

II. DISTRIBUTED DENIAL OF SERVICE (DDOS) ATTACKS 

DDoS attacks are coordinated attempts by an attacker to disrupt or deny legitimate users access to an organization's 

services or resources by overwhelming them with a flood of traffic. The attacker can create a botnet, which is a 

network of compromised internet-connected devices such as IoT gadgets, and coordinate the botnets through a 

control server to launch attacks. As a result, the target experiences a massive surge of traffic from multiple sources, 

disrupting its normal operations. 

2.1 IoT DDoS Attacks 

IoT DDoS attacks are particularly challenging to defend against due to the inherent limitations of IoT devices in 

terms of processing power and bandwidth. Attackers can exploit vulnerabilities in IoT device firmware or 

communication protocols to compromise these devices and launch malicious attacks. Moreover, IoT devices 

themselves can be used as powerful tools for DDoS attacks, amplifying the impact of the attack. The low security 

posture of IoT devices makes them an attractive target for attackers to build large-scale botnets, which are crucial 

for launching volumetric DDoS attacks. For instance, the infamous Mirai botnet was created by hijacking over 

65,000 IoT devices within 20 hours of their release and subsequently used to launch DDoS attacks against major 

IoT companies like OVH and Dyn [11]. 

2.2 DDoS Attack Architecture 

The architecture of a typical DDoS attack encompasses three primary components: 

Attacker: This is the individual or group behind the DDoS attack. They are responsible for orchestrating the assault, 

controlling the botnets, and coordinating the flow of attack traffic. The attackers may use various techniques to 

conceal their identity, including the use of VPNs or hijacking other devices' IP addresses. 

Botnet: A botnet is essentially a network of compromised internet-connected devices, controlled by the attacker. 

These devices, often unaware to their legitimate users, become tools in generating massive volumes of attack traffic. 

The distributed nature of botnets makes it challenging to trace and neutralize them, as they can comprise devices 

from all around the globe. 

Target: This is the organization, service, or infrastructure under attack. The primary objective of the attacker is to 

overwhelm the target's resources, such as bandwidth or server capacity, to an extent that legitimate users are unable 

to access the services. The impact on the target can range from slowed service to complete unavailability, potentially 

leading to significant financial and reputational damages. 
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Fig.1. DDoS attack architecture diagram 

2.3 Types of DDoS Attacks and Techniques 

2.3.1 Volumetric Attacks 

These are the most common type of DDoS attacks. The goal is to consume the bandwidth of the victim's network 

or service. Attackers generate large volumes of data packets or requests that flood the target, overwhelming its 

ability to process and respond. This type of attack often uses botnets to generate a massive amount of traffic [71]. 

2.3.2 Application-Layer Attacks 

These attacks target specific aspects of an application or service rather than just flooding the network with traffic. 

The aim is to exhaust the resources of the application layer, making the service slow or unresponsive. This type of 

attack is more sophisticated and harder to detect because it can mimic legitimate user behavior. Examples include 

HTTP flood attacks that overload a web server, or DNS query floods that disrupt the resolution of domain names 

[72]. 

2.3.3 Reflection and Amplification Attacks 

These techniques are used to magnify the potency of a DDoS attack. In a reflection attack, the attacker sends 

requests to a third-party server (e.g., DNS or NTP server) with a forged sender address. This server then ‘reflects’ 

the response to the target’s IP address. In amplification attacks, the attacker exploits the difference in the size of 

responses and requests to multiply the volume of data sent to the target. For example, a small query sent to a DNS 

server can generate a significantly larger response, which is directed to the target, amplifying the traffic volume 

significantly [73]. 

2.3.4 Protocol Attacks 

These attacks exploit vulnerabilities in the protocols that govern internet communication. Examples include SYN 

flood attacks, where an attacker sends a succession of SYN requests to a target’s system in an attempt to consume 

enough server resources to make the system unresponsive to legitimate traffic [74]. 

2.4 History of DDoS 

Distributed denial-of-service (DDoS) attacks have emerged as a significant threat to the security and availability of 

online services in recent years. These attacks aim to overwhelm a target system with a massive volume of traffic, 

rendering it inaccessible to legitimate users. 

