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Abstract: - Tropical cyclones (TCs) are low-pressure weather phenomena characterized by a revolving circulation of high winds, heavy 

rain, and thunderstorms. TCs cause catastrophic damage if they make landfall in populated areas. Therefore, it is essential to monitor and 

prepare for potential disasters in the form of emergency responses or evacuations. For decades, predicting the intensity of tropical cyclones 

has been a challenging problem. The use of machine learning techniques to predict TCs is still challenging due to the number of parameters 

used for prediction and the availability of historical data. This paper highlights the techniques and parameters used to estimate TCs. This 

paper focuses on significant parameters such as ocean indices, sea surface temperature, and many others that have a greater impact on the 

formation of TCs. This paper discusses various opportunities and challenges in forecasting TCs in advance and the factors influencing the 

formation of TCs. The challenge is obtaining long amounts of historical data to analyse all ocean indices. Although many researchers have 

utilized ML techniques, the accuracy of TCs is still a more significant issue. Our survey focused on the importance of data fusion in 

accurately predicting TCs and their intensities. 

Keywords: Data Fusion, Indian Ocean Dipole (IOD), Machine Learning Techniques, Ocean Indices, Sea Surface 

Temperature (SST), Tropical Cyclones (TC), Wind Shear (WS). 

I.  INTRODUCTION 

The warm waters of the Bay of Bengal and Arabian Sea basins generate cyclones during the summer and fall, 

bringing heavy rain, high winds, and large waves. The damage they cause can be severe. In recent years, tropical 

cyclones have become more frequent and intense due to climate change. It is, therefore, essential to understand their 

formation process to better prepare for future events. Solid winds converge towards the center by an inwards spiral 

convergence of low pressure [1]. Tropical cyclones are significant natural hazards in India because they cause 

socioeconomic and human loss to a large extent. Sea surface temperature (SST), sea level pressure (SLP), wind 

speed and direction, and other ocean indices are believed to be the factors that drive TCs. 

Forecasting the intensity of tropical cyclones has always been challenging for both researchers and cyclone 

prediction teams. Various studies have been conducted on the internal dynamics, wind shear (WS), and other dry 

dynamics of tropical cyclones [2], [3], [4], [5], [6], [7]. However, few studies have explored whether the impact of 

vertical wind shear on the evolution of TCs is also very high [8], [9], [10], [11] or vice versa. 

The extent of deep shear was estimated to calculate differences between winds at standard pressure levels of 200–

850 hPa [10]. Several investigations have shown that low-level sensible and heat flumes are critical for TCs in 

tropical seas [12]. [13] A relationship has been observed between the SST and the maximum intensification rate of 

TCs in the North Atlantic Ocean. However, the impact of the wind shear magnitude on TC formation remains an 

unsolved problem [3]. 

Although there are various parameters to be considered with varied impact levels, most researchers have considered 

one or two parameters, or very few were considered in estimating TCs. In addition to considering many parameters, 

such as wind speed, shear, and SST, meteorologists need to consider the ocean index, which has a greater impact 

on TC formation and intensity. There are different ocean indices, such as the Indian Ocean Dipole (IOD), El Nino-

Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), quasibiennial oscillation (QBO), Atlantic 

Multidecadal Oscillation (AMO) and Madden–Julian Oscillation (MJO). Every ocean index has an impact on 

tropical cyclones at various locations. Various studies have demonstrated the impact of one ocean index on the 

other. 

These TCs have been predicted until recently based on specific statistical/numerical models [14]. However, 

although various models are available, some metrological cyclone prediction stations still utilize manual estimation. 

Nevertheless, the accuracy of prediction is of primary concern. Hence, to overcome the issues about the accuracy 

of prediction, the advent of computing technological advancements has made these calculations much more 

manageable with increased accuracy. 
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Considering the advantages of computing power and its prediction accuracy, in addition to the statistical models 

adopted, large amounts of historical data on TCs globally paved the path for utilizing machine learning techniques 

in handling large-scale datasets [15], [16]. In some experiments, researchers have utilized many advanced 

techniques, such as CNNs, RNNs, and long short-term memory (LSTM) networks [14] [15], [16]. As a result, 

studies have proven such models to have some improved accuracy. However, the accuracy of longevity prediction 

is challenging. Hence, this paper focuses on various aspects of TC prediction with better accuracy. 

