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Abstract:- The main objective of this paper is to optimize the energy efficiency and network lifetime of Internet of Things (IoT) devices 
using meta-heuristic optimization technique. It also aims to adjust the transmit power of the nodes based on network connectivity and signal 

strength. Hence in this paper, Energy Efficiency and Network Lifetime Optimization with Adaptive Power Control (EENLO-APC) 

technique for IoT networks is proposed.  In this technique, energy efficiency and network lifetime of IoT devices are optimized by applying 
Electric Fish Optimization (EFO) algorithm. After this, the transmit power of the IoT end device is adaptively adjusted based on the 

connectivity and Signal to Noise Ratio (SNR) metrics.  By simulation results, it has been shown that EENLO-APC achieves maximum 

energy efficiency and packet delivery ratio with reduced packet loss rate, while varying the number of nodes and data rate. 
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1. Introduction 

By incorporating the idea of intelligence or smartness, the Internet of Things (IoT) is revolutionising and 

expanding fundamental study domains into new dimensions. A few instances of this transformation are the new 

domains, which include intelligent transportation systems, autonomous vehicles, smart homes, smart cities, 

smart industries, and smart healthcare. Other well-known IoT application domains include automated grids for 

industrial metering, automated security devices like alarms and surveillance systems, vehicle telematics for fleet 

management and navigation, remote maintenance for industrial automation and vending machine control, and 

manufacturing control for production chain monitoring [1]. The aim of inventions towards a smarter and greener 

society for sustainability reasons is what has led to the incorporation of IoT in nearly every area of human 

existence. The number of IoT use cases being implemented is growing daily. There were 500 million Internet-

connected devices in 2003, compared to 6.3 billion people on the planet. By 2022, there will likely be over 50 

billion linked devices worldwide, which is four times as many people as there are on Earth. This predicted high 

growth demonstrates both our reliance on IoT-enabled devices and the exponential rate at which the Internet of 

Things is expanding globally [2]. 

Two main obstacles stand in the way of smaller and smarter devices realising a smarter world through IoT 

enabled connected gadgets: communication and computational power limitations resulting from limited energy 

resources. The majority of sensor-enabled Internet of Things devices primarily rely on batteries for power. 

When sensors are in operation, these devices use battery power to gather and transmit data among nearby 

devices. Data analysis improves the sensed and gathered information's accuracy. Nevertheless, the analysis 

results in an increase in IoT device energy usage [3]. In order to enable the automation of intelligent decision-

making, sensor-enabled smart devices continuously sense, receive, compute, and distribute information. The 

power supply to the terminals is a significant barrier to the growth of the Internet of Things. It is very crucial to 

research the upkeep of terminals' sustainable operation, as wired and battery power are unable to adequately 

address the issue of energy scarcity in terminals. In order to prolong the running duration of network terminals, 

energy harvesting technology is regarded as a crucial way to lower system energy consumption and prolong 

device operation. Numerous terminals are installed indoors, where solar energy supply is not suitable, because 

traditional renewable energy sources like wind and solar are sporadic and unpredictable [4]. 

The incorporation of sustainability in recent greener and smarter world research has made the optimisation of 

energy usage in sensor-enabled Internet of Things devices one of the basic challenges. Various energy-efficient 

ways have been established for sensor-enabled Internet of Things (IoT) devices by technical standardisation 

groups as the European Telecommunications Standard Institute (ETSI), 3rd Generation Partnership Projects 

(3GPP), and the Institute of Electrical and Electronics Engineering (IEEE) [5]. 

In IoT, effective power control is essential for a number of reasons. Because IoT devices frequently run on tiny 

batteries or restricted energy sources, they require an effective power management system to increase their 

operational lifetime and reduce the frequency with which they need to be replaced or recharged. By optimising 

energy use and minimising waste and resource conservation, efficient power regulation in IoT is essential to 
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lowering ecological impact. Furthermore, good power management makes it possible for IoT devices to function 

dependably in a variety of settings and conditions, assuring continuous operation and improving overall efficacy 

and performance. Ensuring sustainability, extending the lifespan of equipment, and maximising the functionality 

of connected devices all depend on effective power regulation in the IoT [6]. 

Because a variety of computing and communication factors are taken into account for scalable IoT use case 

implementation scenarios, cross layer optimisations have been demonstrated to be superior in the literature. 