2.4.1 The Early Days of DDoS Attacks 

The first recorded DDoS attack occurred in 1974 when David Dennis launched a program called "Slowloris" against 

a DEC PDP-11 computer at the Massachusetts Institute of Technology (MIT) [40]. This attack involved sending a 
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large number of slow, incomplete TCP SYN packets, causing the target computer to crash. In the 1990s, IRC chat 

floods became a prevalent form of DDoS attack [41]. Attackers would join IRC channels and flood them with 

messages, making it impossible for other users to participate. 

2.4.2 Notable DDoS Attacks in History 

1998 Morris Worm Attack: This attack targeted the root servers of the Domain Name System (DNS), causing 

widespread disruption to the internet [42]. 

2001 Code Red Worm Attack: This attack targeted websites running Microsoft IIS web server software, causing 

significant damage to businesses and organizations [43]. 

2007 Estonian Cyberattacks: A series of coordinated DDoS attacks targeted the Estonian government and its 

infrastructure, believed to have been launched by Russian hackers [44]. 

2010 Operation Aurora Attacks: These coordinated DDoS attacks targeted US and South Korean websites, 

believed to have been launched by the Chinese government [45]. 

2016 DDoS Attack on Dyn: This major attack targeted the Dyn DNS service provider, causing widespread 

disruption to websites and online services [46]. 

Throughout 1990: IRC (Internet Relay Chat) channels experienced extensive disruption due to chat floods. 

Attackers flooded these channels with an overwhelming volume of messages, impacting regular communication 

and user participation [61]. 

1998: The Morris worm targeted multiple internet hosts, exploiting known vulnerabilities in Unix systems. This 

worm marked one of the earliest notable instances of a widespread DDoS attack, significantly disrupting internet 

services [62]. 

2000: Yahoo, one of the largest web services providers at the time, fell victim to a significant DDoS attack. This 

attack overwhelmed Yahoo's servers, causing substantial service disruption and highlighting the vulnerability of 

major online platforms [63]. 

2001 Code Red Worm: This attack targeted websites running on Microsoft IIS web server software. This attack 

exploited a buffer overflow vulnerability, affecting hundreds of thousands of computers and causing extensive 

operational and economic damage [64]. 

2002: An attack targeted the root servers of the Domain Name System (DNS). This attack aimed to disrupt the 

essential service responsible for translating domain names into IP addresses, posing a considerable threat to internet 

stability. 

2003: The Al-Jazeera website faced a DDoS attack amid heightened political tensions. This attack aimed to disrupt 

the news service's online presence and limit its ability to disseminate information. 

2004: The SCO Group's website suffered a DDoS attack. This attack was notable for its intensity and its relation to 

the SCO Group's legal and commercial disputes in the technology sector. 

2005: E-bay, one of the world's largest online marketplaces, was the target of a DDoS attack. This attack aimed to 

disrupt E-bay's extensive e-commerce activities, affecting buyers and sellers worldwide [65]. 

2006: The payment processing service Storm Pay experienced a severe DDoS attack. This incident disrupted 

financial transactions and highlighted the vulnerability of online payment platforms. 

2007: Estonia faced a series of coordinated DDoS attacks, targeting government and infrastructural networks. These 

attacks were significant for their political implications and marked one of the first instances of large-scale cyber 

warfare. 

2008: The website of the Georgian president was subjected to a DDoS attack during a period of heightened 

geopolitical tension, symbolizing the increasing use of cyber-attacks in international conflicts. 

2009: The Iranian government's websites, along with major social media platforms like Facebook, Twitter, and 

Google, faced DDoS attacks. These attacks coincided with significant political events in Iran, indicating a politically 

motivated cyber assault. 

2010: Wordpress.com, a popular blogging platform, encountered a major DDoS attack. This attack impacted 

numerous blogs and websites hosted on the platform, affecting content creators and readers alike. 

2011 and 2012: Sony suffered multiple DDoS attacks. These attacks targeted Sony's gaming and entertainment 

services, leading to substantial service disruptions and user data risks. 

2013: South Korean websites and Spamhaus, a spam-fighting organization, were hit by DDoS attacks. These attacks 

were significant for their scale and the diversity of targets, from national infrastructure to internet security services. 
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2014: JP Morgan, one of the largest banks in the world, faced a DDoS attack. This attack highlighted the 

vulnerability of financial institutions to cyber threats and had implications for customer data security. 

2015: GitHub, a platform for software development and collaboration, experienced a DDoS attack. This attack was 

notable for targeting a service fundamental to the global software development community. 

2016: The Rio Olympics were disrupted by a DDoS attack, affecting various online services related to the event. 

This incident demonstrated the potential for cyber-attacks to impact major international events. 

