
J. Electrical Systems 20-9s (2024): 1597-1610 

1597 

1 Mahmud Un 

Nabi  

2 M Ashraful 

Amin 

3 Amin Ahsan 

Ali 

4 AKM 

Mahbubur 

Rahman 

Traffic Forecasting using Modified 

Unified Spatio-Temporal Graph 

Convolutional Network for Developing 

City: Dhaka, Bangladesh (A Case 

Study) 
 

 

Abstract: - Deep learning models for traffic forecasting gained a lot of success in recent years. Important application in traffic domain is 

to predict traffic congestion after certain time window based on historical data. While most of the deep learning models are evaluated using 

well-known traffic dataset containing vehicle speed collected using loop detectors, those model performances were not being tested on the 

generated traffic dataset from google maps containing traffic density information. We demonstrate the effectiveness of Unified Spatio-

temporal Graph Convolutional Network in forecasting traffic congestion based on the traffic data of a developing countries like Bangladesh 

which is collected from google maps. We have quantified the traffic fluctuation pattern of any road of Dhaka dataset by introducing a single 

metric (coefficient of variation of traffic density fluctuation) which can explain the traffic congestion fluctuation pattern within a certain 

time window. We have also analyzed the whole traffic network of Dhaka using centrality measures (betweenness centrality) of Graph 

Theory. Based on the coefficient of variation of traffic density fluctuation and betweenness centrality of each road, we built clusters of 

roads. Based on those clusters, we proposed modification of USTGCN for generating better prediction. Finally, the prediction results are 

compared with the base USTGCN framework and we have explained the factor behind model performance degradation in terms of sparsity 

of the datasets with which the USTGCN models are trained on. 

Keywords: Traffic Forecasting for developing countries, Unified Spatio-Temporal Graph Convolutional Network, Machine 

Learning. 

 

 

I.  INTRODUCTION 

Traffic congestion is one of the most growing concerns for developing countries like Bangladesh. In order to build 

an Intelligent Transportation System and redesigning the city structure, it is important to know the traffic patterns 

and factors behind the exhibited patterns across whole traffic network so that the concerned planners can easily 

design and allocate the resources accordingly. It is also important to   know about the regular traffic congestion 

pattern ahead of time for the daily commuters so that, they can plan their journey accordingly. Normally, most of 

the daily commuter plan to travel through the shortest path to reach their destination which incurs low travel time. 

As a result, it becomes really important to know the overall traffic congestion pattern of those shortest path across 

different timestamp. Traffic congestion patterns across different timestamps of each road are affected by the 

structural condition of the road and the other related factors created by humans. For example, in countries like 

Bangladesh, it is a quite normal scenario to see oversized vehicle travelling through the narrow roads. As a result, 

the overall traffic congestion pattern gets affected for this human made factor. The effect of the human made factors 

also gets propagated to the neighboring roads which are connected with that narrow road. Forecasting traffic pattern 

becomes the important problem to be solved immediately in order to let the citizen plan their daily commutes 

effectively and let the city planners come up with the better traffic distribution plan to decrease the probability of 

the congestion and deadlocks. 

Traffic network in any cities contains a lot of interconnected roads with different characteristics which exhibits 

spatial and temporal dependencies among the neighborhood roads. While most of the developed countries deployed 

advanced deep learning techniques based on Graph Neural Network, the developing countries struggles to deploy 

one of the models just because the existing data collection methods that are being used in the developed countries 

are pretty costly for developing countries like Bangladesh. Hence, we need to adopt the data collection method that 

is scalable and less costly compared to the existing methods. A recent work [1] introduced a novel traffic congestion 

data collection method using Google Maps data which is scalable and cost-effective for the developing countries 

like Bangladesh. 

The collected dataset can be used to train one of the SOTA traffic forecasting model based on Graph Convolutional 

Network to generate traffic congestion prediction. Among the SOTA models, USTGCN [2] is one of them. The 

mentioned SOTA model can model the spatial and temporal dependencies easily by leveraging the road network 
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structures and temporal features of every road in order to generate prediction for future timestamps. Generating 

accurate prediction is very important which indicates the successful deployment of the predictive model. In order 

to improve the existing performance of the USTGCN, several meta information can be used from the training data 

in order to modify the existing USTGCN architecture for better traffic congestion forecasting. Meta information 

such as (betweenness) centrality measures for each road of the traffic road network is one of them. This measures 

the importance of every road in a network in terms of betweenness (see VI-2). 

Along with that, the general traffic congestion patterns of each road is also important. It can be measured using the 

statistical concepts like co-efficient of variation. This kind of meta information can be leveraged to find the roads 

which exhibit similar characteristics (betweenness centrality and co- efficient of variation of traffic congestion 

fluctuation) and form clusters. The existing USTGCN models can be modified using the cluster information so that 

the congestion prediction values generated from the encodings of modified USTGCN gets improved. 

In summary, our key contributions are: 

• We have analyzed the traffic network of Dhaka and identified two kinds of road based on their width 

observed from the Google Maps. 

• We have also introduced a single comparable scalar (co- efficient of variation of traffic jam fluctuation) 

for each road which is introduced as a proxy for traffic jam-length fluctuation. 

• We have measured the similarity of roads and formed multiple clusters based on their topological 

(betweenness centrality) and temporal characteristic (co-efficient of variation of traffic jam length). 

• Based on the road cluster information, we have proposed a general modification scheme for existing 

USTGCN. 

• We have compared the prediction performance of the modified USTGCN with the existing USTGCN and 

pointed out the best performing region for modified USTGCN. 

• We have also showed that sparse training data can hamper the prediction performance of all variants of 

USTGCN. 

• Finally, for future work, we have also suggested further modification of aggregation scheme of USTGCN 

by ditching symmetric normalization and embracing the notion of principal neighborhood aggregation inspired by 

this work in order to achieve better traffic feature prediction. 

•  

II. BACKGROUND AND CONTEXT 

Traffic forecasting is one of the real-world problems which is considered to be pretty complex task. Several deep 

learning methods have been proposed to solve this task. The real-world datasets for traffic forecasting contain 

information about the roads and their corresponding traffic conditions (e.g., traffic density, vehicle speed etc.) with 

the timestamp information. We can generate a network of roads based on the connectivity of the roads described in 

the dataset. This network can express the accessibility of each road residing in the entire road network along with 

traffic features (traffic congestion length) with corresponding timestamp. More specifically, we can define each 

node of network as a road and the edge between every node can be defined as the connection between those roads. 

We can use this dataset to perform any complex downstream machine learning task like traffic forecasting. There 

is plethora of ways to collect and process traffic forecasting dataset. All of those has their own advantages and 

disadvantages. In this work, we have studied and implemented the existing data collection method [1] for traffic 

forecasting which is scalable, cost-effective and efficient compared to other data collection methods for the 

developing countries like Bangladesh. The collected dataset is further processed in such a way that we can construct 

a network based on the connectivity of the roads. Every road contains its own features along with the corresponding 

timestamp. Each feature represents the traffic congestion length with its corresponding timestamp. With this kind 

of network dataset, we can apply models which can be used to generate spatial and temporal encodings based on 

the timestamped feature of each node. Graph Neural Network can be used to encode the spatial encoding of the 

road as this kind of neural network requires spatial connectivity information (adjacency matrix). Since our dataset 

contains traffic feature of several timestamps, we need some special variant of graph neural network which can 

leverage both spatial and temporal feature of each node to generate the encodings. The generated encodings can be 

used to generate traffic congestion prediction. 