The paper is structured as follows: Section I introduces TC prediction and highlights issues related to TC forecasts. 

Section II elaborates on the SST, wind speed, sea level pressure, and ocean index, and Section III demonstrates the 

impact of the shutdown of the thermohaline circulation. Section IV explores various machine learning techniques 

utilized by various researchers and their advantages and disadvantages. Section V addresses prediction accuracy 

challenges, and Section VI concludes the paper. 

II. RELATED WORK 

A. Sea Surface Temperature (SST), Sea Level Pressure, and Wind Speed. 

The sea surface temperature, or SST, measures the average temperature in the uppermost layer of seawater (the top 

millimeter). It varies depending on location and time but typically ranges from 2 to 30°C°C (29–86 °F). 

Measurements are primarily collected through satellite imagery and drifting buoys that detect local changes in 

seawater temperatures over time. SSTs are essential for understanding the Earth’s climate, as they help to regulate 

temperatures and weather patterns. They also affect ocean currents and marine life, making them an essential part 

of monitoring the health of our planet’s oceans. 

Sun et al. [3] conducted a study on the effects of outer and inner sea surface temperatures (SSTs) on tropical cyclone 

(TC) intensity. Researchers have used a high-resolution Weather Research and Forecasting (WRF) model to 

conduct a series of sensitivity experiments and investigate how changes in SST at different radial extents affect TC 

intensity. The study revealed that the inner and outer SSTs impose opposite effects on the TC intensity. Specifically, 

inner SSTs negatively affect TC intensity, while outer SSTs have a positive impact. The study also revealed that 

understanding the mechanisms behind these effects is crucial for predicting variations in TC intensity and inner 

core size when a tropical cyclone encounters a cold or warm ocean pool. This study provides insights into the 

complex relationship between SST and TC intensity, which could help improve our understanding and forecasting 

of tropical cyclones, a crucial area of research given their potential for catastrophic impacts. 

Jing Xu et al. [13] established a relationship between the maximum potential intensification rate (MPIR) and sea 

surface temperature of tropical cyclones utilizing best-track TC data and SSTs over 27 years from 1988–2014 in 

the North Atlantic. Consequently, the authors’ findings support intensity prediction based on the optimized 

dynamical system model from several viewpoints. 

Yuan et al. [16] conducted a study on the relationship between tropical cyclone genesis (TCG) over the Indian 

Ocean and sea surface temperature anomalies (SSTAs) in the tropical Indo-Pacific Ocean. They analysed datasets 

from the Joint Typhoon Warning Center from 1981–2015. They found a strong dependence between TCG in the 

Indian Ocean and SSTAs in the tropical Indo-Pacific Ocean. This study also investigated the impact of tropical 

Indo-Pacific Ocean SSTAs on the TCG environment in the Indian Ocean. The authors found that the Indian Ocean 

zonal dipole pattern had a more substantial effect on TCG than did the exclusive El-Nino (ENSO) or Indian Ocean 

dipole (IOD) modes. This study emphasizes the intricate interaction of oceanic and atmospheric elements that leads 

to the formation of tropical cyclones across the Indian Ocean. Understanding these links is critical for enhancing 

our capacity to forecast and minimize the effects of tropical cyclones, which may be catastrophic for residents in 

impacted regions. 

M A K Mallik et al. [17] conducted an intensive study to identify the monotonic seasonal and annual trends of 

monsoon depressions that formed across the Bay of Bengal basin for 33 years, from 1981 to 2014. They utilized 

the Mann–Kendall test and Sen’s method. The observations revealed that the SST showed an increasing trend over 

the Bay of Bengal and a negative trend over Bangladesh. The findings also revealed that the mean easterly wind 

prevailed over the lower latitudes at 850 hPa. 