2017: Melbourne IT, an Australian domain registrar and IT service company, suffered a DDoS attack. This attack 

caused disruptions to several high-profile websites registered through the company. 

2018: GitHub was targeted by another major DDoS attack. This attack was significant for its scale and the 

sophistication of the methods used, underscoring the ongoing challenge of protecting online services against cyber 

threats. 

February 2018: GitHub experienced one of the most powerful DDoS attacks recorded. The attack peaked at 1.35 

Tbps, leveraging an amplification technique using Memcached servers. This incident highlighted the evolving 

nature of DDoS attack methods and the importance of robust defense mechanisms. 

September 2019: Wikipedia suffered a significant DDoS attack that rendered the site inaccessible in several 

countries for hours. This attack highlighted the vulnerability of even well-established online platforms [66]. 

June 2019: The messaging app Telegram faced a massive DDoS attack, which was believed to be state-sponsored. 

The attack, primarily affecting users in the Americas, was speculated to be linked to political unrest in certain 

regions [67]. 

August 2020: The NZX was hit by severe DDoS attacks over multiple days, disrupting trading activities. These 

attacks were part of a global campaign targeting financial institutions and were notable for their impact on national 

infrastructure. 

Amid the COVID-19 pandemic, the U.S. Department of Health and Human Services experienced a DDoS attack 

intended to disrupt information dissemination about the pandemic [68]. 

May 2021: Several Belgian government websites experienced a DDoS attack, impacting public access to online 

government services. This incident underscored the increasing tendency of attackers to target essential public sector 

infrastructure [69]. 

2021: The gaming platform Steam faced a DDoS attack during its Winter Sale, affecting gamers globally. This 

attack highlighted the vulnerability of entertainment and e-commerce platforms to such disruptions. 

2022: Amid the geopolitical tensions in Eastern Europe, Ukrainian government websites and several banks were 

targeted by a series of DDoS attacks, seen as part of broader cyber warfare activities. 

2023: A leading global streaming service experienced a significant DDoS attack, disrupting services for millions of 

users. This attack was notable for its scale and the targeting of a major player in the digital entertainment industry. 

2023: A prominent international news outlet was targeted by a DDoS attack, impeding access to news services. The 

attack was speculated to be politically motivated, aimed at suppressing particular news coverage. 

Table 1: History of DDoS attack 

Sr. No Attack Year Attack Targets 

1 1990, 1990 IRC chat floods 

2 1998 Morris worm 

3 2000 Yahoo 

4 2001 Code red worm attacks 

5 2002 Root servers of DNS 

6 2003 Al-Jazeera 

7 2004 SCO 

8 2005 E-bay 

9 2006 Storm pay battling 

10 2007 Estonian 

11 2008 Georgia president Web site 
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Sr. No Attack Year Attack Targets 

12 2009 Iranian Government Web sites, Facebook, Twitter, and Google, Russian blog 

13 2010 Wordpress.com, US and South Korean website 

14 2011, 2012 Sony 

15 2013 South Korean Web sites, Spamhaus 

16 2014 JP Morgan 

17 2015 Github 

18 2016 RIO Olympics 

19 2017 Melbourne IT 

20 2018 Github 

21 2019 Wikipedia, Telegram 

22 2020 New Zealand Stock Exchange (NZX), U.S. Health and Human Services Department 

23 2021 Belgian Government Websites, Steam 

24 2022 Ukrainian Government Websites and Banks 

25 2023 Major Streaming Service, International News Outlet 

III. DDOS DETECTION METHODS 

To identify Distributed Denial of Service (DDoS) attacks, various methodologies have been developed, including 

statistical approaches such as entropy variations, machine learning techniques, and deep learning methods. 

3.1 Statistical Approaches 

Estimating statistical properties of network traffic attributes is a common approach for DDoS attack detection. 

Entropy-based methods, focusing on the entropy variations of specific packet header fields, gained popularity in 

the mid-2000s. For instance, Feinstein et al. [12] developed a method based on source IP address entropy and Chi-

square distribution, highlighting the dissimilarity caused by DDoS attacks compared to legitimate traffic variations. 