Because of the inherent complexity and variety of requirements of IoT systems, cross-layer approaches must be 

implemented. Enhancing the efficiency, dependability, and performance of IoTs networks is made possible by 

integrating cross-layer techniques, which promote better coordination and communication among various 

protocol layers. Cross-layer approaches provide optimised resource utilisation, decreased latency, greater 

security, and better adaption to dynamic IoT environments by enabling information flow and coordination 

across many layers, including the physical, data connection, network, transport, and application layers. By 

addressing the issues of scalability, QoS, and energy efficiency, this method makes IoT systems more adaptable 

and responsive, supporting the unique requirements of many applications and enhancing the resilience and 

functionality of IoT networks [7][8]. 

1.1 Problem Identification 

The challenges posed by IoT devices with limited resources will be overcome by developing cross-layer 

approaches that are adapted to their constraints. Methods for reducing energy usage need to be examined while 

maintaining acceptable performance levels on devices with constrained memory, processing power, and battery 

life. The domain of standardisation efforts and interoperability protocols must be explored for cross-layer 

approaches in IoT. These optimisations should be made universally applicable to a broad range of IoT devices, 

platforms, and communication protocols for maximising energy efficiency and facilitating seamless integration 

and adoption. The possibility of combining artificial intelligence and machine learning techniques need to be 

examined to create cross-layer optimisations.  

This research work aims to  

• optimize the energy efficiency and extend the network lifetime of IoT using meta-heuristic 

optimization technique. 

• adjust the transmit power of the nodes based on network connectivity and signal strength. 

 

2. Related Works 

ELITE, a cross-layer OF is proposed that uses less energy and introduces the Strobe per Packet Ratio (SPR) as a 

routing parameter [9]. The number of transmitted strobes per packet as a result of the MAC layer's Radio Duty 

Cycling (RDC) regulations is indicated by SPR. This newly defined metric can distinguish between nodes based 

on the relative phase shift that currently exists between them when communicating. It is intended to be used in 

conjunction with asynchronous MAC protocols. ELITE attempts to choose a path that requires its nodes to 

receive fewer strobe transmissions. 

As a smart agriculture application, we put forth an IoT-based WSN architecture with various design tiers [10]. 

Agricultural sensors first gather pertinent data, then use a multi-criteria decision function to identify a collection 

of cluster heads. In order to accomplish reliable and effective data transmissions, SNR is also used to measure 

the strength of the signals on the transmission connections. By employing the linear congruential generator's 

recurrence, data transfer from agricultural sensors to base stations is secured. 

In order to maximise energy efficiency in wireless LoRa networks made up of LoRa end devices and a flying 

GW and prolong the network lifetime, deep reinforcement learning (DRL) is suggested [11]. Given the air-to-

ground wireless link and the availability of spreading factors, the skilled DRL agent can assign TPs and 

spreading factors to end devices in an efficient manner. Furthermore, the flying GW is allowed to allocate 

resources online and modify its optimal policy while on-board. Retraining the DRL agent with a smaller action 

space allows for this. 

An open-source cross-layer assessment framework is designed for Low Power Wide Area networks (LPWANs) 

[12]. With energy models, downlink messages, and adaptive data rate characteristics, it expands on the state-of-

the-art. Thus, it is possible to test and assess theories and transmission strategies. The LoRaWAN protocol is 

evaluated as a representative scenario. In order to effectively realise LPWANs in terms of energy efficiency and 

throughput, a cross-layer is essential. Broadcasting longer packets on quasi-static networks can reduce energy 

consumption by up to a factor of three. However, there will be an energy penalty in unfavourable dynamic 

circumstances. 

Through performance monitoring of underlying communication technologies, an energy-efficient framework is 

built for an ideal balance between the energy spent by connected devices in a complex and time-critical IoT 

system [13]. It also focuses on addressing the trade-off between network performance for communicating nodes 

and energy consumption. After the nodes for time-sensitive Internet of Things systems are modelled using 

Reinforcement Learning (RL), an Energy Harvesting MAC protocol is created. 

3. Proposed Methodology 
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3.1 Overview 

This paper proposes an Energy Efficiency and Network Lifetime Optimization with Adaptive Power Control 

(EENLO-APC) technique for IoT Networks. Figure 1 shows the block diagram of this technique.  As seen from 

the figure, in this technique, the energy efficiency and network lifetime of IoT devices are optimized by 

applying EFO algorithm. After this, the transmit power of each IoT end device is adaptively adjusted based on 

the connectivity and link quality metrics.   

 

 

 

 

 

 

 

 

Figure 1 Block diagram of EENLO-APC technique 

3.3 Optimizing Energy Efficiency using meta-heuristic Optimization 

In this phase, energy efficiency and network lifetime of IoT devices are optimized using   Electric Fish 

Optimization (EFO) algorithm. In this algorithm, a fitness function is derived in terms of energy efficiency and 

network lifetime. Then the nodes with maximum fitness function are selected. 