Unified spatio-Temporal Graph Convolutional Network [2] is one of the SOTA GNN architectural framework 

which has demonstrated competitive performance predicting traffic congestion based on the real-world traffic 

dataset like PEMSD7 and PEMSD8. Since our dataset is collected from Google maps, we can assume that our 

dataset is different form the dataset like PEMSD7 and PEMSD8 in terms of feature variance. Moreover, the feature 

and the level of sparsity of our dataset in not the same as PEMSD7 and PEMSD8 since these two datasets contain 

vehicle speed with corresponding timestamp collected via loop detectors [3] placed on the different intersection of 

the roads, while our dataset contains traffic congestion length with corresponding timestamp collected from google 

maps. 

In this work, we experimented with the existing USTGCN [2] architecture and modified USTGCN based on some 

meta information of each road ingested from the dataset. The meta information of each road consists of co-efficient 

of variation of the traffic congestion fluctuation within a time window and the betweenness centrality of each road 
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in the road network. Betweenness centrality was used to measure the influence of an arbitrary road over the network. 

More detailed discussion can be found in section VI-2. We have conducted traffic fore- casting based on the several 

variants of our modified USTGCN architecture and demonstrated the best results that we have achieved using our 

approach and compared with the results of existing USTGCN [2]. We have also showed that the degree of sparsity 

of training set hampers the overall performance of traffic forecasting using any variant of USTGCN. 

 

III. RELATED WORKS 

Most of the traffic forecasting related research has been done based on the dataset collected from the roads of 

developed countries. Dataset like BJER4 dataset built by the authors of this paper [4] by collecting traffic speed 

data using 39000 loop detector sensors from 12 roads in China, was used for traffic forecasting using Spatio-

temporal graph convolutional network [4] California Traffic Department also provided traffic speed related dataset 

[3] which was built by collecting data from huge number of sensors. Another traffic dataset that was built by 

collecting traffic data using the vehicle GPS sensors by the author of this paper [5], which includes traffic 

information of 1250 arterial streets of Chicago. 

For the developed countries, the described methods of collecting traffic information sounds trivial while for the 

developing countries it sounds infeasible. Because, to cover the whole traffic network, a lot of sensors, loop-

detectors have to be deployed throughout the city of developing countries which is quite expensive. Moreover, if 

we want to scale out our network of loop detectors, it will also incur a lot of money which is quite infeasible for the 

developing countries like Bangladesh. For the developing countries like Bangladesh, we need a method of 

collecting traffic dataset which is feasible to apply taking account of the cost and scalability. One of the ways it can 

be done by using the google maps data by periodically monitoring the associated traffic color for certain time 

window. This kind of method has been proposed recently by the author of this paper [1] The authors collected 

traffic congestion information encoded in color provided by Google with 30 seconds interval for six months 

(November 2019-April 2020) using the Google Traffic Layer API. From the dataset they have collected, they have 

used one month (November 2019) traffic data from their whole dataset for developing statistical (HA, ARIMA) 

and machine learning (SVR, SVR-Graph) predictive models to generate predictions of traffic congestion for future 

timestamps. They have shown the efficacy of their models by analyzing the predicted traffic congestion patterns 

for weekdays and weekends. They have also included their analysis of how the history of traffic congestion length 

affects the capability of their predictive models. 

Modelling traffic congestion based on the Google Maps data raises an important question regarding the accuracy 

of the collected datapoint w.r.t the actual traffic situation. To be more precise, it was not known if the color encoding 

provided by Google’s Traffic Layer API is accurate compared to the actual situation of traffic congestion in 

developing countries. To find that out, a study [6] was conducted based on the traffic data of urban streets of a city 

of Ecuador collected from the Traffic Layer of Google Maps. The study shows that, the color- coded information 

provided by Google Traffic Layer have a reasonable trend with the ground truth (actual traffic situation) speeds. 

They have also showed that the traffic color coding provided by the Google Traffic Layer can relate between LOS 

and the average speed of ground truth. 

In recent years, several deep learning methods were pro- posed for traffic forecasting related task. In order to encode 

spatial and temporal features, many deep-learning methods were proposed based on Convolutional Neural Network 

(CNN) and Recurrent Neural Network (RNN). CNN is used for encoding spatial features while the RNN is used 

for encoding temporal features which are time dependent. However, RNN like architectures are widely known to 

be difficult to train and computationally heavy because there is a lot of parameters to train. To mitigate the training 

cost with lesser parameters, authors of this [4] paper proposed a model based on Graph Convolutional Network [7] 

which has much less amount of parameters compared to the existing CNN and RNN based models. This method 

was introduced to encode both spatial and temporal feature of traffic road network represented as a Graph, where 

each node represents roads containing feature vectors with timestamp information and edges represents the 

connection between each road. Other several Graph Convolutional Network oriented approaches were proposed 

for traffic forecasting problem. Unified Spatio-Temporal Graph Convolutional Network (USTCGN) [2] is one of 

them. The motivation behind USTGCN is to generate traffic feature embedding in a unified way by directly 

propagating traffic feature information across different timestamps for each road (node) using Graph Convolutional 

Operator (Spectral Graph Convolution). As a result, the proposed model can observe traffic pattern of current 

timestamps along with the previous timestamps to generate future predictions. The authors of UST- GCN tested 

their model performance on the dataset introduced by the authors of this [3] paper. Although, the performance of 

USTGCN was not evaluated on the dataset introduced by this paper [1] which was collected and pre-processed 

from the Google maps data. Moreover, the characteristics of collected dataset from Google Maps using the method 

mentioned in this paper [1] were not used for any traffic forecasting related work yet, which are leveraged in this 

work. 

IV. PRELIMINARIES 

4.1 Traffic Graph Network 
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Given a road network expressed as a graph 𝐺 = (𝑉, 𝐸, 𝐴) where 𝑉 represents a set of roads, a set of connection 

between each road expressed as 𝐸 and the adjacency matrix 𝐴, which represents the structure of the road network 

based on the connectivity, the goal is to predict the traffic feature of each node 𝑣 ∈ 𝑉 on the next 𝑛 timestamps 

(𝑡 +  1, . . . , 𝑡 +  𝑛) by modelling the traffic feature of previous timestamps (1 𝑡𝑜 𝑡′𝑡ℎ𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠). Here, we 

can define traffic feature matrix of t′th times- tamp as 𝑋(𝑡) ∈ ℝ. So, the problem can be formulated as, given a 

sequence of traffic feature matrix of total 𝑛 timestamps (𝑋(1), 𝑋(2), 𝑋(3), ⋯ , 𝑋(𝑡)), predict the next 𝑛 traffic feature 

matrix sequence (𝑥𝑡+1, 𝑋𝑡+2, ⋯ , 𝑋𝑡+𝑛). We can construct input feature matrix which will be used in predictive 

modelling by vertically concatenating the matrices contained in the traffic feature matrix sequence, so that the 

dimension of the input feature matrix will be (𝑁 𝑇 ×  𝑑), where 𝑁 is the number of total nodes and 𝑇 is the number 

of total timestamps included. 