Tao [13] employed entropy changes during rush hour traffic to detect attacks, utilizing data distance to differentiate 

DDoS attacks from flash crowds. Mousavi [14] proposed an attack detection technique based on actual entropy, 

calculating entropy through the correlation between source and destination IP addresses. However, entropy is 

considered less reliable due to relatively high false positives or false negatives [13]. Bojović [15] and Kalkan [16] 

developed entropy-based scoring structures to identify volumetric DDoS attacks using target IP address entropy 

and self-motivated groupings of IP and TCP layer attributes. Ahmed et al. [17] introduced an alternative 

measurement method utilizing packet attributes and traffic flow measures to distinguish between harmful DDoS 

traffic and benign traffic. Despite the effectiveness, these statistical methods may encounter challenges in online 

architectures, and determining an appropriate threshold remains a common difficulty. 

3.2 Machine Learning and Deep Learning Based DDoS Detection Techniques 

Xiao et al. [15] proposed a reliable identification method for DDoS attacks using K-Nearest Neighbors (KNN) and 

correlation analysis. KNN classifies network traffic data points based on their similarity to known attack profiles. 

Correlation analysis strengthens attack identification by finding relationships between different traffic features. This 

approach effectively detects SYN flooding, UDP flooding, and ICMP flooding attacks. Focusing on application-

layer DDoS attacks, C. She et al. [16] leveraged One-Class Support Vector Machines (OC-SVM) with honeypot 

data and machine learning. OC-SVM learns the normal behavior of network traffic from honeypots and flags 

deviations as potential attacks. Machine learning algorithms further refine the detection based on specific traffic 

features, enabling effective identification of SYN flooding, HTTP flooding, and NTP amplification attacks. 

Vishwakarma et al. [17] tackled botnet-based DDoS attacks in the Internet of Things (IoT) by employing an 

unspecified machine learning algorithm. This algorithm specifically targets botnet command and control (C&C) 

channels within the IoT network. Analyzing traffic patterns for communication patterns consistent with botnet 

activity allows effective detection of these attacks. Asad et al. [18] turned to Artificial Neural Networks (ANNs) 
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for diverse application-layer DDoS attack detection. ANNs are trained on labeled DDoS attack data to recognize 

specific patterns in network traffic. Incoming traffic is then classified as normal or DDoS based on these learned 

patterns, enabling accurate identification of attacks like Slowloris and HTTP floods. Focusing on botnet activity 

within consumer IoT networks, Roopak et al. [19] adopted Bidirectional Long Short-Term Memory (LSTM) 

networks for text recognition at the packet level. LSTMs analyze packet payload data (e.g., HTTP headers) to 

identify suspicious patterns or anomalies suggestive of DDoS attack commands. This approach effectively detects 

malicious activity from compromised IoT devices. Meidan et al. [20] proposed N-BaIoT, an autoencoder-based 

model for anomaly detection in IoT networks. The autoencoder learns a compressed representation of normal 

network traffic. Deviations from this normal representation trigger flags for potential DDoS attacks, enabling the 

identification of malicious activity from compromised IoT devices. 

Taking a broader approach, Doshi and Feamster [21] employed various machine learning algorithms, including 

Support Vector Machines (SVMs) and Random Forests, for general network traffic classification. They extract 

features from network traffic flows and feed them into these models to classify them as normal or DDoS. This 

approach provides a general framework for DDoS detection based on network traffic analysis. C. She et al. [22] 

combined the strengths of Convolutional Neural Networks (CNNs) and LSTMs for general DDoS attack detection. 

CNNs learn spatial features from network traffic data, while LSTMs capture temporal patterns, using the 

CICIDS2017 dataset. By combining these, they achieve accurate identification of both spatial and temporal 

anomalies indicative of DDoS attacks. Focusing on geographically dispersed attacks, Pei et al. [26] leveraged CNNs 

to analyze geographical features of network traffic. They made use of the ISCX2012, CIC2017, and CSECIS 2018 

databases. Their CNNs identify patterns suggesting coordinated DDoS attacks from geographically dispersed 

attackers. This approach is particularly effective for detecting attacks with geographically diverse attack sources. 

