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Abstract:- A basic idea in data mining and machine learning applications is outlier detection. Outlier identification and clustering frequently 
go hand in hand since the former can find outliers. Outlier identification was the primary focus of the majority of current research projects 

and clustering as two different aspects and their intimate relationship is less explored. However, considering such relationship could 

leverage cluster quality besides detection of outliers leading to dual benefits. Towards this end, we proposed an unsupervised machine 
learning (ML) framework for efficient detection of outliers from high dimensional datasets. An objective function is defined to improve 

cluster compactness leading to efficiency in outlier detection process. Further improvement of clustering process with problem 

transformation and usage of enhanced K-Means could result in an integrated approach that jointly archives quality clustering and outlier 
identification. We proposed an algorithm known as Learning based Outlier Detection (LbOD). Novelty of our algorithm lies in 

simultaneous approach in partition space, objective function and cluster optimization. A prototype is built to evaluate the proposed 

framework and algorithm for its ability to discover outliers considering multiple benchmark high dimensional datasets. Our empirical study 

has revealed that the LbOD algorithm outperforms many existing outlier detection methods.  

Keywords – Outlier Detection, Clustering, Unsupervised Learning, Machine Learning, High Dimensional Data 

 

1. INTRODUCTION 

In many real world applications large volumes of data to be processed. The dataset contains datapoints that are 

represented and used appropriately for deriving business intelligence. However, there may be some data points 

that are abnormal when compared with other data points. Such data points are known as outliers and detecting 

them has many useful applications. Outlet detection research has been around with various methods such as 

heuristic methods and learning based methods. With the emergence of artificial intelligence, the usage of machine 

learning is increasing to solve problems in applications of different domains. In this context outlier detection not 

only helps in solving problems but also improve the quality of data for machine learning and other data driven 

applications. Literature has rich information about various heuristic and other outlier detection methods. 

There is a connection between clustering and outlier identification. Enhancing cluster validity and outlier 

identification, the COR method effectively combines both objectives [6]. Hilal et al. [8] focused on anomaly 

detection in recent times are unsupervised models. Current mechanisms are being challenged by the rise of 

financial fraud. Because financial crime presents serious risk, fraud detection technologies are always being 

improved. Machine learning approaches such as regression for detection, grouping, and classification are 

highlighted in recent publications [10]. Meng et al. [12] provided ideas for future study by reviewing trajectory 

outlier identification systems based on multi-attribute representation, distance measurements, and algorithm 

improvements. Erhan et al. [15] examined anomaly detection in sensor systems, classifying approaches into data-

driven and traditional categories while taking into account topologies such as Cloud, Fog, and Edge. It draws 

attention to obstacles and effective solutions. Credit scoring, a hybrid ensemble model that combines balanced 

sampling with voting-based outlier detection performs better. Outperforming benchmark models, the model 

tackles unbalanced data difficulties and outlier adaptation [18]. Dhiman et al. [19] purposed of detecting 

anomalies in wind turbine gearboxes using SCADA data, an adaptive threshold and TWSVM approach is 

suggested. Outcomes demonstrate better performance compared to baseline classifiers. Avci et al. [20] examined 

and contrasts ML and DL techniques for structural damage detection (SDD) based on vibration. ML techniques 

that concentrate on feature extraction and classification perform better than conventional ones. Many existing 

methods dealing with outlier detection considering machine learning techniques showed deteriorated performance 

for many reasons. Moreover, there is an issue with scalability of the model besides its accuracy. Our contributions 

in this paper are listed below.  

1. We proposed an unsupervised machine learning (ML) framework for efficient detection of outliers from 

high dimensional datasets.  

2. We proposed an algorithm known as Learning based Outlier Detection (LbOD) whose novelty lies in 

simultaneous approach in partition space, objective function and cluster optimization.  
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3. A prototype is built to assess the suggested algorithm and framework for its ability to discover outliers 

considering multiple benchmark high dimensional datasets.  

This is the format for the rest of the paper. Section 2 examines the most current research on several techniques for 

detecting outliers. In Section 3, an automated machine learning-based approach for identifying outliers in high-

dimensional data is presented. Conversely, Section 4 showcases the findings from our empirical investigation 

using many high-dimensional datasets. In addition to outlining potential directions for further study, Section 5 

presents the results drawn. 

2. RELATED WORK 

This section examines current research on a range of techniques of outlier detection. Yang et al. [1] observed that 

stranger in groups are missed by conventional outlier detectors, which concentrate on individual items. The NR 

framework improves performance of current detectors by utilizing representative objects. Mensi et al. [2] found 

that outlier to other data points are used to identify them. To find outliers based on pairwise distance, Proximity 

Isolation Forest expands upon Isolation Forest. Enes et al. [3] explored and said that for many applications, time 

series are essential. In order to facilitate anomaly identification, a pipeline for grouping multivariate time series is 

presented in this study. Qais et al. [4] used a clustering approach using K-means and fuzzy c-means for outlier 

identification, induction heating safety was improved and 96% accuracy was attained. Osman et al. [5] regulated 

Biofeedback is included into serious games to help with good player behavior regulation and mental stress 

reduction. 