4.2 Node Embedding 

The basic of Graph Neural Network is, it generates node embeddings 𝑧𝑢 , ∀𝑢 ∈ 𝑉 by utilizing message passing 

framework applied on the set of node features defined as 𝑥 ∈ ℝ|𝑣|×𝑛. The idea of message passing network can be 

formalized as follows: 

𝑧𝑢
(𝑘)

 =  𝑓(𝑧𝑣
(𝑘−1)

, 𝑎𝑔𝑔(𝑘−1)(𝑧𝑣
(𝑘−1)

, ∀𝑣 ∈  𝑁(𝑢)))          (1) 

where 𝑓 (. ) and 𝑎𝑔𝑔(𝑘)(. ) are differentiable functions, 𝑁 (𝑢) represents the set of neighbors of node 𝑢 ∈  𝑉, 𝑧𝑘
𝑢 

is the feature embedding of the node 𝑢 ∈  𝑉 after 𝑘′𝑡ℎ aggregation and 𝑧𝑣
𝑘 is the feature embedding of the node 

neighbor of node 𝑢 ∈  𝑉 . After 𝑘′𝑡ℎ  aggregation, every node feature will inherit the embedding of 𝑘′𝑡ℎ 

neighborhood updated by function 𝑓 (. )and aggregated by 𝑎𝑔𝑔𝑘(. ). In general, graph neural network’s main 

motivation is to aggregate and propagate spatial information using node features with the help of graph adjacency 

matrix. The final embeddings can be used to conduct various machine learning task like classification, regression 

etc. There is a plethora of node embedding methods for creating effective embeddings for downstream tasks. In 

this project, we have used the GCN [7] method for creating node embeddings. 

4.3 C. Graph Neural Network 

The aggregation rule for a given graph 𝐺 and the corresponding adjacency matrix 𝐴 can be formulated as follows, 

𝑍(𝑘) = 𝐷−1∕2𝐴𝐷−1∕2
𝑋(𝑘−1)𝑊(𝑘−1)                   (2) 

where 𝑍(𝑘)  is defined as an embedding matrix containing the embedding of all the nodes in graph at 

𝑘′𝑡ℎ aggregation. 𝐴 is an adjacency matrix of the graph, 𝑋(𝑘−1) ∈ ℝ|𝑣|×𝑛  is feature matrix containing input feature 

generated after (𝑘 − 1)’th aggregation of all nodes in a graph. Here 𝐷 ∈ ℝ|𝑣|×|𝑣| is a degree matrix in which the 

diagonal entries contain the node degrees and the rest of the entries are zero. 

The matrix 𝐷−1∕2 is responsible fore normalizing the feature aggregation to eliminate the influence of nodes with 

higher degree. It is also true that, the inverse diagonal degree matrix will also eliminate the ability to encode node 

neighborhood structure information which can be essential for many down- stream tasks. In that case, we won’t be 

able to leverage the neighborhood structure information which can be used for traffic density regression task. Here, 

the nodes with high degree of connectivity in a traffic network may have higher influence on the other nodes other 

than nodes with low degree of connectivity. But it is also true that, this single topological node level metric like 

node degree doesn’t always depict the influence of node over other nodes in a network. There can be other non-

topological factors involved like traffic fluctuation pattern, weather condition etc. 

1) Spatio-Temporal Embedding of Node Features:  

In regression task, specifically for time series prediction task, people have used many variations of recurrent neural 

network architectures which encodes the time series information of previous timestamps and build inference model 

to generate prediction for the next timestamps. However, in Graph domain, only spatial level information can be 

formulated using the adjacency matrix and feature matrix for storing the feature of all nodes in a Graph. Therefore, 

only spatial feature aggregation is possible. In any road network, roads that are connected with the neighboring 

roads exhibits traffic pattern which can be explained by modelling the dependencies between the neighboring roads 

traffic patterns across the different timestamps. The degree of connectivity of each road in a network plays a vital 

role in influencing other roads traffic pattern. In order to encode temporal features along with spatial features, 

USTGCN [2] introduced Cross-Spacetime edges. The idea is to encode both spatial feature and temporal features 

of the road network of the previous timestamps in unified way. This method can capture traffic pattern of target 

nodes from different timestamps and aggregate the neighboring nodes traffic pattern to encode both spatial and 

temporal dependencies. The idea of Cross-Spacetime edges and the USTGCN aggregation method are described in 

section IV-C2 and IV-C3 consecutively. 

2) Cross-Spacetime Edges: 

USTGCN encodes complex spatio-temporal relationship from different timestamps by constructing a lower 

triangular adjacency matrix, which can be defined where the diagonal entries of 𝐴𝑠𝑡[𝑖, 𝑖]  = 𝐴 (adjacency matrix of 

the road network), lower triangular entries, 𝐴𝑠𝑡[𝑖, 𝑗]  =  𝐴̃, where 𝑖 < 𝑗 and 𝐴̃ = (𝐴 + 𝐼). Here, 𝐼 is an identity 

matrix. Rest of the entries of 𝐴𝑠𝑡 can be defined as 𝐴𝑠𝑡[𝑡: ], which aggregates the spatio-temporal encoding of the 

network from 1 𝑡𝑜 (𝑡 − 1) timestamps. Each entry in the lower triangular part of 𝐴𝑠𝑡 aggregates the feature of 1-

hop neighborhood only. 
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In general, the lower triangular submatrix is responsible for aggregating the traffic feature of neighboring nodes 

and target nodes from the previous timestamps whereas, the diagonal submatrix is responsible for aggregating 

traffic feature of the neighboring nodes only. 

3) USTGCN Aggregation Methods: 

In USTGCN, by constructing  a lower triangular adjacency matrix 𝐴𝑠𝑡 and 𝐷𝑠𝑡  where 𝐷𝑠𝑡[𝑖, 𝑖] = ∑ 𝐴𝑠𝑡
𝑁𝑇
𝑘=1 [𝑖, 𝑘] 

and an initial feature matrix 𝑥𝑠𝑒𝑙𝑓
𝑙 ∈ ℝ(𝑁𝑇×𝑑)  (feature matrix from the previous layer), where the input feature 

matrix contains the stacked up node features of last previous 𝑇 timestamps, graph convolution is performed at each 

convolutional layer 𝑙, parameterized by a broadcasted weight matrix 𝑤𝑡𝑒𝑚𝑝
𝑙 ∈ ℝ(𝑁𝑇×𝑑) which learns the importance 

of different timestamps as follows, 

𝑋𝑠𝑡
𝑙 = 𝐷𝑠𝑡

−1
2⁄

𝐴𝑠𝑡𝐷𝑠𝑡

−1
2⁄

(𝑋𝑠𝑒𝑙𝑓
𝑙 ⋅ 𝑤𝑡𝑒𝑚𝑝

𝑙 )                        (3) 

The learned spatio-temporal embedding matrix at layer 𝑙, 𝑋𝑠𝑡
𝑙  is concatenated with 𝑋𝑠𝑒𝑙𝑓

𝑙  and aggregated using a 

final shared learnable weight matrix 𝑤𝑓𝑖𝑛𝑎𝑙
𝑙  ∈ ℝ(2𝑑×𝑑) followed by applying non-linearity which will learn the 

importance of self-representation of the current timestamps as well as aggregated spatio-temporal embeddings as 

follows, 

𝑋𝑠𝑒𝑙𝑓
𝑙+1 = 𝑅𝑒 𝐿𝑈 (𝑤𝑓𝑖𝑛𝑎𝑙

𝑙 (𝑋𝑠𝑒𝑙𝑓
𝑙 ∥ 𝑋𝑠𝑡

𝑙 )
𝑇

)
𝑇

                 (4) 

The aggregation methods that we have presented here are applied in every convolutional layer of USTGCN for 

each timestamp. The embedding for each timestamp is concatenated and aggregated by another weight matrix 𝑊𝐹 

as follows, 

                 𝑍𝐹 = 𝑊𝐹 ⋅ (𝑧𝐸
⟨1⟩‖… ‖𝑍𝐸

⟨𝑇⟩
)                               (5) 

The final learned embeddings 𝑍𝐹 are passed through a neural network for the specific downstream regression task. 