Doriguzzi et al. [23] prioritized real-time detection with minimal processing overhead by developing a lightweight 

CNN-based architecture. This custom CNN design enables fast and efficient DDoS attack detection, making it 

suitable for resource-constrained environments. Jia et al. [24] proposed the FlowGuard system, which combines 

CNNs and LSTMs for DDoS attack detection in IoT networks. CNNs identify malicious traffic patterns, while 

LSTMs analyze traffic flow sequences to confirm DDoS attacks. FlowGuard then filters and blocks these malicious 

flows, providing comprehensive protection for IoT networks. To improve feature selection for DDoS attack 

detection in IoT networks, Roopak et al. [25] employed CNNs and LSTMs in conjunction with a multi-objective 

optimization algorithm. This algorithm selects the most effective features for attack classification, leading to more 

accurate detection and improved overall defense. M. Shurman et al. in [56] propose two methodologies for detecting 

DDoS attacks, particularly focusing on IoT networks and DrDoS attacks. The first is a hybrid-based IDS designed 

for IoT networks, which detects and blocks suspicious network traffic. The second is a deep learning model based 

on LSTM, trained on the CICDDoS2019 dataset, to specifically target DrDoS attacks. Furthermore, the paper 

outlines future work involving the development of a new model to detect exploitation-based attacks in the same 

dataset and to evaluate these methodologies in realistic system settings. 

CNN and LSTM neural networks were merged by Yijie, Li, et al. [27] to improve DDoS attack detection. Whereas 

the CNN concentrated on spatial patterns in the CICDDoS2019 dataset, the LSTM network was in charge of 

examining temporal patterns, such as variations in traffic volume over time. Because CNNs are great at identifying 

patterns and LSTM networks are good at processing time-series data, this combination allowed for a thorough 

examination. Using the CICIDS2017 dataset, Li, Qian et al. [28] used a CNN and LSTM neural network technique 

similar to that used in [22]. By utilizing the advantages of both CNN for geographical recognition and LSTM for 

temporal traffic pattern analysis, their approach proved successful in detecting DDoS attacks. The Random Forest 

machine learning approach was used by Yuan et al. [29] to identify DDoS attacks. It used the TFN2K Programme 

to create DDoS attack traffic for a local environment, and then it used network traffic statistics and the Random 

Forest classifier to identify these attacks. Random Forest's capacity to analyze big datasets and spot intricate patterns 

made the strategy successful. In their study, Kaur et al. [30] employed an LSTM neural network to analyze network 

traffic data in order to identify DDoS attacks. The LSTM network picked up on the typical network traffic patterns, 

and it used this baseline knowledge to spot deviations that suggested DDoS attacks. The long-term dependency 

memory of LSTM made it appropriate for this use. 

Principal Component Analysis (PCA) and Recurrent Neural Networks (RNN) were used in the study by Yan Naung 

et al. [31]. PCA made learning easier by reducing the dimensionality of the network traffic data from the KDD CUP 

1999 dataset. After that, the RNN examined these condensed data patterns to identify DDoS attacks, essentially 
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picking up on the general patterns of network traffic. Using an RNN neural network, Bindra et al. [32] were able to 

identify unusual patterns indicative of DDoS assaults from normal network traffic patterns learned from the UNB 

ISCX dataset. By utilizing the KDDCUP dataset, Roempluk et al. [33] integrated Support Vector Machines (SVM), 

K-Nearest Neighbors (KNN), and Artificial Neural Networks (ANN) to identify DDoS attacks. Since each classifier 

has a distinct advantage in pattern recognition and anomaly detection, these classifiers were employed to learn the 

typical traffic patterns, offering a thorough method. Masud et al. [34] examined the BOT-IOT dataset for DDoS 

attack detection using an ANN classifier and SMOTE. While SMOTE solved the issue of class imbalance by 

oversampling the minority class (DDoS assaults) to enhance the classifier's performance, the ANN learned the 

typical traffic patterns. Using the CICIDS 2017 dataset, Vinayak, S. et al. [35] used a Random Forest classifier with 

an n-estimate technique to identify DDoS attacks. Through the use of the n-estimate methodology, the classifier's 

accuracy in spotting abnormalities was improved as it learned the patterns of typical network traffic. Panda et al.'s 

[36] work employed the KDD CUP99 and NSL KDD datasets to detect DDoS assaults using KNN, MLP, and SVM 

classifiers. These classifiers worked together to give a strong method for understanding and recognizing changes 

from typical network traffic patterns. 

DDoSNet, which was created by Ahmed et al. [47], extracted and analyzed features from the CICDDoS2019 dataset 

using CNNs and RNNs. With a high accuracy rate of 99.89%, the CNNs extracted spatial characteristics while the 

RNNs concentrated on temporal patterns. SVMs and the Boruta algorithm were used by Alazab et al. [48] to pick 

features from the CICDDoS2019 dataset. They obtained a 99.59% accuracy rate with ensemble SVM classifiers 

using AdaBoost. The CICDDoS2019 dataset was subjected to PCA, RF, and SVM analyses by Park, S. J. et al. 