Liu et al. [6] found that there is a connection between clustering and outlier identification. Enhancing cluster 

validity and outlier identification, the COR method effectively combines both objectives. Carreno et al. [7] 

observed that unclosed impedes research in areas such as rare event, anomaly, novelty, and outlier identification. 

In this study, standardization is suggested. Hilal et al. [8] focused on anomaly detection in recent times are 

unsupervised models. Current mechanisms are being challenged by the rise of financial fraud. Brito et al. [9] 

utilized unsupervised techniques and SHAP for explainability, a novel approach to defect identification and 

diagnosis for rotating equipment is proposed. Sadgail et al. [10] investigated and found that because financial 

crime presents such a serious risk, fraud detection technologies are always being improved. Machine learning 

approaches such as regression for detection, grouping, and classification are highlighted in recent publications. 

Stetco et al. [11] examined artificial intelligence models for monitoring wind turbine status, validation, and data 

source categorization and regression. Model optimization and dataset problems are areas of future development. 

Meng et al. [12] provided ideas for future study by reviewing trajectory outlier identification systems based on 

multi-attribute representation, distance measurements, and algorithm improvements. Subbian et al. [13] showed 

how to overcome obstacles and successfully implement a robotic instrument for mTBI patient evaluation in an 

urban ED. Bashar and Nayak [14] observed that standard and neural network models are outperformed by 

TAnoGan, a GAN-based technique for anomaly identification in time series with sparse data. Erhan et al. [15] 

examined anomaly detection in sensor systems, classifying approaches into data-driven and traditional categories 

while taking into account topologies such as Cloud, Fog, and Edge. It draws attention to obstacles and effective 

solutions. 

Baur et al. [16] compared the effectiveness of deep spatial auto encoders to patch-based approaches in the 

unsupervised brain MR image anomaly identification process. Latent space constraints and absence of adversarial 

training requirements. Accurate and swift segmentations between slices point to potential uses as previous 

knowledge and in unsupervised lesion segmentation. Ruff et al. [17] developed in deep learning for anomaly 

detection enhance the detection of complicated datasets, bringing methods together and examining relationships 

between traditional and deep techniques. Zhang et al. [18] for credit scoring, a hybrid ensemble model that 

combines balanced sampling with voting-based outlier detection performs better. Outperforming benchmark 

models, the model tackles unbalanced data difficulties and outlier adaptation. Dhiman et al. [19] purposed of 

detecting anomalies in wind turbine gearboxes using SCADA data, an adaptive threshold and TWSVM approach 

is suggested. Outcomes demonstrate better performance compared to baseline classifiers. Avci et al. [20] 

examined and contrasts ML and DL techniques for structural damage detection (SDD) determined by vibration. 

ML techniques that concentrate on feature extraction and classification perform better than conventional ones. 

Yang et al. [21] addressed the issue of outlier pollution in conventional approaches, a mean-shift outlier detector 

is proposed. By eliminating the bias associated with outliers, the mean-shift approach enhances performance in 

outlier identification tasks. Zubaroglu et al. [22] processed is gaining popularity as more and more devices are 

connected and produce constant data streams. Accuracy, complexity, and basic method of recent algorithms are 

examined; popular tools and open problems are also covered. Chakraborty et al. [23] suggested to use ensemble 

probabilistic neural networks and stacked auto encoders to solve situations involving numerous outliers and class 

imbalance. The goal of future research is to expand to unsupervised techniques for various kinds of outliers. 

Thangaramya et al. [24] presented a novel secure routing method, FRCSROD, for WSNs that use outlier detection 

and fuzzy criteria. By identifying hostile nodes, FRDOA enhances energy efficiency, dependability, and security. 
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Belhadi et al. [25] presented herein for discerning anomalous human conduct from pedestrian data in smart cities. 

In less than 50 seconds, deep learning achieves 88% accuracy compared to data mining. 

Landauer et al. [26] observed that, though their massive, unstructured data makes them difficult to analyze, log 

files are essential for cyber security. Logging techniques and goals are reviewed in this paper's classification of 

log clustering approaches. Djenouri et al. [27] examined the detection of outliers in urban traffic, classifying 

techniques into flow and trajectory detection. Different strategies are spoken about, emphasizing patterns. Tang 

et al. [28] approached to multi-kernel SVM with K-means clustering for large-scale data categorization is 

presented. The process chooses typical examples, decreases the amount of human labelling, and greatly increases 

accuracy and efficiency. Organero [29] stated that for outlier identification and sub-activity classification, a unique 

method integrates Human Activity classification (HAR) with DRNN. The approach is tested in many settings and 

yields encouraging outcomes. Chen et al. [30] experimented on actual datasets demonstrate that LRTG 

outperforms existing techniques. Adaptive neighbors, l2,1-norm, and Tucker decomposition are integrated in a 

unique multi-view clustering technique called Low-Rank Tensor Graph (LRTG). 