In this work, we tried to modify the aggregation functions of UST- GCN in order to encode similar embeddings for 

the roads that have similar characteristics of traffic density across different aggregated timestamps which may lead 

to the improvement in the accuracy on sparse dataset pre-processed from Google maps data. 

In USTGCN, the broadcasted weight matrix 𝑤𝑡𝑒𝑚𝑝
𝑙 ∈ ℝ(𝑁𝑇×𝑑), is constructed by stacking same learnable weight 

matrix, 𝑊𝑏
𝑙 ∈ ℝ(𝑛×𝑑), 𝑇 times, which means all node feature vectors across the different timestamps are aggregated 

by same learnable weight parameters by constructing 𝑊𝑡𝑒𝑚𝑝
𝑙  as follows, 

 𝑊𝑡𝑒𝑚𝑝
𝑙 = (𝑊𝑏

𝑙 ⊕ … ⊕ 𝑊𝑏
𝑙)                (6) 

In the equation above, ⊕ represents vertical concatenation. USTGCN learns the parameter of 𝑊𝑏
𝑙  only during 

training via backpropagation. It is possible to construct 𝑊𝑡𝑒𝑚𝑝
𝑙  in a different way by initializing 𝑊𝑏

𝑙 differently. The 

way of initializing 𝑊𝑏
𝑙 may include some sort of node-level properties (betweenness centrality, average co-efficient 

of variation of traffic congestion fluctuation for each road) from the training set to let the model 

recognize the nodes/roads with similar characteristics which 

we have explored in this work. 

 

V. DATASET DESCRIPTION 

5.1 Data Collection Procedure: 

Collecting traffic data by deploying sensors, loop detectors are not cost-efficient and manual data collection is time-

consuming. Most of the data collecting methods that are being used are not scalable enough. In order to collect the 

data in a scalable manner with the advantage of flexibility in adjusting data pinging interval and getting data 

remotely, we have collected traffic data following the automatic data capturing method from Google Maps 

described in [1]. According to their approach, traffic congestion information of each road segment colored by traffic 

color code (green, orange, red, dark red) indicating no traffic, moderate traffic, heavy traffic and very heavy traffic 

respectively are collected and pre-processed using image-processing. The collected dataset includes pixel-wise 

traffic density information of 65 intersections of Mirpur area. For each inter-section, traffic density information 

spanning from 6:00 AM to 11:59 PM with an interval of 30 seconds were captured. The entire dataset contains 92 

days of traffic density information spanning from 1st November, 2019 to 31st January,2020. This dataset covers 

only Mirpur area of Dhaka, Bangladesh. After collecting the data, we have converted each adjacent intersections 

to a road and created an adjacency matrix that represents the connection between the roads. (Described in V-3) 

Geographically, roads can be classified in many ways based on their spatial characteristics, type of materials used 

to build the roads, traffic capacity information etc. These characteristics also affects the traffic fluctuation over 

time. Since, we have captured only traffic density information of roads from Google Maps which varies from time 

to time, we have classified roads based on the visibility from above in Google maps. We have classified the roads 

of our entire traffic network into two types. We have used two kinds of zoom level to distinguish between main 

roads (Tier-1) and branch roads (Tier-2). Roads that are visible from 7964 meters above in Google maps are 

considered as Tier-1 roads whereas roads which are visible from 3982 meters above are considered as Tier-2. 
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5.2 Road Characteristics: 

According to the definition of road tier described in the previous section, we were able to classify total 76 roads as 

Tier-1 and 78 roads as Tier-2. There is significant difference between these two types of road w.r.t their road width. 

We have estimated the road width of different tiers and report the results using confidence intervals. 

We calculate the mean (𝜇) and standard deviation (𝜎) of road width to calculate the range of road width using 

confidence interval (𝐶𝐼), which is defined in equation given below: 

𝐶𝐼 = 𝑢 + 𝜌
𝜎

√𝑛
                             (7)  

where 𝜌 is confidence level value and 𝑛 is number of roads in a tier. We report the result of 99.9% confidence level 

value. 

Table I: Tier-1 Road Widths Distribution Properties 

Mean (m) 4.25 

Confidence Interval (m) 0.10 

Upper limit (m) 4.35 

Lower limit (m) 4.15 

 

Table II: Tier-2 Road Widths Distribution Properties 

Mean (m) 3.55 

Confidence Interval (m) 0.05 

Upper limit (m) 3.60 

Lower limit (m) 3.51 

 

Traffic congestion on all roads cannot be the same as the road width controls the access of differently sized 

motorized/non-motorized vehicles. Moreover, it is safe to assume that, the topological connection of every road 

can be different. The number of ingoing and outgoing connection also matters. The traffic fluctuation patterns 

across each road might not be the same as every road doesn’t exhibit same characteristics. 

5.3 Data Pre-processing: 

The collected data contains 65 intersection segments traffic density information. Information is encoded as traffic 

jam length measured by the length of traffic color code for every 30 seconds for each intersection. For network 

analysis and inference, we converted the dataset in a form of a Graph. We can define the whole road network as, 

𝐺 = (𝑉, 𝐸)                           (8) 

where 𝑉 is a set of intersections and 𝐸 is a set of connections(edges) between the adjacent intersections. Here, the 

connection between two intersections 𝑖 and 𝑗 can be defined as,  

𝑒𝑖𝑗 ∈ 𝐸                              (9) 

There exist two edges 𝑒𝑖𝑗 ∈ 𝐸 which connects intersection 𝑖 and 𝑗, 𝑒𝑗𝑘 ∈ 𝐸 which connects intersections 𝑗 𝑎𝑛𝑑 𝑘. 

We treat them as individual node defined as 𝑣𝑒𝑖𝑗
∈ 𝑉′ and 𝑣𝑒𝑗𝑘

∈ 𝑉′ respectively. Here, 𝑣𝑒𝑖𝑗
 means a road that starts 

from intersection 𝑖 and ends to intersection 𝑗. Two roads 𝑣𝑒𝑎𝑏
∈ 𝑉′ and 𝑣𝑒𝑐𝑑

∈ 𝑉′ are adjacent to each other if 𝑏 =

𝑐, which means, road 𝑣𝑒𝑐𝑑
∈ 𝑉′ is accessible from road 𝑣𝑒𝑎𝑏

∈ 𝑉′. 