3.3.1 Estimation of Fitness function 

The energy efficient (EE) is defined using the following equation:  

)( CT PP

T
EE

+
=        (1) 

Where, T is the sum rate of the system and Pc is the circuit consumption power and PT is the transmission power 

The network lifetime (NL) is derived in terms of the energy consumption (Ec) and the number of data packets p 

as given below: 

p
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Then a fitness function of the ith node is derived as given by the following equation 
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Where v1, v2 and v3 are weight values in the range of (0,1), NLmax and EEmax are the maximum values of NL and 

EE, respectively 

3.3.2 EFO Algorithm 

Based on the fitness function derived in Eq. (3), energy efficiency and network lifetime of the IoT devices are 

optimized, using Electric Fish Optimization (EFO) algorithm [15].  

EFO is motivated by the growth of many optimization algorithms. In this technique, electric fish solutions are 

randomly initialized in the search space within the region limits, as specified in the following equation 

)( minmaxmin qqrandqqij ++=     (4) 

Where qij indicates the jth position  in the ith solution, max and min indicates the maximum and minimum limits 

of the region, respectively. 

In EFO, positions with higher occurrence utilize active electrolocation and other positions utilizes passive 

electrolocation.  

The occurrence value is defined within the maximum (fmax) and minimum (fmin) values of the fitness function. 

fi(t) = fmin + (
𝑓𝑤−𝑓𝑖

𝑓𝑤−𝑓𝑏

) (fmax - fmin)    (5) 

where fi(t) denotes the fitness of ith solution at tth iteration, 

 fw and fb denote the worst and best fitness values. 

The amplitude cost of the ith solution (Ai) is computed as  

Ai = s(Ai (t-1)+(1- s)fi      (6) 

where s is a value in range [0, 1]. 

The EFO algorithm has the following major steps: 

1. Construct the population q as defined by the below equation 

NjLBUBrandLBUBq jjjjij ,...2,1,*)( =−+−=  (7) 

Where N is the number of individuals and D is the dimension of each solution. 

2. While (t < tmax), 

Energy efficiency, 

Network lifetime 

EFO Algorithm 

Connectivity, Link 

quality 

ADR Policy 

Optimization Transmit power adjustment 
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Change each qi into binary mode as 

bqi = {
1    𝑖𝑓 𝑞𝑖𝑗 ≥ 0.5

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (8) 

3. Compute the fitness value of each qi based on  and Lnw as specified in the following qquation. 

)(.)(.)( 21 iLitf nwi  +=    (9) 

Where 21 , are weight values between (0,1) 

fi(qi) = zi × e +(1-zi) × (
BQi

𝐷
)  (10) 

Where, e is the error classification factor  

  z is the parameter that normalizes the components of the fitness function 

4.  Find the best individual qb. 

5. Select the nodes with maximum fitness function. 

6. Evaluate the performance with various measures. 

3.4 Adaptive Transmit Power Adjustment based on Connectivity  

After optimizing the energy efficiency using EFO, the transmit power (PT) of the node is adaptively adjusted 

based on the connectivity using Adaptive Data Rate (ADR) policy.  

3.4.1 Connectivity  

Due to the mobility of the nodes, the connectedness or number of connections (CC) of the system follows a 

probability (Pr). The greater the network connectivity, the higher the value of CC. 

The network connectivity probability is defined based on binomial theory, using the following equation: 

Pr(x =CC) = ∑ (
𝑛

𝑥
) ⌊

𝜋𝑟2

𝑠
(1 −

𝜋𝑟2

𝑠
)

𝑛−𝑥

⌋𝑛
𝑥=0     (11) 

where r is the radius of the nodes.  

3.4.2 Link Quality  

Measuring the link quality (LQ) at every node helps balance the load between nodes. The link quality can be 

measured in terms of Interference Rate (IR) and noise rate. As long as they both use the same radio link and are 

in range of each other's interference, transmissions on one wireless link may interfere with those on another. 

Noise may also have an impact on this. The achievable data rate is therefore greatly influenced by transmission 

interference and noise. 

3.4.3 Adaptive Data Rate (ADR) Policy 

ADR is a policy for optimizing the data rates and power consumption in the network. While optimizing the 

power consumption of the devices, it also ensures that the data can be retrieved at the gateways. In this policy, 

either the transmit power is reduced or the data rate is increased.  

After receiving the data, each gateway executes the ADR policy. The gateway requires the SNR values from 

each received uplink data and LQ along the link lj. 