Fitriyani et al. [31] used the Cleveland and Statlog datasets, the HDPM achieved accuracy rates of 98.40% and 

95.90%. The goal of HDCDSS is to enhance early detection of cardiac disease. Rogers et al. [32] offered a 

framework for structural health monitoring (SHM) using non-parametric grouping based on Bayesian principles. 

This method adjusts live, provides excellent accuracy, and does not require pre-collected training data. Population-

level applicability will be included in future development. Thole et al. [33] indicated the flows of dust and export 

production close to the Kerguelen Plateau, with export production being reduced during glaciers. During 

interglacials, the Antarctic Zone shows increased export production, highlighting Fe fertilization and changes in 

the Southern Ocean's upwelling. Fitriyani et al. [34] suggested use ensemble learning, iForest, and SMOTETomek 

to create a Disease Prediction Model (DPM) regarding hypertension and type 2. On four datasets, the DPM 

achieved good accuracy. Deepak et al. [35] provided a an autoencoder variant that outperforms current techniques 

in identifying abnormalities in surveillance footage. 

Mishra et al. [36] expanded of IoT presents security threats because of power and cost limitations, particularly the 

potential for DDoS assaults. Future security initiatives and intrusion detection models are examined in this study. 

Kraus et al. [37] examined the detection of clusters in scatterplots on 2D, 3D, and virtual reality displays. Better 

overview was achieved with restricted VR regions, while scatterplot representations benefited from 3D VR's 

increased memory and orientation for cluster recognition. Liu et al. [38] presented SO-GAAL, a method for 

detecting outliers that directly generates prospective outliers to overcome high-dimensional data sparsity. 

Performance is further improved by expanding to MO-GAAL with numerous generators, especially on a variety 

of datasets. Subsequent research endeavors to incorporate group learning for stability and investigate distinct 

network configurations for a range of data kinds. Wang et al. [39] approached for detecting outliers, highlights 

their advantages and disadvantages, and suggests areas for further study to be improved. Usama et al. [40] 

examined the growing field of unsupervised machine learning in networking and describes its uses, including 

anomaly detection and traffic engineering. It highlights difficulties and potential research paths while offering 

insights into current advances. Many existing methods dealing with outlier detection considering machine learning 

techniques showed deteriorated performance for many reasons. Moreover, there is an issue with scalability of the 

model besides its accuracy. 

 

3. PRELIMINARIES 

In this section, we provide an overview of K-means and entropy. To address K-means' susceptibility to outliers, 

a variant known as K-means--[17] was created. Few outliers are known to diverge the centroids from their inherent 

locations. In order to address this, certain data points that are distant from their centroids are considered outlier 

candidates. These data points are not given a cluster name and are not updated centroidally. K-means and its 

assigning data points and updating centroid are two iterative phases—are similar. We determine the separations 

between every data point and the closest centroid throughout the data point assignment process. We then rank the 

distances, identifying potential outliers as the data points with the highest or lowest distances. Since these outlier 

candidates aren't given cluster names, K-means updates the centroid in the same way. It is noteworthy that during 

the iteration, the outlier candidates are evolving. K-means requires two input parameters, whereas K-means just 

requires the number of clusters and the K and o outliers. Regarding its clean mathematical formulation, 

convergence, and model effectiveness, it has many qualities with K-means. Ref [19] makes clear that entropy or 

total correlation alone is insufficient for outlier spotting. They put forth the following new measure of holoentropy. 

In holoentropy, the overall relationship between the random vector Y and its entropy are added together to form 

the holoentropy HL(Y), which may be stated as the sum of the entropies for all characteristic. Based on 

information theory, holoentropy is an outlier identification measure that handles categorical data and accounts for 

both total correlation and entropy. For a tidy and effective solution, we derive our suggested goal function, which 

is based on holoentropy associated with K-Means algorithm.  
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4. PROPOSED METHODOLOGY 

This section presents the proposed methodology used for outlier detection in high dimensional data efficiently. 

The methodology includes proposed outlier detection framework,  it’s mechanisms and underlying algorithm. 

4.1 Problem Definition  

Provided a high dimensional dataset proposing a machine learning based framework to detect outliers efficiently 

is the challenging problem considered. 

4.2 The Proposed Outlier Detection Framework 

The unsupervised machine learning model serves as the foundation for the suggested outlier identification 

approach. The framework's architecture allows it to process high-dimensional data as input and produce output in 

the form of identified outliers. A particular data city is put through an audition process in order to use clustering 

to exploit a methodology. Clustering method divides data points into number of categories. Strange values among 

data points which are dissimilar when compared to other values are known as outliers. There are many applications 

linked to outlier detection. The outlier detection methods help in solving many real time problems.  