Maneesha Sabastian and Manasa Ranjan Behra [18] have attempted to identify the correlation between cyclonic 

activities and climatic change in the North Indian Ocean (NIO) basin. The power dissipative index (PDI) over the 

NIO, along with the Arabian Sea and the Bay of Bengal basins, was calculated individually along with the SSTs 

over the temporal periods. Their results proved that more than the SST is needed to establish the changing climate 

in the NIO region for cyclonic activities in the future. 
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Yuan Sun et al. [19] studied this topic based on gaps in previous research, ignoring the effect of changes in the size 

of tropical cyclones on global warming. The insufficient historical data led to the underestimation of TC destructive 

potential and the linkage between SST and TC size due to global warming. Their study also revealed that TCs 

should become more prominent, stronger, and unexpectedly more destructive due to global warming. 

B. Ocean indices: 

The ocean is a dynamic system, and its behavior is constantly changing. Ocean oscillations are one of the essential 

components of this change and have been studied extensively in recent years. These oscillations refer to periodic 

fluctuations in sea level, temperature, salinity, and other ocean properties that affect global climate systems. Ocean 

oscillations influence the world’s climate by influencing global weather patterns and temperatures. They also play 

a role in catastrophic weather conditions, including storms, floods, droughts, and rising sea levels. Therefore, 

understanding these oscillations is crucial for predicting future climate changes and developing effective strategies 

to manage them. These oscillations also determine the intensity of TCs at different locations at different times. 

i. Indian Ocean Dipole (IOD): 

IOD produces different effects in the Bay of Bengal and Arabian Sea. IOD has two phases: the negative IOD phase 

and the positive IOD phase. A positive IOD has warmer SSTs than regular SSTs in the western and eastern basins, 

while a negative IOD has cooler SSTs than regular SSTs. The Arabian Sea has a greater SST during positive IOD 

events than does the Bay of Bengal basin, which is the opposite of what occurs during adverse IOD events. A 

positive IOD influences African coastal areas with floods and Australian areas such as Droughts; a negative IOD 

influences floods and hurricanes in Australia and droughts in Africa [20]. Both positive and negative events 

influence India's ISMR [21]. Table 1 lists the negative and positive IoD years, and Table 2 displays the effect of the 

IOD on the ISMR. During the neutral IOD, the anomalous SST ranges between -0.4°C and +0.4°C. According to 

[22], the IOD is independent of ENSO in the Pacific Ocean. The number of cyclones originating in either the 

Arabian Sea or Bay of Bengal basin is determined by whether the year is a positive IOD year or a negative IOD 

year. From Table 2 and Figure 1 to Figure 3, it can be observed that the number of TCs formed during negative 

IoDs is high and consistent. In contrast, it is highly less common and varies during positive IoD years. The dataset 

was collected from the Indian Meteorological Department.  

   

TABLE I 

POSITIVE AND NEGATIVE IOD YEARS AND THE CORRESPONDING CYCLONE COUNT AND IMD [23], [24] 

Positive IOD Years 1961, 1963, 1972, 1982, 1983, 1994, 1997, 2002, 2006, 2012, 2015 

Negative IOD Years 1960, 1964, 1974, 1981, 1989, 1992, 1996, 1998, 2010, 2014, 2016 

 

TABLE II 

NUMBER OF CYCLONES DURING POSITIVE AND NEGATIVE YEARS. DATA COLLECTED FROM THE INDIAN METEOROLOGICAL DEPARTMENT, 

INDIA 

Year Positive IOD/Negative IOD Basin # Count Total Intensified Cyclones 

  

1982 

  

  

Positive IOD 

  

Bob 12   

Arabian Basin 4 19 3 

Land 3   

  

1983 

  

  

Positive IOD 

  

Bob 2   

Arabian Basin 2 7 2 

Land 3   

  

1994 

  

  

Positive IOD 

  

Bob 3   

Arabian Basin 2 5 5 

Land 0   

  

1997 

  

  

Positive IOD 

  

Bob 8   

Arabian Basin 1 9 2 

Land 0   

  

2002 

  

  

Positive IOD 

  

Bob 1   

Arabian Basin 5 6  

Land 0   

  

2006 

  

Positive IOD 

Bob 9   

Arabian Basin 2 12  
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    Land 1   

  

2012 

  

  

Positive IOD 

  

Bob 2   

Arabian Basin 3 5 All are DD (Deep Depression) 

