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Abstract: - In this research paper, a critical and novel approach is presented for cloud load balancing which delves into scheduling scientific 

workflows in cloud computing. These workflows are characterized by their complexity, demanding significant computational resources 

and sophisticated data processing capabilities. By leveraging a multi-objective genetic algorithm, this study strategically addresses the 

challenging task of efficiently distributing the workflows across cloud resources. This is particularly noteworthy as it involves a delicate 

balance of various conflicting parameters such as time, energy, cost, and adherence to quality of service (QoS) standards. The ingenuity of 

the presented approach is evident in the integration of an advanced ranking heuristic alongside the application of Bayesian methods for 

predicting the earliest finish time (PEFT). This dual strategy enhances the decision-making process in the allocation and migration of virtual 

machines (VMs), a cornerstone in cloud computing efficiency. This research goes beyond traditional methods by focusing on cost and time 

efficiency and integrating energy consumption considerations, an aspect increasingly relevant in today’s environmentally conscious 

technological landscape. The results of this research, indicating substantial reductions in both cost and time delays, underscore the 

effectiveness of the proposed algorithm. By achieving these reductions, this approach offers a more sustainable and economically viable 

solution for cloud computing environments. Furthermore, the demonstrated potential of multi-objective genetic algorithms in this context 

opens new avenues for future research and development in cloud resource management and workflow scheduling.   
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1 INTRODUCTION 

A. Cloud Computing

The term” cloud” denotes a certain form of distributed and parallel system in which a group of virtualized devices

is provisioned dynamically and displayed as a single or group of integrated computational resources based on the

service level agreements (SLAs) negotiated among the service providers and the users. Cloud computing can be

broken down into three distinct groups, each catering to a certain set of users with their own unique needs. We

refer to them as” service models.” The three most common service models are as follows: Platform as a Service

(PaaS), Infrastructure as a Service (IaaS), and Software as a Service (SaaS) (Bello et al, 2021; Ibrahim et al, 2011).

IaaS clouds, such as Amazon, offer virtualized storage and hardware to which subscribers can implement their

services and applications. PaaS clouds, such as Microsoft Azure, offer an IDE for building and deploying cloud-

based apps. There are two distinct Clouds that provide users with access to SaaS apps. The first category provides

consumers with a fully functional application as a service that doesn’t require any modifications or personalization

on their part. Services like Google Docs and Calendar are just a couple of examples of the kinds of cloud-based

productivity tools available. The second category, on-demand web services, provides users with basic web

services that can be combined to create sophisticated software. Further, there are four primary categories of cloud

hosts namely private cloud, public cloud, community cloud, and hybrid cloud (Javadi et al, 2012; Niu et al, 2017).

A private cloud functions primarily for the use of a single company and is hosted either internally or by a third

party. Whereas in public cloud the underlying infrastructure, applications, and data are made accessible to the

public through a third-party service provider. These options are either entirely free (Ibrahim et al, 2011; Yahia et

al, 2021) or have a small one-time fee. In the public cloud, companies like Google and Microsoft manage the

underlying hardware as well as provide access to users exclusively through the Internet. Because of their massive

density, public clouds often fail to complete jobs within the allotted time window. However, due to its limited

computing resources, private clouds can’t run all computation-intensive application tasks. When faced with this

challenge, private companies are rushing to acquire public cloud services to boost their own data processing and

storage capacities and public clouds would rather employ private cloud resources than set up their businesses. In

a community cloud, multiple companies pool their resources to generate a single virtual server. Public sector

organizations, financial institutions, etc., reap the most benefits from community clouds. However, hybrid clouds,

which combine two or more cloud types (community, private, or public) are therefore an elegant solution in the

current context because they improve upon previously mentioned qualities. As a result, public clouds are quickly

implementing hybrid clouds, which seem to be capable of managing sensitive workloads generated by compute-
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intensive apps by outsourcing some tasks to private clouds. To expand their existing applications, many companies 

today favour using a hybrid cloud (Niu et al, 2017). When scheduling tasks in a hybrid cloud environment, one of 

the most important considerations to make is the anticipated amount of time needed to complete the task. 

Scheduling time-sensitive processes in the hybrid cloud to minimize energy consumption and makespan within 

strict deadlines is a formidable challenge (Zhu et al, 2018; Sharif et al, 2014; Abazari et al, 2019). 