We further index the roads and build an adjacency matrix that explains the connectivity and accessibility of each 

road in the network. For the regression task, which we have conducted using Unified Spatio-temporal Graph 

Convolutional Network described in [2], we convert the traffic density information of all roads into a Graph defined 

as,  

𝐺′ = (𝑉′, 𝐸′)                       (10) 

where each node defined as, 

𝑣𝑒𝑖𝑗
∈ 𝑉′                         (11) 

which corresponds to each road connecting two intersections 𝑖 𝑎𝑛𝑑 𝑗. Each edge connecting adjacent roads is 

defined as, 

𝑒𝑣𝑒𝑖𝑗
𝑣𝑒𝑘𝑙

∈ 𝐸′                     (12) 

where for two adjacent roads 𝑣𝑒𝑖𝑗
 and 𝑣𝑒𝑘𝑙

⊂ 𝑉′⬚
, we define  

and edge that goes from road 𝑣𝑒𝑖𝑗
 to 𝑣𝑒𝑘𝑙

 as,  

𝑒𝑣𝑒𝑖𝑗
𝑣𝑒𝑘𝑙

= (𝑣𝑒𝑖𝑗
→ 𝑣𝑒𝑘𝑙

)       (13) 

which means road 𝑣𝑒𝑘𝑙
 is accessible from 𝑣𝑒𝑖𝑗

. Road 𝑣𝑒𝑘𝑙
 is accessible from road 𝑣𝑒𝑖𝑗

 if 𝑗 = 𝑘. We construct an 

adjacency matrix 𝐴′ where each entry of 𝐴′ is defined as, 

      𝐴𝑣𝑒𝑖𝑗
𝑣𝑒𝑘𝑙

′ = {
1 𝑖𝑓 𝑗 = 𝑘 𝑖𝑛  𝑒𝑣𝑒𝑖𝑗

𝑣𝑒𝑘𝑙
∈ 𝐸′

   0,   𝑖𝑓 𝑗 ≠ 𝑘 𝑖𝑛 𝑒𝑣𝑒𝑖𝑗
𝑣𝑒𝑘𝑙

 ∉ 𝐸′                (14) 
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we have constructed the transformed feature matrix 𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 ∈ ℝ(𝑁𝑇 × 𝑑) and used it along with 𝐴′ to learn the 

weight parameters of our inference model. 

5.4     4) Dataset Characteristics: 

    We have collected data of three months (November 2019, December 2019, January 2020) comprising of 92 days 

of traffic density information of total 154 roads. We calculated the sparsity of each pre-processed dataset using the 

following formula, 

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =  1 − (
𝐶𝑛

𝐶𝑡𝑐
)                           (15) 

where 𝐶𝑛 is the total count of non-zero datapoints in the dataset and 𝐶𝑡𝑐 is total datapoints in the dataset. 

 

Table III: Sparsity and Shape of Each Pre-Processed Dataset of Dhaka Road Network 

Dataset Shape Sparsity 

November 2019 (154,64800) 0.756 

December 2019 (154,66960) 0.591 

January 2020 (154,66960) 0.552 

 

VI. METHODOLOGY 

Given a feature matrix 𝑋𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  and the adjacency matrix 𝐴′, we have built a unified traffic forecasting model 

based on [2] which forecasts traffic information up to next 15 minutes, 30 minutes and 45 minutes. The inference 

model of ours resembles the USTGCN described in [2], in which the same importance is given to the node features 

across all the timestamps using the broadcasted learnable weight matrix. 

But not all the roads traffic congestion behavior might be the same. So, not all the roads exhibit the same traffic 

congestion characteristics. There are some factors that can be used to explain the roads traffic congestion 

characteristics as well as find out and cluster the roads with similar characteristics. This type of meta information 

can be used to construct better representation cluster-wise and use it for any downstream task. 

In this work, we modified USTGCN framework based on the road clusters to test whether it will improve the 

forecasting result or not. For clustering similar roads, we have considered two factors, betweenness centrality and 

co-efficient of variation of traffic density of each road. Betweenness centrality is one of the topological properties 

of a road(node) in a road network. This property can explain the importance of each node(road) of the road network 

based on the betweenness (see VI-2). On the other hand, coefficient of variation of traffic density quantifies the 

traffic fluctuation pattern. Based on these two properties of each road, we have applied K-means clustering 

algorithm to generate clusters of roads. Every cluster represents a set of roads which exhibits similar representation. 

Using the cluster information, we can modify the existing USTGCN [2] model so that the feature vectors of roads 

existing in same cluster are aggregated using the same learned weight vectors across each timestamp which we 

have dis- cussed in VII. The model performance is evaluated using RMSE and MAE which is reported in 

experimental setup and results segment (see VIII). Although, we are working on time series dataset, we have tested 

our model performance using different train-test segments (see Table IV in order to show the contribution of 

sparsity of training set on the model performance degradation. 

The whole dataset contains, the traffic information of November, December of 2019 and January of 2020. We have 

trained the model by keeping 2 months of data as training set and validated on the rest 1 month of data. So, every 

month of the whole dataset was used as a validation set. The reason of doing this is to capture the model performance 

on different training set with different characteristics in order to find out what factors in the training set that are 

responsible for model performance degradation or improvement.  

1) Topological Properties of Mirpur Road Network: 

Centrality measures were introduced to measure the popularity or the influence of any node in a social network. 

The same centrality measures can explain the influence of each road in a road network. The definition of centrality 

measure based on betweenness was first introduced in [8]. It is based on the shortest path. We chose to calculate 

betweenness centrality for each road. Betweenness centrality can rank each node based on their topological 

characteristics. 

2) Betweenness Centrality: 

Given an arbitrary Graph 𝐺 = (𝑉, 𝐸)  where 𝑉 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑎𝑛𝑑 𝐸  is a set of edges. For each 𝑣 ∈ 𝑉 , 

betweenness centrality can be defined as, 

𝑐(𝑣) =
𝛴𝑠≠𝑣≠𝑡𝑝𝑠𝑡(𝑣)

𝑝𝑠𝑡
                              (16) 

where 𝑝𝑠𝑡  is total number of shortest paths starting from node 𝑠 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑡. 𝑝𝑠𝑡(𝑣) is the number of those paths that 

goes through 𝑣. For scaling the score so that 𝑐 ∈ [0,1], we can further normalize the value of  𝑐(𝑣) with minmax 

normalization, 

𝑐𝑛𝑜𝑟𝑚(𝑣) = 𝑚𝑖𝑛 𝑚𝑎𝑥(𝑐(𝑣))                  (17) 

where 𝑚𝑖𝑛 𝑚𝑎𝑥(𝑐(𝑣)) is defined as,  
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𝑚𝑖𝑛 𝑚𝑎𝑥(𝑐(𝑣))  =  
𝑐(𝑣)−min(𝑐)

(𝑐)−min(𝑐)
              (18) 

Nodes with high betweenness centrality score (close to 1) have more influence over the network compared to the 

nodes which have low betweenness centrality score. In case of our Road network, every node is considered as a 

road. From the commuter’s perspective, they always tend to use the shortest paths in the road network to reach their 

terminal point(road) from their starting point(road) to minimize the travel time. Roads with high betweenness 

centrality scores are accessed more often by the commuters than the roads with low betweenness centrality. Because 

this score signifies the betweenness of each road (node) among overall shortest paths of the network. But it is also 

true that, a piece of information in a network doesn’t always flow through the shortest paths. To be precise, an 

arbitrary commuter may not consider travelling through the shortest path all the time. There might be a lot of reason 

behind these decisions of commuters. So, only topological statistic like every node’s betweenness centrality of 

Dhaka Road network isn’t enough to analyze the traffic density pattern. In order to analyze the traffic density pattern 

in our road network, along with betweenness centrality, we have used the notion of coefficient of variation to 

measure how traffic density fluctuates which is described in the next sub-section. 