[49]. The dimensionality of the dataset was decreased by PCA, and then the traffic was classified using RF and 

SVMs. With an accuracy rate of 99.23%, our hybrid method demonstrated the advantages of combining feature 

reduction and classification. Using an Improved Deep Belief Network (IDBN), El-Bakry et al. [50] collected 

features and classified network traffic from the CICDDoS2019 dataset. The IDBN demonstrated the effectiveness 

of deep learning in DDoS attack detection with an accuracy rate of 99.45%. CNN and LSTM were coupled by 

Wang, H. et al. [51] to analyze the CICDDoS2019 dataset. The efficacy of merging CNN and LSTM in identifying 

DDoS attacks was demonstrated by the 99.78% accuracy rate attained by the LSTM after learning temporal patterns 

from the retrieved data by CNN. 

3.3 Analysis of Various Researchers’ Work with AI Techniques 

Table 2: Summarizes various studies on DDoS attack detection using machine learning and deep learning techniques, along with the datasets 

used. 

Sr. 

No. 

Paper 

Title 

Year of 

Publishing 
Methods Used Dataset 

1 [22] 2019 CNN+LSTM CICIDS2017 

2 [26] 2020 
CNN ISCX2012, CIC2017, 

CSECIS2018 

3 [27] 2020 LSTM, CNN CICDDoS2019 

4 [28] 2020 CNN+LSTM CICIDS2017 

5 [29] 2019 
ML Technique (Random Forest) Used TFN2K tool to conduct local 

DDoS attacks 

6 [30] 2018 LSTM (Long Short-Term Memory) DDoS attack software 

7 [31] 2019 PCA and RNN KDD CUP 1999 

8 [32] 2017 RNN UNB ISCX 

9 [33] 2019 SVM, KNN, ANN KDDCUP 

10 [34] 2020 ANN SMOTE BOT-IOT 

11 [35] 2019 RF with n-estimate CICIDS2017 

12 [36] 2019 KNN, MLP, SVM KDD CUP99, NSL KDD 
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13 [47] 2020 DDoSNet, CNNs and RNNs CICDDoS2019 

14 [48] 2020 SVMs CICDDoS2019 

15 [49] 2021 PCA, RF, and SVMs CICDDoS2019 

16 [50] 2021 
Improved Deep Belief Network 

(IDBN) 

CICDDoS2019 

17 [51] 2022 CNN and LSTM CICDDoS2019 

This summary highlights the diversity of machine learning and deep learning approaches employed for DDoS attack 

detection, showcasing their respective datasets and methodologies. The integration of CNNs, LSTMs, Random 

Forests, and other advanced techniques demonstrates the ongoing evolution of DDoS detection strategies and their 

potential to enhance network security against such pervasive threats. 

IV. PERFORMANCE EVALUATION AND DISCUSSION 

The evaluation metrics employed in this assessment utilize the false positive rate (FR), the detection rate (DR), and 

the overall detection rate (AR) to analyze experimental results. This choice is driven by the classification nature of 

determining whether the recognition data corresponds to a Distributed Denial of Service (DDoS) assault. 

False Positive Rate (FR): The normal behavior ratio, represented as FR=FP/(FP+TP), characterizes the detection of 

attack data in terms of the false positive rate. It quantifies the proportion of normal data incorrectly classified as 

attack data. 

Detection Rate (DR): The detection rate, denoted as DR=TN/(TN+FN), expresses the fraction of attack behavior 

identified by the attack data detection. It measures the effectiveness of the system in recognizing actual attack 

behavior. 

Overall Detection Rate (AR): The total detection rate, articulated as AR=(TP+TN)/(TP+TN+FP+FN), encompasses 

the detection of normal data as normal and the detection of attack data as the percentage of attack data. It provides 

an overall assessment of the classification performance. 

In this context, TP refers to a positive sample that is correctly anticipated to be positive, where normal data is 

expected to behave normally, while TN represents a predicted negative sample, indicating that the assault data is 

expected to behave normally. Conversely, FP refers to a negative sample that is mistakenly expected to be positive, 

and FN is a positive sample that is erroneously projected to be negative, signifying that normal data is anticipated 

to be aggressive. 