B. Workflow Scheduling 

Researchers have always been interested in workflow scheduling in cloud technology since it utilises most of 

distributed computing (Paknejad et al, 2021; Wu et al, 2018). Additionally, cloud computing is becoming 

necessary for the efficient execution of many workflow applications in massive computational systems like 

research and technology and the universal healthcare domain. Cloud systems typically consist of heterogeneous 

VMs sporting a wide range of computational resources with the limitless virtual capability of computational 

services, that can be utilized by workflow applications (Belgacem and Beghdad-Bey, 2020; Wu et al, 2014). But 

workflow scheduling is very challenging in a cloud environment because it requires allocating resources to tasks 

in a way that allows them to meet a set of performance standards. (Hussain et al, 2022; Malik et al, 2021; Yao et 

al, 2021; Ahmad et al, 2019; Han et al, 2021). A workflow is indeed a series of interconnected procedures, data 

and files that are sent among users in a workflow as per a predetermined set of rules, with the primary focus being 

on the automation of processes to reach a larger goal (Yu and Buyya, 2005; Adhikari and Nandi, 2019). Using 

workflows, programs can be structured as directed acyclic networks, where each node presents a task and edges 

indicate dependencies between tasks. Each activity in a workflow interacts with every other task in the pipeline 

through communication. Workflow management systems aid in making workflow execution easier. Through 

workflow scheduling, available resources are identified, and tasks are then assigned to those that are best suited 

to complete them. Workflow scheduling is a crucial component of workflow management, and its significance 

cannot be overlooked (Sardaraz and Tahir, 2019; Adhikari et al and Nandi, 2019; Ye et al, 2015; Chaudhary and 

Kalra, 2017) to make sure that workflows are scheduled effectively, algorithms for workflow scheduling are 

employed. Additionally, effective scheduling can greatly increase the efficiency of the workflow.  

 

2 MOTIVATION 

Research in workflow scheduling (Zhou et al, 2022; Tao et al, 2023) has been sparked by the need to assign 

computational resources to workflow tasks in the cloud. Workflow scheduling appears to be an NP-complete 

problem, making the development of a fast and efficient cloud-based optimum workflow scheduler challenging. 

Most of the existing literature treats cloud-workflow scheduling like a union bi-objective optimization problem, 

which overlooks the interests of either service providers or consumers. Consequently, developing a plan for the 

workflow programs is highly recommended. The methods used for scheduling workflows aim to maximize 

efficiency in certain areas of operation. Workflow scheduling in the cloud has emerged as a significant research 

area in tandem with the maturation of cloud computing technology and the widespread adoption of cloud 

platforms. The following factors make the issue complicated or hard: the difficulty of task-resource mapping in 

terms of NP-complete problem; a wide range of QoS constraints; the need to provide resources on demand; the 

presence of performance fluctuations and failures; the use of hybrid resources; and the need to optimize data 

storage and transmission. Thus, numerous research appeared in the literature, each concentrating on a certain 

feature. In the first part of this study, we investigate techniques for scheduling cloud-based workflows. 

 

3 RELATED WORK 

To foster a thorough understanding of the topic, this section reviews and summarises previous research, with a 

focus on approaches that address the workflow scheduling and cloud load balancing challenge in various contexts. 

Additionally, Table 1, presents a comparison of the current literature on cloud-based process scheduling. 

 

Table 1: Examining recent efforts in the field of workflow scheduling and cloud load balancing  

Year  Aim Methodology  Features  Application 
Domain 

Dataset Limitations  

Paknejad 
et al 
(2021)  

In a cloud 
context, to 
carry out 
Chaotic 
enhanced 
PICEA-g-
based Multi 
objective 
enhancemen
t for 

An improved 
coevolutionar
y algorithm 
with multiple 
objectives, 
named ch-
PICEA-g 

Candidate 
solutions a 
group of 
objective 
vectors 

The method is 
based on the 
cost of 
execution, 
makespan, and 
energy usage 

CloudSim 
simulator, 
WorkflowSim
-1.0 toolkit 

Premature 
convergenc
e in already-
in-use 
algorithms 
is a 
challenge 
that raises 
the quantity 
of iterations 
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workflow 
scheduling 

necessary 
to obtain an 
optimum 
solution. 