6.1 Traffic Density Fluctuation Analysis: 

We have used betweenness centrality as a topological characteristic of our road network which doesn’t depict 

anything about the traffic density fluctuation of each road. In order to measure the traffic density fluctuation, we 

have used the coefficient of variation of traffic density for each road. Our scoring methods simply describes for 

each road, how much the traffic density fluctuates over the time w.r.t the mean of each roads traffic density. 

Moreover, not all the roads mean of traffic density fluctuation might not be the same. Hence, we chose this method 

so that we can compare the scores between any pair of roads in the network. This information can be used along 

with betweenness centrality to cluster the roads with the closest coefficient of variation of traffic density fluctuation. 

We will use this cluster information and ingest it to USTGCN which will help the model learn different weight 

matrices for roads with different characteristics (given betweenness centrality and coefficient of variation of traffic 

density (see next sub-sub-section)). 

1) Co-efficient of variation as a measure of traffic density fluctuation: 

Given a vector 𝑋𝑖 = (𝑎𝑗 , ⋯ , 𝑎𝑛) that contains traffic density information of a road 𝑖 with total timestamp of 𝑛, we 

can define another vector 𝑌𝑖 = (𝑏𝑗 , ⋯ , 𝑏𝑛−1) where 𝑏𝑗 = |𝑎𝐽̇ − 𝑎𝑗+1|. Here, |𝑦𝑖| = (𝑛 − 1). Now we can define 

the co-efficient of variation of road 𝑖 𝑎𝑠 𝜆𝑖 ,  

𝜆𝑖 =
𝜎𝑌𝑖

𝑢𝑌𝑖

                                      (19) 

where {𝜆𝑖𝜖ℝ|0 ≤ 𝜆𝑖 < ∞}, 𝑢𝑌𝑖
 ids defined as the mean of vector 𝑌𝑖, 𝜎𝑌𝑖

 as the standard deviation of vector 𝑌𝑖. The 

score defines how much traffic density fluctuates w.r.t the mean. Roads with 𝜆 close to 0 are the roads which 

exhibits low traffic density fluctuation in between 𝑛 timestamps and vice versa. The only reason of scoring each 

road based on their traffic density fluctuation is to group the similar kind of roads which exhibits similar fluctuation 

patten that can be explained by 𝜆. Along with topological characteristics (betweenness centrality) of each road 

described in VI-2, we cluster all roads based on their co-efficient of variation of traffic density using K-means 

clustering method. 

6.2 Road Cluster Analysis: 

In order to mine similarity of roads with similar traffic fluctuation pattern and betweenness centrality, we have 

conducted K-means clustering on 2-dimensional data of road characteristics (betweenness centrality and co-

efficient of variation of traffic density fluctuation). Before clustering, we have calculated average co-efficient of 

variation of traffic density fluctuation for each road on the training set. Given co-efficient of variation of traffic 

density fluctuation, 𝜆𝑖
𝑗
 for road 𝑖 on day 𝑗, we can calculate average co-efficient of variation of traffic density 

fluctuation for each road over the entire training set as, 

𝜆𝑖𝑎𝑣𝑔
=

∑ 𝜆𝑖
𝑗

𝑛

𝐽̇−1

𝑛
                        (20) 

where  𝑛 is total number of days in training set and 𝜆𝑖𝑎𝑣𝑔
 is average co-efficient of variation of road 𝑖 over the entire 

training set. So, for all roads 𝑟, we can instantiate  𝑟 number of observations (𝑙1, … , 𝑙𝑟), where each observation is 

a 2-dimensional data points comprises of betweenness centrality and co-efficient of variation of traffic density 

fluctuation for each road of the training segments. We have clustered each road based on these observations using 

K-means clustering. All the labels of the road after clustering were used to instantiate different weight matrices for 

aggregation in our modified USTGCN model. These different weight matrices were learned during the training 

process. 

1) Cluster Parameters Selection: 

Given a set of observations 𝑆 = {𝑠1, … , 𝑠𝑛} , where each observation is a 2D points containing betweenness 

centrality score and average co-efficient of variation of traffic density fluctuation which are calculated from the 

training set, we initialize centroids randomly at the 1st timestep and applied K-means clustering for 300 epochs. We 
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have applied K-means algorithm by instantiating 2, 3 and 4 cluster centroids on these observations of 3 different 

training sets. 

For each cluster, we instantiate different learnable weight vectors. The cluster member’s (roads) features are 

aggregated with the same weight parameters during training the model which we have discussed in the next section 

(see VII). 

VII. PROPOSED MODIFICATION OF NODE FEATURE AGGREGATION IN USTGCN 

In this chapter, we will discuss about how we can leverage the cluster information to modify the existing 

aggregation functions described in USTGCN. Recall from section 2.2.4, USTGCN takes feature matrix of previous 

layer 𝑋𝑠𝑒𝑙𝑓
𝑙 ∈ ℝ(𝑁𝑇×𝑑), the lower triangular adjacency matrix 𝐴𝑠𝑡 as inputs and creates spatio-temporal embedding 

using equation 1, parameterized by broadcasted learnable weight matrix 𝑊𝑡𝑒𝑚𝑝
𝑙 ∈ ℝ(𝑁𝑇×𝑑)  which learns the 

importance of node features across different timestamps at layer 𝑙 . Here, 𝑊𝑡𝑒𝑚𝑝
𝑙  is constructed by vertically 

concatenating same learnable weight parameter 𝑊𝑏
𝑙 ∈ ℝ(𝑇×𝑑) 𝑁 time using equation 4, where 𝑁 is the total number 

of roads in a network. 𝑇 is the total number of timestamps and 𝑑 is the number of days that we consider to training 

USTGCN. Instead of constructing 𝑊𝑡𝑒𝑚𝑝
𝑙  this way, we construct 𝑊𝑡𝑒𝑚𝑝

𝑙  by initializing different weight parameters 

by using the cluster information created based on the meta information (betweenness centrality and co-efficient of 

variation) ingested from training set. 

Given a set of clusters 𝑆 = {𝑠1, 𝑠2, ⋯ 𝑠𝑛𝐶
} created based on the betweenness centrality and average co-efficient of 

variation of each road ingested from the training set, we can instantiate a set of learnable weight vectors 𝑊 =

{𝑤1, 𝑤2, ⋯ 𝑤𝑛𝑐
} where every element of 𝑊 corresponds to every element of 𝑆. Here, the length of each vector in 

𝑊 is the number of previous days that we consider to train the model on which is in our case 8 days. For example, 

for the 1st cluster set 𝑠1, the corresponding learnable weight vector is 𝑤1,which means to learn the importance of 

different timestamps, all the aggregated feature vectors of roads residing in the 1st cluster set aggregated by lower 

triangular matrix 𝐴𝑠𝑡 , are weighted using the learnable weight vector 𝑤1 to create spatio-temporal embedding 𝑋𝑠𝑡
𝑙  

at layer 𝑙. This procedure is applied for the rest of the cluster sets too. 