The margin value  is measured as 

  = (SNRmes - SNRreq) + LQj       (12) 

where SNRreq and SNRmes represent the required and measured SNR values at each gateway. 

Then the following steps are executed:  

_____________________________________________________________ 

ADR Policy 

_____________________________________________________________ 

1. Check Pr(x=CC) 

2. If Pr   1, then 

3.        Measure   

If   > 0 and   > L then 

     Decrease PT 

  Else if  < 0 

   Increase PT 

Else if  = 0 

   Keep the same PT 

 Else  

                      Keep the same PT 

______________________________________________________________ 

 

In this policy, initially the connectivity of the nodes is checked using Eq. (10). It there exist at least one 

connection, then the transmit power is adjusted by estimating the margin value. If the margin  is non-zero and 
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higher than a threshold L , then the additional PT is reduced . If it is negative, then the insufficient power is 

increased. If it is exactly becomes 1, then PT is not adjusted. On the other hand, if there is no active connection 

or Pr=0, then PT is not adjusted and kept the same value.  

4. Experimental Results 

4.1 Simulation Settings 

The proposed EENLO-APC technique has been implemented in the LoRaWAN cross-layer simulation 

framework [12]. The performance is compared with the existing Mean-Field Game (MFG) technique [8]. The 

performance metrics packet delivery ratio, packet loss rate, average residual energy and throughput are 

measured, by varying the nodes. Table 1 shows the simulation settings. 

 

Number  of Nodes 10 to 50  

Size of the topology 150m X 150m 

Propagation Model Two Ray Ground 

Antenna Model OmniAntenna 

MAC protocol IEEE 802.15.4 

Traffic Source CBR  

Packet size 512 bytes 

Traffic Rate 50Kb 

Initial Energy 12 Joules 

Transmit power 0.3 watts 

Receiving power 0.3 watts 

Simulation time 100 seconds 

Transmission range 30m 

Table 1 Simulation Settings 

 

4.2 Results & Analysis  

A. Varying the nodes 

The performances of the techniques are evaluated by varying the number of nodes from 10 to 50. 

 
Figure 2 Results of Packet delivery ratio Vs Nodes 

The packet delivery ratios of all the protocols are shown in Figure 2. From the figure, it can be seen that 

EENLO-APC has 2.2% higher delivery ratio than MFG. 

 
                Figure 3 Results of Packet loss rate Vs Nodes 
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The average packet loss rates of all the protocols are shown in Figure 3. From the figure, it can be seen that 

packet loss rate of EENLO-APC is 32% lesser than MFG, for varying the nodes. 

 
Figure 4 Results of Residual Energy Vs Nodes 

The average residual energies of all the protocols are shown Figure 4. From the figure, it can be seen that 

residual energy of EENLO-APC is 8.2% higher than MFG, for varying the nodes. 

 
                     Figure 5 Results of Throughput Vs Nodes 

The throughput measured for all the protocols are shown Figure 5. From the figure, it can be seen that 

throughput of EENLO-APC is 17% higher than MFG, for varying the nodes 

B. Varying the data rate 

The performances of the techniques are evaluated by varying the data rates from 50 to 250Kb/s 

. 

Figure 6 Results of Packet delivery ratio Vs Data rate 

The packet delivery ratios of the two techniques are shown in Figure 6. From the figure, it can be seen that 

EENLO-APC has 8% higher delivery ratio than MFG, for varying the rates. 
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Figure 7 Results of Residual Energy Vs Data rate 

The average residual energies of the two techniques are shown Figure 7. From the figure, it can be seen that 

residual energy of EENLO-APC is 4% higher than MFG, for varying the rates. 

 
Figure 8 Results of Throughput Vs Data rate 

The throughput measured for all the protocols are shown Figure 8. From the figure, it can be seen that 

throughput of EENLO-APC is 32% higher than MFG, for varying the rates. 

5. Conclusion 

In this paper, we propose Energy Efficiency and Network Lifetime Optimization with Adaptive Power Control 

(EENLO-APC) technique for IoT Networks.  In this technique, the energy efficiency and network lifetime of 

IoT devices are optimized by applying EFO algorithm. After this, the transmit power of each IoT end device is 

adaptively adjusted based on the connectivity and SNR metrics. The performance of EENLO-APC technique is 

compared with the existing MFG technique in terms of packet delivery ratio, packet loss rate, average residual 

energy and throughput. By simulation results, it has been shown that EENLO-APC achieves maximum energy 

efficiency and packet delivery ratio with reduced packet loss rate, while varying the number of nodes and data 

rate. 
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