 

 
Figure 1: Overview of the proposed outlier detection of framework 

 

Sometimes detection of outliers itself is useful in applications like credit code fraud detection. Figure 1 shows the 

proposed framework designed for automatic finding outliers in a large-scale data collection.  

4.3 Objective Function  

Outlier identification and cluster analysis are closely related activities. A few outlier points may quickly destroy 

a cluster's structure; in contrast, outliers are specified by the cluster idea and are identified as points that belong 

to none of the clusters. We concentrate on the clustering based outlier detection, the proposed approach, in order 

to address this difficulty. In particular, after identifying o points as outliers, the remaining occurrences are split 

into K clusters by performing the outlier identification and clustering tasks in parallel. Corresponding symbols 

used in the next sections are displayed in Table 1. A small number of outliers might undermine the cluster 

structure, and these outliers want to be recognized by the cluster boundary. It is similar to a chicken-and-egg 

dilemma due to the coupling relationship between outlier identification and cluster analysis. We draw inspiration 

from consensus clustering [23], which combines many fundamental divisions created to prevent the circular 

dependency problem in combined approach considering outlier detection and clustering, the data should be 

thoroughly fused to minimize the bad effects of outliers. Furthermore, the clusters are necessary for the definition 

of outliers. The two considerations mentioned above encourage us to create several simple partitions in order to 

convert the information into partition space from the original feature space. This procedure is comparable to 

consensus clustering's fundamental partition generation approach [45], [46]. With n points and d features, let X 

be the data matrix. When X is divided into K distinct clusters, it may be shown as a set of K object subsets 

including a vector label 𝜋 =  (𝐿𝜋(𝑥1),··· , 𝐿𝜋(𝑥𝑛)), where 𝑥1 is mapped by 𝐿𝜋(𝑥1) a label in K. The r fundamental 

partitions 𝛱 =  {𝜋𝑖},1 ≤  𝑖 ≤  𝑟 , may be obtained by applying certain basic partition generation strategies, 

including K-means clustering with varied cluster counts. For 𝜋𝑖 , let 𝐾𝑖  denotes cluster number and let 𝑅 =
∑ 𝐾𝑖

𝑟
𝑖=1 . Then, using Π, the following B = {b_l},1 < l ≤ n, binary matrix, may be obtained: 

 

𝑏𝑙 = (𝑏𝑙,1, … , 𝑏𝑙,𝑖 , … , 𝑏𝑙,𝑟),             with  

𝑏𝑙,𝑖 = (𝑏𝑙,𝑖1, … , 𝑏𝑙,𝑖𝑗 , … , 𝑏𝑙,𝑖𝐾𝑖),     and                        (1) 
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𝑏𝑙,𝑖𝑗 = {
1, 𝑖𝑓 𝐿𝜋𝑖

(𝑥𝑙) = 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  

It is important to remember that creating fundamental divisions does not need the use of a particular method. To 

construct basic partitions, K-means with varying cluster counts is advised for efficiency and simplicity. Based on 

the fundamental divisions produced by K-means, our proposed approach nonetheless yields encouraging results 

despite K-means' susceptibility to outliers. The binary value represents the information unique to cluster 

membership, which is created in accordance with the definition of outliers. Because of these two characteristics, 

the binary space is preferable to the continuous space in that it facilitates the identification of outliers due to its 

categorical traits. For instance, a popular measure for detecting outliers in categorical data is holoentropy [19]. 

The authors of Ref [19] sought to reduce the dataset's Holoentropy after removing the outliers. Here, we're 

assuming that the entire dataset has a cluster structure. As a result, minimizing each cluster's Holoentropy makes 

more sense. In this method, instead of the complete dataset becoming compact once the outliers are eliminated, 

the clusters do. Therefore, we provide our intended purpose for the proposed approach is as follows:, depending 

on the Holoentropy of each cluster. 

min
𝜋

∑ 𝑝𝑘𝐻𝐿(𝐶𝑘)𝐾
𝑘=1 ,             (2) 

Where π is the cluster indicator and 𝑝𝑘+  =  |𝐶𝑘|/(𝑛 −  𝑜). HL(•)  referred in a definition earlier covers K clusters 

C1∪•••∪C_K = X\O, with 𝐶𝑘 ∩ 𝐶𝑘 ˈ  =  ∅  if 𝑘 ≠ 𝑘 ˈ. In Eq. 2, the objective function is the weighted Holoentropy 

linked to every cluster and 𝑝𝑘 is based on size of cluster. Beyond this work, we think of discovering K and o is 

associated with an orthogonal issue. Here, the variables of our suggested method—which uses the same setup as 

K-means—are the K and o denoting number of clusters and outliers respectively [17]. An efficient solution is 

provided in the next section by addressing the issue expressed in Eq. 2 by providing an objective function based 

on the binary matrix as expressed below.  