Belgace
m and 
Beghdad 
Bey 2022 

To schedule 
multi-
objective 
workflows in 
the cloud 
while 
balancing 
cost and 
makespan. 

HEFT-ACO 
approach 

Makespan 
and the cost 

Scheduling 
workflow under 
resource 
allocation 

Amazon EC2 
cloud 
platform 

The cloud 
computing 
model may 
experience 
significant 
issues with 
processing 
time and 
execution 
cost during 
allocation of 
resources, 
which could 
result in 
delays in 
the quality 
of service 
provided to 
consume 

Hussain 
et al, 
2022 

To execute a 
multi-
objective 
genetic 
algorithm 
inspired by 
quantum 
mechanics 
for 
scheduling 
workflow 
healthcare 
applications 
with soft and 
hard 
deadline 
restrictions 
in hybrid 
clouds. 

A multi-
objective 
technique has 
been adopted 
based on 
quantum 
mechanics 

A 
quantumbit, 
A quantum 
gate 

Healthcare 
processes 
utilizing 
quantumenable
d GA and 
classical base 
algorithm 

All standard 
methodologie
s are written 
in Python and 
run on a 
Windows 
server (Intel 
Core i7-
9750H 
processor) 
operating at 8 
GB and 2.60 
GHz of RAM. 

Consistency 
between 
energy 
consumptio
n and 
makespan 
requires a 
reasonable 
balance. 

Malik et 
al, 2022 

Using 
queuing and 
thresholds, 
make a 
method for 
balancing 
the workload 
in cloud data 
centres in a 
way that 
saves energy 

Particle 
Swarm 
Optimization 
(PSO) 
Workflow and 
Cloud Model 

Modified 
Canopy 
Fuzzy C-
means 
Algorithm 
(MCFCMA). 

Queuing and 
threshold 

Planet Lab 
datasets, 
Epigenomics 
datasets 

Migration of 
virtual 
machines 
and 
adaptive 
thresholds 

Zhou et 
al, 2023 

Use of Firefly 
Optimizer’s 
Makespan 

Multi-
Objective 
Normalizatio

Makespan, 
cost, and 
average 

Scheduling 
problem 
Formulation 

Strain green 
tensors (SGT) 
data 

No conflicts 
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and Security-
Aware 
Workflow 
Scheduling 
for Cloud 
Service Cost 
Minimization
. 

n Workflow 
Scheduling 

cloud 
utilization 

Tao et al, 
2023 

A Deadline-
Budget-
Restricted 
ACO for 
Cloud-Based 
Workflow 
Scheduling 

An improved 
Firefly 
optimize 

Makespan 
and security 
Cost-based 
minimizatio
n 

Cost-based 
minimization 

Real-World 
Workflows 
data 

The results 
show that 
the strategy 
can reduce 
financial 
costs by up 
to 54.0%, 
although it 
still has to 
be 
improved 

Pillaredd
y et al,  
2023 

Cloud-Based 
Multi-
Objective 
Normalizatio
n Workflow 
Scheduling 

A Deadline, 
Budget 
Constrained 
Ant Colony 
optimization 

Heuristic 
and 
metaheuristi
c features 

Execution Cost-
based 
minimization 

Real-World 
Workflows 

When some 
resources’ 
capacity 
exceeds 
users’ needs 
and results 
in greater 
costs, users’ 
budgets 
should be 
taken into 
account 

 

4 PROPOSED SYSTEM 

The proposed system's architecture is shown in Figure 1 and it implements the following steps for cloud load 

balancing and workflow scheduling. 

Step 1. In the proposed approach, the workflow tasks are finished on different VMs Although the resources of 

various virtual machines (VMs) are usually fixed, how VMs are provisioned varies based on the tasks and 

workflows.  

 
Figure 1: Proposed Approach Architecture 
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Step 2. Ranking: The proposed system uses the PEFT approach to provide task ranking. The selection of the 

PEFT heuristic for the ranking purpose in the proposed approach is due to the following reasons: 

• The effective scheduling of tasks and optimized use of resources is the main goal of this study.  

• Every optimization begins at random, which increases the time and sometimes does not result in 

convergence, reducing the approach’s reliability.  

Hence, PEFT is used to provide some initial input for problem space. The proposed methodology uses MPEFT 

due to the complexity of PEFT. It follows the following steps:  

I.Extract the offspring set (Si) containing all the direct and indirect successors tasks (ti). 