Land 0   

  

2015 

  

  

Positive IOD 

  

Bob 2   

Arabian Basin 4 10 1 

Land 4   

  

1989 

  

  

Negative IOD 

  

BOB 9   

Arabian Basin 1 10 2 

LAND 0   

  

1992 

  

  

Negative IOD 

  

BOB 8   

Arabian Basin 4 12 2 

LAND 0   

  

1996 

  

  

Negative IOD 

  

BOB 8   

Arabian Basin 2 11 3 

LAND 1   

  

1998 

  

  

Negative IOD 

  

BOB 6   

Arabian Basin 4 10 4 

LAND 0   

  

2010 

  

  

Negative IOD 

  

BOB 6   

Arabian Basin 2 8 3 

LAND 0   

  

2014 

  

  

Negative IOD 

  

BOB 5   

Arabian Basin 2 8 2 

LAND 1   

  

2016 

  

  

Negative IOD 

  

BOB 6   

Arabian Basin 2 10 4 are CS (Cyclonic Storm) 

LAND 2   

 

 

 
FIGURE 1: Graph displaying the number of cyclones that 

formed in the Arabian Basin during 1982–2016 

 

 

FIGURE 2: Graph showing the number of cyclones that formed 

in the Bay of Bengal Basin during 1982–2016

 
FIGURE 3: Graph showing the number of cyclones that formed on land during 1982-2016 
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 ii. El Nino–Southern Oscillation (ENSO) 

ENSO is a type of oscillation that occurs in the Pacific Ocean. It is a tropical climatic phenomenon that significantly 

impacts worldwide climatic conditions [25]. For example, in 1995 and 1998, mega-heatwaves and excessive rainfall 

during the summer monsoons devastated 20% and 8% of India, respectively [26]. As the two significant tropical 

climatic phenomena have both positive and negative occurrences, the effect on the ISMR is determined by the phase 

and amplitude of the IOD and ENSO. Although some IOD events may be connected to ENSO events, the present 

technique of considering the IOD as one of the critical coupled modes in the tropics successfully analyses the effects 

of the IOD on the ISMR [27]. According to specific research, ENSO teleconnections considerably influence tropical 

SSTs in the Indian Ocean during the spring but not throughout the summer [28]. IOD events independent of ENSO 

events showed less intense rainfall in northern India and more substantial rainfall in central India than did individual 

Nino events [21]. At the same time, another study showed that ENSO El Nino years strongly influence precipitation, 

evapotranspiration, and temperature in most districts of India compared with La Nina and neutral years [29]. 

Differences in the regional distribution and amplitude of SST anomalies and the associated atmospheric circulation 

are primarily responsible for ISM rainfall asymmetry [30]. India experiences a temperature of approximately 42°C 

and even a high, increased sea surface temperature (SST) (Sea et al.), with sea level pressure values of 

approximately 500 hPa during pre- and post-ENSO events [31]. The equatorial Atlantic SSTA (also known as 

Atlantic NINO) may also have an impact on ENSO evolution in future seasons [32], [33]. SST can influence the 

variability of the ISMR over the Atlantic Ocean (AO) in two ways: an "indirect pathway" in which the AO forces 

ENSO and alters the ENSO-ISMR teleconnection and a “direct pathway” in which the AO may directly force the 

ISMR in the absence of interactions with other vital aspects such as ENSO [34]. Tropical western Indian Ocean 

warming caused by the Atlantic NINO can also reduce India's rainfall [35]. During an El Nino event, cold waters 

in the North Pacific, cold waters in the western North Pacific, warm waters in the Indian Ocean, and a warm sea in 

the North Atlantic all coincide. Cold SST anomalies in the eastern Indian Ocean fade when El Nino winds form. 

As winter approaches, IOB basin-side warming accelerates quickly and peaks in spring [35]. 

 

iii. Madden–Julian Oscillation (MJO): 

MJO and Boral simmer seasonal oscillations play a significant role in Indian Ocean climate change. Therefore, 

these two modes occur most frequently. The theoretical approach states that BSISO is symmetric about the equator, 

but practical observations state that BSISO is highly active and non-symmetric in the Northern Hemisphere [36]. 