In [29], the experimental setup involves utilizing the remaining set of attack data packets mixed with regular traffic 

as the test set after training the random forest model with the training data set. This facilitates model detection. To 

control the ratio of normal traffic to attack traffic, cross-sample both attack and normal traffic, determine each 

sample's categorization behavior, and adjust the sampling flow duration. Concurrently, the data from the Support 

Vector Machine (SVM) method are detected using the LIBSVM library, and the results of the random forest model 

detection are subsequently compared. This multifaceted approach enhances the robustness and reliability of the 

DDoS detection system, ensuring a comprehensive evaluation of its performance. 

The following graphs summarize the three protocol types' detection results from the DDoS assault data. The graphs 

in Fig. 2, 3, and 4 provided demonstrate that the detection model proposed in [29] surpasses the performance of the 

SVM algorithm model, consistently achieving a higher detection rate across the outcomes for the detection of DDoS 

attacks in three different protocols as background traffic increases. 
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Fig. 2: False Positive Rate (FR) 

 
Fig. 3: Detection Rate (DR) 
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Fig. 4: Overall Detection Rate (AR) 

The comparative analysis of DDoS attack detection methods based on the CICDDoS2019 dataset shown in Fig. 5, 

uncovers the superior accuracy of models like CNN-LSTM [50] and DDoSNet [46], both achieving over 99%. 

These models demonstrate the power of combining neural network approaches for intricate threat detection. 

Ensemble Learning [47] and Improved Deep Belief Network [49] also show promising results. Variability in 

Random Forest models [70, 71] underscores the influence of specific training conditions. The study indicates an 

average accuracy of 99.31% across models, emphasizing their potential effectiveness. However, it also suggests the 

importance of considering network environments and attack types in selecting the optimal detection method, 

highlighting the need for further research in diverse operational scenarios. 

 
Fig. 5: Accuracy of DDoS Attack Detection Methods using CICDDoS2019 Dataset 

The study given in Table 3 and Fig. 6 evaluate the performance of various models for DDoS attack detection on the 

CICIDS2017 dataset [19]. Deep learning models, particularly CNN+LSTM, achieved the highest accuracy 

(97.16%) and impressive recall (99.1%). LSTM alone also showed strong precision (98.44%). Among machine 



J. Electrical Systems 20-9s (2024): 2030-2046 

 

 

2041 

learning approaches, SVM had a high recall (99.12%), but Random Forest had lower precision (90.18%). The 

results indicate that while hybrid deep learning models offer significant accuracy and recall, single LSTM models 

excel in precision. Overall, deep learning methods outperform traditional machine learning algorithms in detecting 

DDoS attacks. 

Table 3: Models for DDoS attack detection on the CICIDS2017 dataset 

Model Accuracy (%) Precision (%) Recall (%) 

1d-CNN 95.14 98.14 90.17 

MLP 86.34 88.47 86.25 

LSTM 96.24 98.44 89.89 

CNN+LSTM 97.16 97.41 99.1 

SVM 95.5 97.72 99.12 

Bayes 95.19 92.56 92.84 

Random Forest 94.64 90.18 90.89 

 
Fig. 6: Models for DDoS attack detection on the CICIDS2017 dataset 

In the comparative analysis presented in Table 4, various models for DDoS attack detection using the ISCX2012 

dataset are evaluated, highlighting the advancements in network security technologies. The LUCID model [23] 

stands out with its superior performance, marked by an exceptional accuracy of 0.9888 and a high F1 score of 

0.9889. This indicates a well-balanced precision and recall, essential in effective DDoS detection. Furthermore, 

LUCID's low false positive rate (FPR) of 0.0179 is indicative of its proficient capability in distinguishing between 

benign and malicious traffic, thereby minimizing the likelihood of erroneously flagging legitimate traffic as attacks. 

These metrics collectively demonstrate LUCID's effectiveness, surpassing other models like 3LSTM [4], TR-IDS 

[36], and E3ML [47] in crucial performance areas. The success of LUCID can be attributed to its preprocessing 

mechanisms, which evidently enhance its detection capabilities. 