We store each roads cluster information as key-value pairs denoted by,  

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑓𝑜𝑖𝑗  =  ⟨𝑖, 𝑗⟩                                     (21) 

where  𝑖  is the index of the road and 𝑗  is the index of the cluster in which the 𝑖′𝑡ℎ  road resides. Here, 𝑖 ∈
[0, 𝑁) 𝑎𝑛𝑑 𝑗 ∈ [1, 𝑁𝑐], where the total number of clusters denoted as 𝑁𝑐. We store these key-value pairs in a set 

denoted as 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟 . Here the cardinality of 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟  can be denoted as,  

|𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟| = 𝑁                                             (22) 

Where 𝑁 is the number of roads in the Dhaka road network. Instead of constructing 𝑊𝑡𝑒𝑚𝑝
𝑙  using equation 4, we 

construct 𝑤𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑
𝑙 ∈ ℝ(𝑁×𝑑) such that, each row of 𝑤𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑

𝑙  can be denoted as, 

𝑤𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑
𝑙 [𝑖: ] = 𝑊′[𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟[𝑖]]                          (23) 

where 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟[𝑖] represents the cluster index of road 𝑖 and 𝑊′[𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟[𝑖]] represents the learnable weight vector 

stored in 𝑊′ for road 𝑖 residing in the cluster indexed as 𝑆𝑐𝑙𝑢𝑠𝑡𝑒𝑟[𝑖]. Finally, we construct 𝑊𝑡𝑒𝑚𝑝
𝑙  by concatenating 

𝑤𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑
𝑙  vertically  𝑇 times as follows,  

𝑊𝑡𝑒𝑚𝑝
𝑙 = (𝑤𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑

𝑙 ⊕ … ⊕ 𝑤𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑
𝑙 )                 (24) 

Here, 𝑇 denotes total number of timestamps. Using the constructed 𝑊𝑡𝑒𝑚𝑝
𝑙 , the spatio-temporal embedding 𝑋𝑠𝑡

𝑙  is 

learned using equation 4. 

In USTGCN, the learned spatio-temporal embedding matrix at layer 𝑙, 𝑋𝑠𝑡
𝑙  is concatenated with 𝑋𝑠𝑒𝑙𝑓

𝑙  and 

aggregated using a final shared learnable weight matrix 𝑊𝑓𝑖𝑛𝑎𝑙
𝑙 ∈ ℝ(2𝑑×𝑑)  followed by applying non-linearity 

which will learn the importance of self-representation of the current timestamp as well as aggregated spatio-

temporal embedding using equation 5. 

In this work, we have also modified equation 2 by incorporating two learnable weight matrices instead of 𝑊𝑓𝑖𝑛𝑎𝑙
𝑙  

as follows, 

𝑋𝑠𝑒𝑙𝑓
𝑙+1 = ReLU ((𝑊𝑓𝑖𝑛𝑎𝑙𝑠𝑒𝑙𝑓

𝑙 ⋅ 𝑋𝑠𝑒𝑙𝑓
𝑙 )

𝑇

||(𝑊𝑓𝑖𝑛𝑎𝑙𝑠𝑡

𝑙 ⋅ 𝑋𝑠𝑡
𝑙 )

𝑇
)

𝑇

     (25) 

where  𝑊𝑓𝑖𝑛𝑎𝑙𝑠𝑒𝑙𝑓

𝑙  and 𝑊𝑓𝑖𝑛𝑎𝑙𝑠𝑡

𝑙  are used to encode both feature matrix of previous layer and spatio-temporal 

embedding separately created at layer 𝑙. After generating embeddings for each timestamp, we encode the final 

embeddings using equation 3. The final embedding of modified USTGCN was passed through a three-layer neural 

network where we have used Tanhshrink as activation function in between the first two linear layers and ReLU 

after the last linear layer. Here Tanhshrink function is defined as,  

Tanhshrink(𝑥) = 𝑥 − tanh(𝑥)                  (26) 
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VIII. EXPERIMENTAL SETUP AND RESULTS 

8.1 Train-Validation Split: 

We split the dataset into training and validation segments, where training segment contains 61 days of traffic density 

information of 154 roads and validation segment contains 31 days of traffic density information. We trained the 

model for 200 epochs with early stopping enabled, validated on the validation set and saved the model parameters 

which results in the best result based on RMSE and MAE measured on validation set. We have trained the models 

for predicting traffic density up to 15, 30, 45 minutes and report the best result. We have reported only RMSE and 

MAE of overall validation dataset. 

We have generated results for each day of validation set by passing last 7 days data and the previous 1 hour of data 

(before the hour of the day from which we want to generate prediction) to the model. 

8.2 Training Hardware Environment: 

Our model was trained on NVIDIA GTX 1060 6 GM GDDR5 GPU with AMD Ryzen 5 3600 6 core, 12 thread 

CPU and 16 GB of RAM. 

8.3 Hyperparameters: 

For each model that we have trained, we have chosen Adam optimizer with initial learning rate 0.0001. We stacked 

4 layers of our GNN and for the downstream regression task, we have used feed-forward neural network with 3 

hidden layers and Tanhshrink function as non-linear activation function. We trained every model for 200 epochs 

with early stopping enabled. During training, we chose to fix the seed value to 824. 

8.4 Model performance evaluation metrics 

To assess the model performance, we have chosen two criterion, Root-Mean Squared Error (RMSE) and Mean 

Absolute Error (MAE). Given the ground truth for 𝑖′𝑡ℎ data sample 𝑦𝑖 , RMSE can be defined as follows, 

RMSE = √
∑ (𝑦𝑖̂−𝑦𝑖)2𝑛

𝑖=1

𝑛
                             (27) 

The lower value of RMSE is desirable since it indicates the predicted values are not far away from the ground 

truths. This is true for MAE. We can define MAE as follows, 

MAE =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑁
𝑖=1                           (28) 

8.5 Results: 

We have trained our data on USTGCN and modified (VII) version of USTGCN and reported the performance score 

based on RMSE and MAE for traffic congestion prediction up to 15 minutes, 30 minutes and 45 minutes. We have 

also trained our model using our same modified framework just by clustering roads based on their Tier information 

(see Table I and Table II) denoted as USTGCN (Tier conditioned) in the result tables (see Table IV). 

We have showed the result of USTGCN, modified USTGCN by using three different kinds of train-test split (see 

IV). Among these three train-test splits, the results of every variant of USTGCN are affected by the average sparsity 

of the training set with which the model was trained on is less compared to the other training set (see Table IV). 