During the Northern Hemisphere summer and early autumn, the MJO’s travel across the globe can periodically 

pause or stall, resulting in consistently increased rainfall on one side of the globe and consistently decreased rainfall 

on the other, which is also possible early in the year. The MJO can also fall silent for a while resulting in non-

anomalous storm activity in any part of the world. The Madden–Julian oscillation activity varies significantly 

yearly, with extended periods of high activity followed by low or no activity periods. The MJO’s interannual 

inconstancy is partly connected to the ENSO cycle. Intense MJO events are frequently recorded in the Pacific 

approximately 6-12 months before an El Nino episode begins. However, it is almost absent at the maxima of specific 

El Nino episodes, whereas MJO activity is generally more significant during a La Nina event. Intense occurrences 

in the MJO in the Western Pacific over months might hasten the formation of an El Nino or La Nina but do not 

generally result in the commencement of a warm or cool ENSO event. 

 

iv.  Quasi-Biennial Oscillation QBO 

The ENSO strongly influences the QBO, and less evidence is available because the availability of data on the QBO 

and corresponding cyclonic genesis is low. However, many past studies have shown that teleconnections between 

the QBO and ENSO were more frequent from 1953 to 1980. After 1985, the relationships between the ENSO and 

the QBO indices became increasingly positive, and the positive IOD frequently exhibited a QBOW phase, while 

the negative IOD frequently exhibited a QBOE [37]. The QBO is a cycle of winds in the tropical stratosphere 

oscillating between the easterly and westerly directions approximately every 28 months. Although the QBO can 

strongly influence atmospheric circulation and weather patterns, its behavior is difficult to predict, and reliable 

forecasts of its timing or strength are currently needed. The QBO affects the North Atlantic Oscillation (NAO). The 

NAO is a large-scale atmospheric circulation pattern influencing weather in the North Atlantic region, including 

Europe. The QBO can influence the NAO by affecting the position and strength of the jet stream. However, the 

need for reliable QBO cycle forecasts makes using this information for seasonal weather forecasts challenging. For 
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example, while scientists may speculate that the coming winter could be warmer and stormier in the northern 

European region based on the potential influence of the QBO on the NAO, there still needs to be more certainty in 

these predictions. Overall, while the QBO and its potential influence on weather patterns are areas of ongoing 

research, it is vital to recognize the limitations of our current understanding and forecasting abilities. 

 

v. The Atlantic Multidecadal Oscillation (AMO) 

The Atlantic Multidecadal Oscillation (AMO) is a natural pattern of ocean temperature oscillations that have 

occurred over many decades to a century in the North Atlantic Ocean. Sea surface temperature variations in the 

AMO can substantially affect regional weather patterns, ocean currents, and marine ecosystems. During an AMO-

positive phase, the SST in the North Atlantic is greater than usual, resulting in more frequent and severe storms in 

the Atlantic basin and changes in rainfall patterns and ocean circulation. In contrast, during an AMO-negative phase, 

sea surface temperatures in the North Atlantic are lower than usual. They can result in lower storm activity and 

changes in other climate and ocean conditions. Both natural climatic cycles and exogenous causes, such as 

variations in solar radiation and volcanic activity, influence the AMO. However, the precise mechanisms behind 

the AMO remain unknown, and research is being conducted to identify the drivers and implications of this crucial 

ocean oscillation. The AMO has an estimated 60-80-year period in the North Atlantic Ocean, which occurs 

coherently. The indicator is based on sea surface temperature (SST) anomalies from 0 to 80°N in the North Atlantic 

basin. The SST-based definition of the AMO index frequently leads to an insufficient understanding of the AMO 

in terms of North Atlantic SST anomalies. The AMO, on the other hand, reflects coherent multivariate low-

frequency variability in the Atlantic, such as correlated changes in subpolar North Atlantic heat content and salt 

content, turbulent heat fluxes driven by the ocean, and anticorrelated changes in tropical North Atlantic subsurface 

temperature. The suggested AMO processes should explain the observed coherent multivariate low-frequency 

variability and low-frequency SST changes in the North Atlantic. Therefore, employing multivariate measures to 

comprehend the mechanisms underlying AMO is critical. However, in comparison to the multidecadal length of 

the AMO, the available SST data are short. The SST-based AMO does not adequately represent AMO 

characteristics such as subsurface temperature, coherent fluctuations in salinity, and turbulent heat fluxes in the 

ocean. The relative role of large-scale ocean circulation vs. external radiative forcing in generating the AMO is 

challenging to define. 