II.Offspring set (Si) is calculated as: 

 Si = (
⋃ 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑒𝑡 𝑡𝑗𝑡𝑗 ɛ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟

𝜙 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 ) (1) 

Calculate DCT (Direct Calculative Time) representing minimum time required to perform the task t ;. 

 

 
 

D (Si)= 𝑤(ti) + ∑ 𝑋𝑖, 𝐽𝑡𝑗 ɛ 𝑠𝑢𝑐𝑐𝑜𝑠𝑠𝑜𝑟 𝑡𝑖  (2) 

 

III.Combining the equations 1 and 2, results in ranking eq.3. 

 

RAP (ti)= D(ti)  

 

 
 

RAP (ti)= 𝐷(ti) + ∑ 𝑋𝑖𝑗𝑡𝑗 ɛ 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 𝑠𝑒𝑡 𝑡𝑗  (3) 

Step 3. Optimization Modelling for Load Balancing using NSG-III 

In this step, Load balancing is started by identifying uneven resources with the use of a metaheuristic technique. 

To optimize load balancing, the following steps were taken using NSG-III after the virtual machines (VMs) were 

mapped by the MPEFT algorithm in step 2.  

1. User requests are defined by the workflow  

W= {W1, W2,………………Wn} 

2. The NSG-III in each solution is depicted in Figure 2. 

3. Initial population: Population is a set of VMs and the ranking of tasks. 
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Figure 2: Optimization Modelling for cloud load balancing 

 

4. Evaluation of individuals is done by a function called objective of the fitness function, f(t i) as: 

 

 
 

 f(ti)  = ∑ ⅄1 W. ET +  ⅄2 W. ET +  ⅄3 W. ET𝑁
𝑖=1  (4) 

 

Where, f(ti) fitness function, W priority matrix, and  ⅄1, ⅄2, ⅄3 learning parameter. 

5. Selection: In this step choose N/2 population by uniform selection.  

6. Crossover: The crossing of the two individuals is done by locating the parent crossing. 

7. Mutation: Choose two VMs according to MPEFT ranking and swap the task of two VMs.  

8.  Classification of Individuals: In multi-objective optimization classify the individual according to their 

dominance. This process is done by DT and generalizes the model by pruning using eq. (4).  

9. Replacement:  Following the selection of the NSG-III operator, Pt is used to generate the new population 

Xt, which is then merged with Pt and Nt to form a new population of size 2N. The population is then classified 

using a decision tree to reduce the randomization effect.  

Each of the objectives (Time, cost, and energy) added to the population  

St ,  it should be (St| > N) 

if St = N, NSG − III is applied to the starting population  

10. Calculate the performance in deadline constraint  

If task execution is within the deadline  

 
 

ET (ti , VMn)  = 
R(ti).W(ti) 

P ((W(Mn)
 (5) 

 

Unscheduled task  

 
 

ST(ti , VMn) = max(R (VM), Wi (ti , VM)) (6) 
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Where: Wa waiting time, R Ready time  

11. Final execution time of workflow  

 
 

𝐸𝑇 =  ST (ti , VMn)  +  ET (ti , VMn)  (7) 

 

Obj1 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 (𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛)  

12. Budget constraints important for cost 

 

 
 

𝐶 (ti , VMn) = 𝐹𝐸𝑇 (ti , VMn) ∗ 𝑈𝐶 (𝑉𝑀) (8) 

 

Where: UC is Unit cost of VM 

Obj2= 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 (∑ 𝐶(𝑡𝑖)𝑁
𝑖=1 ) 

13. Dynamic voltage frequency scaling (DVFS)  

 
 

𝑃𝑜𝑤𝑒𝑟𝐷 =  𝐴𝐶𝑈2 (9) 

 

Where: A is Switching activities, C is total capacitance, and U2 is frequency  

 

 
 

𝐸𝐶(𝑡𝑖, 𝑉𝑀𝑛)  =  𝑃𝑜𝑤𝑒𝑟𝐷 . 𝐸𝑇(𝑡𝑖, 𝑉𝑀𝑛)   (10) 

 

14. Obj3 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 (∑ 𝐸𝐶(𝑡𝑖)
𝑁−1
𝑖=1 ) 

 

5 EXPERIMENTAL RESULTS AND DISCUSSION 

In this section we present the results attained from the comparative analysis of the proposed approach (PNSG3D) 

and different variants of multi-objective genetic algorithm based on Time span(sec), Cost ($), and Energy (Kw). 