∑ 𝑝𝑘𝐻𝐿(𝐶𝑘) ∝ ∑ ∑ ∑ ∑ 𝐻(𝐶𝑘,𝑖𝑗),
𝐾𝑖
𝑗=1

𝑟
𝑖=1𝑏𝑙∈𝐶𝑘

𝐾
𝑘=1

𝐾
𝑘=1  and  

𝐻(𝐶𝑘,𝑖𝑗) = −(1 − 𝑝𝑘,𝑖𝑗)𝑙𝑜𝑔(1 − 𝑝𝑘,𝑖𝑗) − 𝑝𝑘,𝑖𝑗 log 𝑝𝑘,𝑖𝑗,           

where the Shannon entropy is denoted by H and the probability that 𝑏𝑙,𝑖𝑗 =  1   in the ij-th column of 𝐶𝑘 is 

represented by 𝑝𝑘,𝑖𝑗. We offer the following lemma to clarify the meaning of 𝑝𝑘,𝑖𝑗 in Eq. (3). 

Lemma 1. In K-Means clustering applied on binary dataset, k-th centroid is computed to satisfy: 

𝑚𝑘 = (𝑚𝑘,1, … , 𝑚𝑘,𝑖 , … , 𝑚𝑘,𝑟),   with 

𝑚𝑘,𝑖 = (𝑚𝑘,𝑖1, … , 𝑚𝑘,𝑖𝑗 , … , 𝑚𝑘,𝑖𝐾𝑖
),     and                      (4) 

 𝑚𝑘,𝑖𝑗 = ∑
𝑏𝑙,𝑖𝑗

|𝐶𝑘|
= 𝑝𝑘,𝑖𝑗 , ∀ 𝑘, 𝑖, 𝑗.𝑏𝑙,𝑖𝑗∈𝐶𝑘

 

Lemma 1's proof is clear from the centroid's arithmetic mean in clustering process. Lemma 1 leads us to conclude 

that the issue linked to Eq. (3) is related to clustering process. 

Theorem1. When applying K-means to B's 𝑛 − 𝑜 inliers, we obtain 

max ∑ 𝑝𝑘 ∑ ∑ 𝑝𝑘,𝑖𝑗 log 𝑝𝑘,𝑖𝑗
𝐾𝑖
𝑗=1 ⇔ 𝑚𝑖𝑛𝑟

𝑖=1
𝐾
𝑘=1 ∑ ∑ 𝑓(𝑏𝑙 , 𝑚𝑘)𝑏𝑙∈𝐶𝑘

𝐾
𝑘=1 ,         (5) 

where 𝑚𝑘  is the 𝑘 − 𝑡ℎ  centroid as expressed in Eq. (4) while the distance function 𝑓(𝑏𝑙 , 𝑚𝑘)  =

 ∑ ∑ 𝐷𝐾𝐿(𝑏𝑙,𝑖𝑗‖𝑚𝑘,𝑖𝑗)
𝐾𝑖
𝑗=1

𝑟
𝑖=1 , here 𝐷𝐾𝐿(· || ·) is the KL-divergence.  

Proof. The Bregman divergence [47] indicates that we have 𝐷𝐾𝐿(𝑠||𝑡)  =  𝐻(𝑡)  −  𝐻(𝑠)  + (𝑠 −  𝑡)𝑇𝛻𝐻(𝑡), 

where two vectors of the same length are denoted by s and t. Next, we begin with the right side of equation (5). 

∑ ∑ 𝑓(𝑏𝑙 , 𝑚𝑘)𝑏𝑙∈𝐶𝑘
𝐾
𝑘=1 = ∑ ∑ ∑ ∑ (𝐻(𝑚𝑘,𝑖𝑗) − 𝐻(𝑏𝑙,𝑖𝑗) + (𝑏𝑙,𝑖𝑗 − 𝑚𝑘,𝑖𝑗)

𝑇
∇𝐻(𝑚𝑘,𝑖𝑗)) =

𝐾𝑖
𝑗=1

𝑟
𝑖=1𝑏𝑙∈𝐶𝑘

𝐾
𝑘=1

∑ |𝐶𝑘| ∑ ∑ 𝐻(𝑚𝑘,𝑖𝑗) −
𝐾𝑖
𝑗=1

𝑟
𝑖=1

𝐾
𝑘=1 ∑ ∑ ∑ ∑ 𝐻(𝑚𝑘,𝑖𝑗)

𝐾𝑖
𝑗=1

𝑟
𝑖=1𝑏𝑙∈𝐶𝑘

𝐾
𝑘=1          (6) 

The above equation holds due to ∑ (𝑏𝑙,𝑖𝑗 − 𝑚𝑘,𝑖𝑗)𝑏𝑙∈𝐶𝑘
, When considering the binary matrix B, the second term is 

a constant. Lemma 1 leads us to the conclusion of the proof. 