Using the data of November 2019 and December 2019 as the training set and January 2020 as validation set, we 

have achieved the best result on the validation set out of our modified USTGCN when predicting up to 15 minutes 

using 2 clusters (see Table IV). Our modified USTGCN has also achieved best result (using 4 clusters for predicting 

up to 15 minutes and 45 minutes) on the validation set of November 2019 when using December 2019 and January 

2020 as the training set (see table IV). This training set (January 2020, December 2019) has the lowest sparsity than 

any other training sets too. 

In summary, our modified USTGCN performed better than the base USTGCN [2] when the model is trained on 

less sparse dataset. 

IX. COMPARISON OF RESULTS FROM DIFFERENT MODIFIED USTGCN MODELS 

In this section, we are going to compare the predicted traffic congestion of roads by USTGCN and best performing 

modified USTGCN by showing the predicted congestion of traffic of randomly chosen weekday and weekend from 

the validation set for the roads belonging to the different clusters. The base USTGCN doesn’t incorporate any 

cluster information during the training. 

 

Table IV: Validation Result of Different Type of Ustgcn for Different Prediction Length 

Datasets Prediction length (minutes) Models RMSE MAE 

  USTGCN 20.44 12.38 

 15 USTGCN (2 tier) 20.53 12.55 

USTGCN (2 cluster) 20.54 12.51 

  USTGCN (3 cluster) 20.53 12.47 

Train:  USTGCN (4 cluster) 20.50 12.57 

 USTGCN 22.90 13.93 

30 USTGCN (2 tier) 23.01 14.09 

 USTGCN (2 cluster) 22.95 14.22 

Validation:  USTGCN (3 cluster) 22.98 14.00 
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USTGCN (4 cluster) 22.85 13.91 

 USTGCN 24.57 15.13 

 45 USTGCN (2 tier) 24.64 15.05 

USTGCN (2 cluster) 24.71 15.21 

  USTGCN (3 cluster) 24.48 15.04 

  USTGCN (4 cluster) 24.51 15.03 

  USTGCN 23.43 14.89 

 15 USTGCN (2 tier) 22.39 14.09 

USTGCN (2 cluster) 22.37 14.01 

Train:  USTGCN (3 cluster) 22.51 14.15 

USTGCN (4 cluster) 22.45 14.16 

Nov 19, 30 USTGCN 24.92 15.82 

USTGCN (2 tier) 25.22 15.86 

USTGCN (2 cluster) 25.13 15.82 

  USTGCN (3 cluster) 25.07 15.80 

Validation:  USTGCN (4 cluster) 24.98 15.88 

 USTGCN 26.58 16.88 

45 USTGCN (2 tier) 26.78 16.80 

 USTGCN (2 cluster) 26.68 16.89 

  USTGCN (3 cluster) 26.65 16.90 

  USTGCN (4 cluster) 26.70 16.84 

  USTGCN 19.05 10.17 

 15 USTGCN (2 tier) 19.07 10.10 

USTGCN (2 cluster) 19.08 10.05 

  USTGCN (3 cluster) 19.11 10.30 

Train:  USTGCN (4 cluster) 18.97 10.01 

 USTGCN 21.04 11.34 

30 USTGCN (2 tier) 21.20 11.34 

 USTGCN (2 cluster) 21.12 11.61 

Validation:  USTGCN (3 cluster) 21.13 11.64 

USTGCN (4 cluster) 21.18 11.31 

 USTGCN 22.36 12.45 

 45 USTGCN (2 tier) 22.45 12.69 

USTGCN (2 cluster) 22.44 12.39 

  USTGCN (3 cluster) 22.46 12.38 

  USTGCN (4 cluster) 22.30 12.28 

 

9.1 Prediction Comparison of a weekend: 

 

 
Figure 1. Prediction result based on modified USTGCN (2 clusters) of road number 15 on one of the weekends 

of January,2020. (Training set: November 2019, December 2019). Here, tier-0 means road number 15 belongs to 

cluster number 1 
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Figure 2. Prediction result based on USTGCN of road number 15 on one of the weekends of January,2020. 

(Training set: November 2019, December 2019). Here, tier-0 means road number 15 belongs to cluster number 1. 

But in USTGCN the clustering was not performed 

 
Figure 3. Prediction result based on modified USTGCN of road number 80 on one of the weekends of 

January,2020. (Training set: November 2019, December 2019). Here, tier-1 means road number 80 belongs to 

cluster number 2. 

 
Figure 4. Prediction result based on USTGCN of road number 80 on one of the weekends of January,2020. 

(Training set: November 2019, December 2019). Here, tier-1 means road number 80 belongs to cluster number 2. 

But in USTGCN the clustering was not performed 

 
Figure 5. Prediction result based on modified USTGCN (2 clusters) of road number 15 on one of the weekends 

of January,2020. (Training set: November 2019, December 2019). Here, tier-0 means road number 15 belongs to 

cluster number 1 
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Figure 6. Prediction result based on USTGCN of road number 15 on a weekday of January,2020. (Training set: 

November 2019, December 2019). Here, tier- 0 means road number 15 belongs to cluster number 1. But in 

USTGCN the clustering was not performed 

 
Figure 7. Prediction result based on USTGCN of road number 80 on one of the weekday of January,2020. 

(Training set: November 2019, December 2019). Here, tier-1 means road number 80 belongs to cluster number 2. 

But in USTGCN the clustering was not performed 

9.2 Prediction comparison of a weekday: 

 
Figure 8. Prediction result based on USTGCN of road number 80 on one of the weekday of January,2020. 

(Training set: November 2019, December 2019). Here, tier-1 means road number 80 belongs to cluster number 2. 

But in USTGCN the clustering was not performed 

 

X. SUMMARY 

In this work, we have developed a model based on the USTGCN for traffic forecasting using the dataset collected 

from Google Maps data. We have introduced a new method in order to cluster the roads with similar characteristics 

(see VI-B) extracted from the training set. Our modified USTGCN leverages the cluster information (see VI) and 

generates separate embeddings for each cluster (see VII). We have showed that our modified USTGCN performs 

better than USTGCN for prediction up to 15 minutes while using November 2019 and December 2019 data as 

training set and January 2020 data as validation set (see VIII-E) and compared the prediction results of roads 

belonging to the different clusters with the existing USTGCN. We have concluded that, our best perform- ing 

modified USTGCN is less sensitive to the outliers when generating predictions for weekdays and weekends 

compared to the existing USTGCN (see IX). We have also showed that, the sparsity in the training data hampers 

the performance of all variants of USTGCN (see table IV). 
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XI. FUTURE WORK 

In this work, we have proposed a modified USTGCN for traffic forecasting using the dataset of Mirpur area of 

Bangladesh collected from Google Maps. For each layer of Graph Convolution, we have used single Spectral 

Convolutional operator described in [7]. This kind of operators aggregate normalized features from the 

neighborhood of target node to generate embeddings. In traffic forecasting domain, it is important to discriminate 

between different traffic features while aggregating the neighborhood feature information to increase the model 

expressiveness and incorporate the inherent traffic network structure during training the GNN model. In the most 

recent work [9], the authors demonstrated the failures of different aggregator functions and proposes multiple 

aggregators with degree-scalers which generalize the sum aggregator to capture and exploit the structure of the 

input graph. The idea of using different aggregators can be extended to be used in USTGCN framework in order to 

increase the robustness and expressiveness of the model. If we can do this, we will be one step closer in reasoning 

behind the model generated predictions. 
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