To validate the suggested approach, we used a dynamic number of VMs as well as Ligo, and CyberShake 

workflows. Table 2,3, and 4 shows a comparison of the proposed work with various existing works, ABC, Tabu 

Search, GWO, and ACO, based on the makespan cost, and energy consumption. In Table 2, the number of virtual 

machines (VMs) used for task execution is represented by the rows, and the columns represent the various 

methodologies used for comparative analysis. The suggested work's performance was evaluated using three QoS 

metrics, time, cost, and energy consumption. The comparative analysis of proposed work with existing techniques 

using these performance metrics are shown in Fig 3, 4, and 5. The VMs used for task execution are represented 

on the X-axis, and the values of Time, Cost and Energy consumption acquired after simulation are represented on 

the Y-axis. 

Table 1. Makespan (ms) analysis for load balancing optimization 
 CyberShake Ligo 

No 
of 

VMs 

Proposed  ABC Tabu 
Search 

ACO GWO Proposed ABC Tabu 
Search 

ACO GWO 

2 117.00 702.76 300.77 1334.58 942.48 318.59 624.21 302.00 857.67 1102.73 

4 1153.36 1723.87 1784.19 1931.27 1751.48 1186.88 1586.30 1816.75 1454.71 1568.13 

6 1277.94 1864.74 1918.78 2092.27 1904.81 1280.40 1704.01 1954.25 1601.00 1692.67 

8 1444.44 2041.34 2090.85 2291.46 2079.02 1399.10 1844.84 2093.13 1788.04 1867.58 

10 1609.28 2233.41 2267.19 2517.34 2291.77 1606.75 2037.21 2255.63 1979.71 2034.25 

12 1781.95 2452.47 2516.35 2797.58 2542.41 1765.83 2249.40 2515.38 2250.54 2138.79 

14 1972.79 2683.61 2768.47 3044.66 2838.19 1855.13 2400.74 2668.13 2524.58 2279.63 

16 2265.18 2948.48 3107.91 3274.79 3082.76 2019.58 2675.21 3068.13 2893.54 2546.29 

18 2421.31 3091.27 3257.61 3358.23 3258.23 2269.19 2908.03 3337.50 3056.25 2723.00 

20 2617.44 3239.65 3458.86 3458.86 3358.86 2615.31 3245.16 3775.00 3275.00 3000.00 

 

Table 2. Cost (Rs) analysis for load balancing optimization 
 CyberShake Ligo 

No 
of 

VMs 

Proposed ABC Tabu 
Search 

ACO GWO Proposed ABC Tabu 
Search 

ACO GWO 

2 545.88 683.22 566.33 794.05 823.48 525.98 655.31 567.56 801.73 701.73 

4 800.00 1322.08 1021.78 1552.06 1781.29 814.38 956.44 857.00 1126.00 1026.00 

6 1769.17 2422.05 2082.34 2761.05 3011.22 816.00 1580.05 980.63 2278.79 2178.79 
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8 2533.42 3700.59 3439.77 4075.66 4101.43 1200.23 2584.81 1540.38 3754.25 3654.25 

10 3265.73 4767.74 4711.55 5032.27 4869.08 4294.75 4560.38 4315.38 5136.63 5036.63 

12 3758.38 5370.44 5352.98 5547.85 5356.63 5001.34 5566.26 5407.00 5833.83 5733.83 

14 4065.83 5747.14 5742.72 5958.46 5679.35 5432.12 5910.60 5687.50 6257.46 6157.46 

16 4403.41 6168.08 6174.20 6247.67 6232.12 6338.98 6502.85 6407.00 6726.46 6626.46 

18 4545.08 6310.56 6321.15 6416.97 6345.23 6563.97 6723.00 6677.88 6886.19 6786.19 

20 4696.57 6516.41 6512.80 6786.23 6453.12 6836.19 7015.34 7094.50 7094.50 6994.50 

 

Table 3: Energy (Joule) analysis for load balancing optimization 
 CyberShake Ligo 