Remark 1. Theorem 1 reveals how K-means on B and the second component of Eq. (3) are equal. This suggests 

that the straightforward K-means with KLdivergence on every dimension may effectively tackle a portion of this 

complicated problem. 

4.4 Proposed Algorithm 

We proposed an algorithm known as Learning based Outlier Detection (LbOD). Novelty of our algorithm lies in 

simultaneous approach in partition space, objective function and cluster optimization. 

 

Algorithm 1: Learning based Outlier Detection (LbOD) 

Input: Data X, partitions r, number of clusters K and outliers o 

Output: Clusters K and outliers O 

1. Begin  

2. rCreatePartitions(X) 

3. (𝐵, �̃�)CreateBinaryMatrices()  
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4. KInitializeCentroids(𝐵, �̃�) 

5. While objective value is unchanged 

6.    MCompute distance between data points and nearest centroid 

7.    outliersFindPointsOfHighestDistance() 

8.    Assign other points to centroids nearest 

9.    Compute arithmetic mean to update clusters 

10. End While  

11. End 

Algorithm 1: Learning based Outlier Detection (LbOD) 

As presented in algorithm it takes the data number of partitions number of clusters and outliers as input and 

produces clusters and also identification of outliers through clustering process. The algorithm is based on means 

optimization process. The algorithm also addresses two challenges associated with the optimization problem. 

Since K-means clustering can resolve the second half of Eq. (3), we should focus on turning the issue towards 

solution with K-Means. Given that Theorem 1 indicates that 1 − 𝑝𝑘,𝑖𝑗   tough to incorporate into K-means 

clustering, we intend to represent 1 − 𝑝𝑘,𝑖𝑗  by inserting another binary matrix �̃� = {𝑏�̃�} ,1 ≤  𝑙 ≤  𝑛  in the 

following manner.  

�̃�𝑙 = (�̃�𝑙,1, … , �̃�𝑙,𝑖 , … , �̃�𝑙,𝑟),       with 

�̃�𝑙,𝑖 = (�̃�𝑙,𝑖1, … , �̃�𝑙,𝑖𝑗 , … , �̃�𝑙,𝑖𝐾𝑖), and                       (7) 

�̃�𝑙,𝑖𝑗 = {
0, 𝑖𝑓 𝐿𝜋𝑖

(𝑥𝑙) = 𝑗

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Eq. (7) is also used to construct �̃� ̃ from Π. �̃� ̃ is equivalent to flipping B when compared to the binary matrix B 

in Eq. (1). The variables like  (𝐾𝑖 − 1)-of-𝐾𝑖 and 1-of-𝐾𝑖 associated with the initial data are represented by �̃� and 

B, respectively. By using Equation (4) to define m ̃_kk in terms of �̃�, we are able to derive 

        �̃�𝑘,𝑖𝑖𝑗 = 1 − 𝑚𝑘,𝑖𝑖𝑗 = 1 − 𝑝𝑘,𝑖𝑖𝑗  .  

            The issue in Eq. (3) is transformed into clustering optimization based on �̃� and B.  

Theorem2. When 𝑛 − 𝑜 inliers associated with [𝐵 �̃�] are subjected to K-Means, we have  

min
𝜋

∑ 𝑝𝑘𝐻𝐿(𝐶𝑘) ⇔ min ∑ ∑ (𝑓(𝑏𝑙 , 𝑚𝑘) + 𝑓(�̃�𝑙 , �̃�𝑘))

𝑏𝑙∈𝐶𝑘

,

𝐾

𝑘=1

𝐾

𝑘=1

 

where 𝑚𝑘, �̃�𝑘 are the distance function and the k-th centroid determined by Eq. (4). 

𝑓(𝑏𝑙 , 𝑚𝑘) = ∑ ∑ 𝐷𝐾𝐿(𝑏𝑙,𝑖𝑗‖𝑚𝑘,𝑖𝑗)
𝐾𝑖
𝑗=1

𝑟
𝑖=1 , 𝑓(�̃�𝑙 , �̃�𝑘) = ∑ ∑ 𝐷𝐾𝐿(�̃�𝑙,𝑖𝑗‖�̃�𝑘,𝑖𝑗)

𝐾𝑖
𝑗=1

𝑟
𝑖=1 , and 𝐷𝐾𝐿(· || ·)  is theKL-

divergence. 

Remark 2.  K-means cannot be used to solve the issue in Eq. (3) regarding the binary matrix B. To represent 1 −
pk,ij, We nontrivially add an additional binary matrix B ̃, which is B flipped. This allows clustering on [B ̃] to 

construct the entire problem, as shown in Theorem 2. Benefits include both inheriting the K-means algorithm's 

efficiency, and suitability for scalable clustering and detection of outliers, and simplifying the issue with a clean 

mathematical formulation. 