III. GLOBAL THERMOHALINE OR CONVEYOR BELT 

Global thermohaline circulation or variable sea currents and the flow of sea currents play vital roles in global 

climate change. The Indian Ocean is connected to 3 major ocean regions, and changes in the Indian Ocean affect 

the other two regions. Due to IOD events, anomalous wind events drive ocean circulation [38]. Internal variability 

is one factor for IOD, and ENSO is another. Global thermohaline causes internal variability. 

Impact Due To Shutdown of the Thermohaline Circulation 

The consequences of global warming on thermohaline circulation in the North Atlantic Ocean might be 

catastrophic. Climate change might be severe if global warming disrupts the thermohaline circulation in the North 

Atlantic Ocean. According to calculations, whether the shutdown is reversible or irreversible impacts the 

environmental consequences. Changes in the temperature and salinity of seawater lead to thermohaline circulation. 

The circulation pattern acts like a vast conveyor belt, transporting warm surface water from the Southern 

Hemisphere to the North Pole. After cooling, the water dips into the deep ocean and flows south between 

Greenland and Norway. According to Michael Schlesinger, an atmospheric sciences professor at the University 

of Illinois at Urbana-Champaign, this movement carries massive heat northwards. It plays a crucial role in 

maintaining the current climate. It is believed that while its closure due to global warming would not cause an ice 

age, an ambient temperature change throughout eastern North America and Western Europe could be caused by 

it. Palaeoclimate data from Greenland ice cores show that once the thermohaline circulation stopped, it caused 

regional climate change. When the massive ice sheet that covered much of North America during the previous ice 

age was retreated, meltwater poured down the St. Lawrence River and into the North Atlantic. The addition of 

fresh water was said by Schlesinger to have made the ocean surface less dense, and its sinking was stopped, 

effectively shutting down the thermohaline circulation. He explained that, as a result, Greenland experienced a 

cooling of approximately 7 degrees Celsius over several decades. When the meltwater flow stopped, the 

circulation pattern restarted, and Greenland began to experience warming. 
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Schlesinger added that, referring to the system’s self-shutdown, it is not unlikely that it will be done again, 

especially with our help of pouring greenhouse gases into the atmosphere. Higher temperatures due to global 

warming may cause increased precipitation and melting of nearby sea ice, mountain glaciers, and the Greenland 

ice sheet, contributing fresh water to the northern North Atlantic. This freshwater intake may reduce the surface 

salinity and density, halting the thermohaline circulation. 

 

 
FIGURE 4: Thermohaline circulation 

IV. REVIEW OF MACHINE LEARNING MODELS 

Although promising research has been conducted on the meteorological aspects of cyclone genesis in different 

ocean basins, deep learning and machine learning models also contribute to predicting and forecasting cyclone 

genesis, intensity estimation, and intensity identification. 

 Using Machine Learning Models 

One study showed that by using ensemble deep 2D deep convolution neural networks on image datasets of ocean 

basins and outgoing longwave radiation (OLR) as features, we can identify the precursors and formation of cyclones 

2 to 7 days ahead. However, this study must consider other vital cyclone genesis factors [39], as explained in [40], 

about the relationship between the IoD and ENSO. According to [41], the interior, i.e., the 700-meter-deep water 

column, influences the sea surface temperature. LSTM with the RNN technique was used to model the changes in 

coastal sea level variability as the sea level changed. Sea circulation patterns are critical in identifying storms, 

rainfall, and other climatic situations. Alternatively, the Gaussian process was also used to predict sea level and 

temperature. In [15], the authors proposed different deep CNN models to estimate hurricane intensity, and these 

models achieved good accuracy. Whereas [42] used Coupled TCNN (Tensor-based Convolution Neural Networks) 

and Tucker TCNN to estimate the Tropical cyclone intensity and MSI imagery as an input dataset, the proposed 

models gave promising results and provided an excellent breakthrough to the research, as there is a need for 

considering other parameters related to cyclone genesis and improvement in the construction of CNN architectures 

to identify unsupervised data. 