No 
of 

VMs 

Proposed ABC Tabu 
Search 

ACO GWO Proposed ABC Tabu 
Search 

ACO GWO 

2 4.67 27.72 17.34 42.57 35.32 16.51 25.59 17.39 33.19 36.09 

4 90.23 121.84 112.24 139.33 141.31 6.92 101.71 106.95 103.23 103.77 

6 200.00 257.21 240.07 291.20 294.96 11.17 197.04 176.09 232.79 232.29 

8 345.12 459.35 442.45 509.37 494.44 17.31 354.37 290.68 443.38 441.75 

10 567.34 700.12 697.87 754.96 716.09 26.73 659.76 657.10 711.63 707.09 

12 789.12 938.75 944.32 1001.45 947.89 306.49 937.88 950.69 970.13 944.72 

14 980.23 1180.31 1191.57 1260.44 1192.46 309.88 1163.59 1169.79 1229.49 1181.19 

16 1232.34 1458.65 1485.14 1523.59 1490.38 313.88 1468.49 1516.02 1539.20 1467.64 

18 1456.12 1692.33 1724.18 1759.54 1728.62 289.27 1733.59 1802.77 1789.64 1711.65 

20 1567.23 1951.21 1994.33 2049.02 1962.40 261.39 2052.10 2173.90 2073.90 1998.90 

 

5.1 Comparison of results of proposed work with existing work 

To show the efficiency of the proposed work, the simulation results were compared with several existing 

methodologies. Various approaches, including ABC, Tabu Search, GWO, and ACO were compared and displayed 

in graphical form where Figure 2,3, and 4 shows comparative results of proposed work with existing ABC, Tabu 

Search, GWO, and ACO based on the Time, Cost, and Energy consumption respectively using CyberShake 

workflow. 

 
Figure 3. Comparative results of proposed work with existing ABC, Tabu Search, GWO, and ACO based on the 

Time Span using CyberShake workflow. 
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Figure 4.Comparative results of proposed work with existing ABC, Tabu Search, GWO, and ACO based on the 

Cost using CyberShake workflow. 

 

 
Figure 5. Comparative results of proposed work with existing ABC, Tabu Search, GWO, and ACO based on the 

Energy Consumption using CyberShake workflow. 

 

Furthermore, Figure 5,6, and 7 shows comparative results of proposed work with existing ABC, Tabu Search, 

GWO, and ACO based on the Time, Cost, and Energy consumption respectively using Ligo workflow 

 
Figure 6. Comparative results of proposed work with existing ABC, Tabu Search, GWO, and ACO based on the 

Time Span using Ligo workflow. 

 

 
Figure 7. Comparative results of proposed work with existing ABC, Tabu Search, GWO, and ACO based on the 

Cost using Ligo workflow. 
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Figure 8. Comparative results of proposed work with existing ABC, Tabu Search, GWO, and ACO based on the 

Energy Consumption using Ligo workflow. 

 

6 CONCLUSION 

In the context of workflow load balancing in cloud computing, your research introduces a significant advancement 

by enhancing the conventional genetic algorithm through a hybrid, two-phase approach that optimizes the Pareto 

front using Bayesian optimization techniques. The first phase focuses on generating a list of solutions with low 

time complexity, achieved by optimizing the Pareto front through the Bayesian approach and ranking tasks based 

on the Predict Earliest Finish Time (PEFT). This phase effectively sets the groundwork for efficient scheduling. 

The second phase employs the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to address the premature 

convergence issue common in standard genetic algorithms and to efficiently handle conflicting objectives such as 

execution time and resource utilization. Our methodological rigor is further demonstrated through the use of 

CloudSim for simulating cloud environments and conducting extensive experiments with various workflows and 

virtual machines, each characterized by unique performance factors. The results of these experiments, showcase 

a reduction in costs by 5-6% and time delays by 8%, underlining the effectiveness of our approach (PNSG3D), in 

optimizing workflow load balancing in cloud environments. This innovative approach not only achieves optimal 

solutions but also significantly enhances the overall efficiency of cloud computing resource management. 

6.1 Future Research Directions  

Developing new multi-objective optimization algorithms that can handle the workflow scheduling problem 

efficiently and effectively more objectives and constraints, such as security and reliability, are integrating machine 

learning techniques to improve the performance of the algorithms. Overall, the proposed multi-objective 

optimization approach provides a promising framework for addressing the workflow scheduling problem in the 

cloud and has the potential to benefit various scientific and industrial applications. 
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