  The first difficulty, which is the issue with inliers in Eq. (2) by employing the auxiliary matrix B, is fully resolved 

by Theorem 2. By doing this, a simple K-means solution is transformed into a whole one. In the subsequent 

section, we address the second problem, which operates on all data points instead of n-o inliers. 

In this work, we investigate the proposed clustering approach, that performs splits to the data in parallel and 

identifies outliers. As a result, the operations of clustering and outlier identification are carried out using the same 

framework. As centroids associated with K-means have probability of being outliers, they shouldn't contribute to 

them. Driven by K-means [17], outliers are defined as places that deviate significantly from the nearest centroid. 

The problem considered in the solution is linked to partition space’ Holoentropy while the K-means focused on 

feature space in general. Then, utilizing the auxiliary matrix B̃, we formulate the issue as a optimization of K-

means. K-means——is a method used to solve the issue in Eq. (2), which yields K clusters and outlier set O—

after careful modification and derivation. Algorithm 1 provides a summary of our suggested clustering procedure 

with outlier elimination. We then examine the time complexity and convergence of Algorithm 1's property. First, 

we create R basic partitions in Line 1. These are typically completed by K-means clustering with various cluster 

numbers. The processing time for this phase is 𝑂(𝑟𝑡 ˈ𝐾𝑛𝑑), where 𝑡 ˈ and 𝐾  stand for the average number of 

iterations and clusters, respectively. A comparable temporal complexity, O(tKnR), is indicated by lines 5-8 for 

the typical K-means-- method, where binary matrices’ dimension expressed as 𝑅 =  ∑ 𝐾𝑖
𝑟
𝑖=1  i. Algorithm fines 

longest distances in order to find outliers. It is important to remember that parallel computing may be used to 

create R basic partitions, significantly the duration of execution. Furthermore, when compared to the total number 

of points (n), 𝑡 ˈ, 𝑡, 𝑟, and R are quite small. Thus, our technique is easily scalable in clustering to discover outliers, 

with its time complexity effectively linear in the number of points. Furthermore, Algorithm 1 ensures local 

optimum with optimized convergence in clustering.   
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4.5 Dataset Details 

Datasets used in this paper are available in [41], [42] and [43]. Each dataset is of specific type with a different 

number of instances, number of features, number of outliers and number of clusters. These are high dimensional 

datasets that are widely used in outlier detection research. 

 
Figure 2: Shows the data distribution dynamics of different benchmark datasets 

As presented in Figure 2, each dataset is provided with details such as type of dataset, number of instances, number 

of features, number of clusters and number of outliers respectively. 

4.6 Evaluation Metrics  

The performance of proposed outlay detection method is evaluated with different metrics such as Normalized 

Mutual Information (NMI), Rand Index (Rn), Jaccard index and F-measure as expressed in Eq. 8, Eq. 9, Eq. 10 

and Eq. 11 respectively.   

𝑁𝑀𝐼 =
∑ 𝑛𝑖𝑗𝑙𝑜𝑔

𝑛.𝑛𝑖𝑗

𝑛𝑖+∙𝑛+𝑗
𝑖,𝑗

√(∑ 𝑛𝑖+𝑙𝑜𝑔
𝑛𝑖+

𝑛𝑖 )(∑ 𝑛𝑗+𝑙𝑜𝑔
𝑛+𝑗

𝑛𝑗 )

                              (8) 

𝑅𝑛 =
∑ (

𝑛𝑖𝑗
2

)−∑ (
𝑛𝑖+

2
)∙∑

(
𝑛+𝑗

2
)

(𝑛
2)

⁄𝑗𝑖𝑖,𝑗

∑
(

𝑛𝑖+
2

)

2
⁄ +𝑖 ∑

(
𝑛+𝑗

2
)

2
⁄

𝑗 −∑ (
𝑛𝑖+

2
)𝑖 ∙∑

(
𝑛+𝑗

2
)

(𝑛
2)

⁄𝑗

                  (9) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =  
|𝑂∩𝑂∗|

|𝑂∪𝑂∗|
                                                      (10) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ∗
𝑝𝑟𝑒𝑐𝑖𝑡𝑖𝑜𝑛·𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑡𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                        (11) 

NMI and Rn are used to validate cluster formation as part of the proposed outlier detection methodology. The 

Jaccard and F-measure are employed to measure accuracy in detection of outliers.  

 

5. EXPERIMENTAL RESULTS 

This section presents the results of our experiments made with number of benchmark datasets described in section 

4.5. The performance of the proposed outlier detection method is evaluated in terms of various metrices specified 

in section 4.6. Performance of the proposed outlier detection method is also compared with number of state of the 

art methods and found the significance of the proposed approach in outlier detection. 