Other research has shown that graph convolution neural networks can also be used to identify the spatial features 

of cloud and wind patterns, especially when cyclone states are transformed from one state to another, such as deep 

depressions to cyclonic storms and severe cyclonic storms [43]. By using graph convolution networks along with 

LSTM [44], TC precipitation patterns can be examined, which in turn leads to the identification and estimation of 

TC intensity; over the decades, TC precipitation patterns have usually been identified by using numerical weather 

prediction models in some countries and a combination of ML and NWP models in other countries.  

 

TABLE III: DETAILED RELATED WORK IN MACHINE LEARNING TO IDENTIFY TROPICAL CYCLONE ESTIMATIONS 

Citation/R

eference 

Method/Model 

used 

Estimated 

Parameter 
67Dataset used\ ] = 

Meteorological 

Parameters 

[4] MTL-NET Precursors of IOD 

Monthly mean SST from GODAS and 

Centennial historical simulations from Coupled 

Model Intercomparison Project phases 5 and 6 

(CMIP5 and CMIP6) and reconstructed 

historical observation data. 

Temporal features  and 

spatial features of the 

North Indian Ocean and 

Pacific Ocean 
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[10] 

Cascaded CNN 

Inception- 

ResNet-V2 

Improved 

AlexNet 

TC Estimation 

TC classification 
Satellite images  

[29] 

Deep Micro net 

based on Alex's 

net 

TC intensity 

estimation 
Microwave imagery from the MINT collection Temperature 

[36] 
Combination of 

NWP and ML 

Current TC 

precipitation and 

weather conditions 

in the next 24-hrs 

Samples obtained from the European Centre for 

Medium-Range Weather Forecast (ECMWF) 

Sea level Pressure, wind 

speed, wind direction, 

Temperature 

[37] 
2D-CNN and 3D 

– CNN 

TC intensity 

estimation 

COMS  - KOREAN Geo Stationary  Imagery 

Data 

TC eyewall, vertical and 

wind shear, spiral rain 

bands 

[41] 

PCA and 

Quantile 

Regression 

Wind uncertainty 

Aircraft reconnaissance data available at North 

Atlantic and North PacificPacific basins and 

Satellite IR images 

IC Intensity and Wind Field 

Structure 

[45] 

VGG-16 CNN 

ensembled in 

cloud 

Wind speed 

estimation 

Satellite GOES-IR images 

From HURSAT 
 

[46] 
VGG Net  with 13 

layers 

TC intensity and 

size Estimation in 

terms of Mean 

Wind speed, Sea 

Level Pressure 

 HURSAT- B1, Gridsat-B1, IBTrAcs 

1-min maximum sustained 

surface winds (MSW), 

minimum sea level pressure 

(MSLP), radius of 

maximum wind (RMW), 

and radii of 64-, 50-, and 

34-kt winds 

[47] 
Improved DCNN 

-VGG19 

TC intensity 

estimation 

Satellite IR images from HURSAT in Net CDF 

Format and HURDAT2 
Wind Speed 

[48] convLSTM IOD Prediction https://psl.noaa.gov/data/gridded/ 

Atmospheric temperature, 

east‒west wind speed, 

north‒south of different 

wind speeds. 

[49] 

TC Detector- R-

CNN, Wind 

Speed-CNN, 

Classifier-CNN 

TC prediction 

The investigation used level 1.5 Meteosat visible, 

infrared imager (MVIRI) IR satellite pictures 

from Meteosat 5 and Meteosat 7 Indian Ocean 

Data Coverage (IODC) at a six-hourly frequency 

from  2001  to  2007 2007 to 2016. 

TC structure from satellite 

IR images 

[50] 

Deep Micro net 

based on Alex’s 

net 

TC intensity 

estimation 
Microwave imagery from the  MINT collection Temperature 

[51]  
TC intensity 

Estimation 

Tropical Cyclone Dataset for Image-to-Intensity 

Regression (TCIR) 

TC structure from IR 

images and microwave 

channels, Water Vapour. 