On the other hand, the 3LSTM model, as detailed in the DeepDefense paper [4], also shows noteworthy 

performance with an accuracy of 0.9841 and an F1 score of 0.9840. However, the lack of data on its FPR prevents 

a comprehensive assessment of its overall efficiency. The TR-IDS model [36], which utilizes a text-CNN for feature 

extraction in tandem with a Random Forest classifier, records a respectable accuracy of 0.9809. Nonetheless, its 

lower true positive rate (TPR) of 0.9593, in comparison to LUCID, suggests a reduced effectiveness in detecting 

DDoS attacks, potentially leading to higher false negatives. E3ML [47], employing an intricate architecture with 

entropy-based features and multiple machine learning classifiers, only reports its TPR (0.9474). This partial data 

suggests a tendency towards false negatives, a significant concern in network security. The incomplete data across 

all metrics for some models, such as E3ML [47] and 3LSTM [4], underscores the challenges in establishing a 
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comprehensive comparative framework, highlighting the necessity for more holistic reporting in cybersecurity 

research to facilitate better-informed conclusions and advancements in the field. 

Table 4: Comparative analysis of models for DDoS attack detection using the ISCX2012 dataset 

Model 
Accuracy 

(ACC) 

False Positive 

Rate (FPR) 

Positive Predictive 

Value (PPV) 

True Positive 

Rate (TPR) 

F1 Score 

(F1) 

LUCID [23] 0.9888 0.0179 0.9827 0.9952 0.9889 

3LSTM [4] 0.9841 N/A 0.9834 0.9847 0.9840 

TR-IDS [36] 0.9809 0.0040 N/A 0.9593 N/A 

E3ML [47] N/A N/A N/A 0.9474 N/A 

In evaluating the efficacy of DDoS detection models, our analysis revealed a distinct edge of deep learning 

techniques over conventional machine learning algorithms. The CNN+LSTM model, in particular, emerged as a 

top performer, demonstrating high accuracy and recall, a testament to its capacity to discern complex network traffic 

patterns indicative of DDoS activity. This superiority, however, is accompanied by performance discrepancies 

among models, attributable to differences in their architectures and training protocols. Such variations underscore 

the need for bespoke solutions attuned to the specificities of various network environments and attack 

methodologies. Consequently, this insight lays a foundation for future exploration, stressing the necessity for 

exhaustive performance assessments across a multitude of metrics to confirm the resilience of DDoS detection 

mechanisms. 

Central to this endeavor is the choice of dataset, with the CICDDoS2019 dataset standing out for its modern and 

heterogeneous compilation of DDoS attack scenarios. The robust performance of deep learning models, particularly 

CNN+LSTM, on this dataset substantiates its suitability for the development of advanced detection systems. Given 

its encompassing representation of current DDoS threats, the CICDDoS2019 dataset is an exemplary choice for the 

training and validation of proposed systems, ensuring their effectiveness against an expansive spectrum of DDoS 

attacks. Thus, the deployment of this dataset is instrumental in enhancing the detection capabilities and reliability 

of emerging DDoS defense mechanisms. 

V. CONCLUSION 

The growing threat of Distributed Denial of Service (DDoS) attacks, particularly in IoT networks, has driven 

extensive research into network defenses. Despite significant progress, a definitive solution remains elusive, 

necessitating ongoing innovation in DDoS detection. The evolving tactics of attackers and the inherent 

vulnerabilities of IoT devices require adaptive and robust detection strategies. Advanced machine learning and deep 

learning techniques, especially CNN and LSTM models, have shown promise in improving detection accuracy. 

Utilizing comprehensive datasets like CICDDoS2019 is crucial for developing effective detection systems. 

Continuous research and collaboration across academia, industry, and government are vital to stay ahead of 

sophisticated DDoS attacks. As IoT technology advances, proactive measures are essential to safeguard digital 

infrastructures and maintain service integrity in an increasingly connected world. 

VI. FUTURE TRENDS AND CHALLENGES 

As DDoS attacks evolve, leveraging 5G and IoT networks for amplified impact, detection strategies face new 

challenges. Technological advancements like AI and machine learning offer dual-edged swords, aiding both 

attackers and defenders. Detection systems must evolve to handle sophisticated multi-vector attacks, address false 

positives, and ensure scalability in a rapidly changing digital landscape. 

International cooperation and regulatory frameworks will play a crucial role in standardizing defenses globally. 

Future research should focus on developing adaptive, proactive defense mechanisms, integrating DDoS defense 

within broader network security frameworks, and exploring the potential of emerging technologies for predictive 

defense strategies. Emerging trends suggest a need for hybrid detection models combining various AI techniques 

to enhance detection accuracy and efficiency. Additionally, the integration of blockchain technology for secure and 

transparent data handling may offer new avenues for DDoS mitigation. The collaboration between academia, 

industry, and government is essential to foster innovation and implement effective, scalable solutions. 
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