[52] 
2D-CNN and 

3D – CNN 

TC intensity 

estimation 

COMS - KOREAN Geo Stationary  Imagery 

Data 

TC eyewall, vertical and 

wind shear, spiral rain 

bands 

[53] 

VGG-16 CNN 

ensembled in 

cloud 

Wind speed 

estimation 
Satellite GOES-IR images From HURSAT  

[54] 
Combination 

of NWP and ML 

Current TC 

precipitation and 

weather conditions 

in the next 24-hrs 

The European Centre for Medium-Range 

Weather Forecast (ECMWF) provided the 

sample datasets. 

Pressure at sea, wind speed, 

wind direction, and 

temperature. 

[55] 
VGG Net with 13 

layers 

TC intensity and 

size Estimation in 

terms of Mean 

Wind speed, Sea 

Level Pressure 

HURSAT-  B1, Gridsat-B1, IBTrAcs 

1-minute maximum 

sustained surface winds 

(MSW), minimum sea level 

pressure (MSLP), 

maximum wind radius 

(RMW), and 64-, 50-, and 

34-kt wind radii 

[56] convLSTM IOD Prediction https://psl.noaa.gov/data/gridded/ 

Atmospheric temperature, 

north‒south wind speed, 

and east‒west wind speed. 
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V. FUTURE RESEARCH AND SCOPE 

A. Opportunities 

• This experimentation has yet to be performed using a multiscale/multisource dataset. 

• There are differences in estimating rainfall intensity, and wind field forecasts need to be more accurate. 

• The operational cost of forecasting is inappreciable 

• It is essential to fuse both numerical models and ML models to obtain better accuracy 

• Developing models that accept more parameters and global temperatures at all slots is essential for higher 

forecasting accuracy. 

• Mathematical or statistical models are highly efficient but require substantial computational capabilities. 

Therefore, developing new models that accept data from various sources is essential. 

B. Challenges 

• Designing learning-based prediction models is the greatest challenge. 

• Machine learning can provide only short lead-time predictions, so it is essential to devise long-lead time-

based prediction models with increased accuracy. 

• As TCs are highly dynamic, their formation and behavior depend on the atmospheric conditions on the 

ocean’s surface; acquiring as many features as possible from the available data is essential. Hence, more 

observations and a massive number of experiments are also essential. 

• Most machine learning algorithms are supervised learning methods, but in real time, no labelled data that 

can achieve high accuracy are available. 

• Most of the research on TC prediction has considered only a few parameters confined to a specific region 

or index. However, any region with certain weather conditions should have an impact on another region under 

inverse conditions. Hence, in prediction, it is essential to consider global conditions, which makes it challenging to 

obtain the region's weather conditions. 

The development of machine learning/deep learning models that use numerical and image data by fusion is a greater 

challenge. 

VI. CONCLUSION 

Tropical cyclones have long been a source of concern during the last century. Many scholars have studied essential 

topics such as structure, dynamics, and forecasting approaches. Machine learning is based on statistical algorithms 

that may automatically find appropriate rules from massive volumes of data for detection, analysis, prediction, 

and other applications. Using machine learning to solve critical TC problems provides a novel approach for 

overcoming many industrial challenges. Many studies have shown that strategies relying on data and incorporating 

machine learning to improve numerical models may significantly improve TC forecasts. 

Similarly, the Indian Ocean Dipole (IOD), El Nino-Southern Oscillation (ENSO), Madden–Julian Oscillation 

(MJO), quasibiennial oscillation (QBO), and Southern Oscillation Index (SOI) have little influence on tropical 

cyclones in the Indian Ocean. As a result, the Indian Ocean, which includes the Arabian Sea and the Bay of Bengal, 

generates 6% of all cyclones globally. 

We can conclude that machine learning in TC forecasts is both promising and challenging, which means that 

researchers must have a strong understanding of TC dynamics as well as machine learning to identify critical 

problems and solve them by developing appropriate machine learning models while also taking into account the 

impact of the global ocean index and global warming. 
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