Dataset NMI 

K-means K-means-- LbOD 

Ecoli 65.05 64.18 64.92 

Yeast 20.68 17.33 21.49 

Caltech 79.05 77.1 89.73 

sun09 20.18 12.17 22.67 

Fbis 12.18 33.7 54.98 

k1b 52.95 50.17 55.15 

re0 20.2 18.06 34.88 

re1 19.66 15.49 38.15 

tr11 10.29 21.84 62.63 
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tr23 7.89 12.68 26.03 

Wap 43.36 33.17 50.78 

Glass 37.25 37.26 39.82 

Shuttle 23.55 26.16 36.15 

Kddcup 1.46 72.22 86.72 

Table 1: Performance comparison in terms of NMI 

 

As presented in Table 1, the performance of outlier detection methods in terms of NMI is provided against number 

of datasets. 

 

 
Figure 3: Performance comparison among outlier detection methods in terms of NMI 

 

As president in Figure 3, the performance comparison among outlier detection methods in terms of NMI is 

provided. It is observed from the results that the proposed outlier detection method showed better performance 

over existing methods against all the datasets used in experiments. 

Dataset Rn 

K-means K-means-- LbOD 

Ecoli 67.83 62.95 70.42 

Yeast 15.12 13.78 20.11 

caltech 63.13 78.2 89.43 

sun09 18.81 10.80 22.2 

fbis -0.67 12.65 40.68 

k1b 43.99 44.22 42.01 

re0 11.66 13.28 25.59 

re1 4.15 5.4 23.3 

tr11 0.52 8.63 59.5 

tr23 -0.3 4.33 22.5 

wap 14.34 12.66 36.64 

glass 23.53 25.56 26.58 

shuttle 40.85 33.44 60.29 

Kddcup 0.04 81.21 94.76 

Table 2: Performance comparison in terms of Rn 

 

As presented in Table 2, the performance of outlier detection methods in terms of Rn is provided against number 

of datasets. 
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Figure 4: Performance comparison among outlier detection methods in terms of Rn 

 

As president in Figure 4, the performance comparison among outlier detection methods in terms of Rn is provided. 

It is observed from the results that the proposed outlier detection method showed better performance over existing 

methods against all the datasets used in experiments. 

 

Dataset Jaccard 

K-means K-means-- LbOD 

ecoli 4.36 58.54 51.12 

Yeast 6.25 20.52 51.92 

caltech 19.68 45.81 98.58 

sun09 1.93 3.71 2.49 

fbis 0.09 5.36 26.01 

k1b 0 0 21.35 

re0 5.56 9.5 29.70 

re1 0.54 17.09 29.52 

tr11 0 10.35 37.09 

tr23 0 6.89 15.01 

wap 1.11 11.29 23.31 

glass 13.64 32.28 35.54 

shuttle 0 5.39 6.51 

Kddcup 0.01 18.32 16.61 

Table 3: Performance comparison in terms of Jaccard 

 

As presented in Table 3, the performance of outlier detection methods in terms of Jaccard is provided against 

number of datasets. 

 
Figure 5: Performance comparison among outlier detection methods in terms of Jaccard 
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As president in Figure 5, the performance comparison among outlier detection methods in terms of Jaccard is 

provided. It is observed from the results that the proposed outlier detection method showed better performance 

over existing methods against all the datasets used in experiments. 

 

Dataset F-measure 

K-means K-means-- LbOD 

ecoli 8.21 76.18 67.45 

Yeast 11.79 33.61 68.36 

caltech 31.47 64.21 99.29 

sun09 3.78 7.15 4.86 

fbis 0.17 10.18 41.3 

k1b 0 0 35.16 

re0 10.52 17.35 45.78 

re1 1.09 29.21 45.58 

tr11 0 18.76 54.18 

tr23 0 12.92 26.19 

wap 2.17 20.28 37.80 

glass 23.64 49.56 52.42 

shuttle 0 10.22 12.29 

Kddcup 0.02 31.59 28.51 

Table 4: Performance comparison in terms of F-measure 

 

As presented in Table 4, the performance of outlier detection methods in terms of F-measure is provided against 

number of datasets. 

 

 
Figure 6: Performance comparison among outlier detection methods in terms of F-measure 

 

As president in Figure 6, the performance comparison among outlier detection methods in terms of F-measure is 

provided. It is observed from the results that the proposed outlier detection method showed better performance 

over existing methods against all the datasets used in experiments. 

 

Dataset Jaccard 

LOF COF LDOF FABOD iForest OPCA TONMF K-means-- LbOD 

ecoli 20.00 38.46 5.88 20.00 38.28 5.88 0.00 45.76 47.37 

yeast 11.45 11.45 5.11 13.85 23.75 26.71 8.66 14.38 50.47 

caltech 2.29 0.75 1.52 8.06 27.62 0.00 0.00 30.36 97.19 

sun09 1.01 2.04 0.00 2.04 2.04 0.00 0.00 3.27 2.27 

fbis 8.32 5.56 4.90 6.41 5.40 4.40 8.32 5.21 23.77 

k1b 0.00 0.00 0.00 0.84 0.00 0.00 1.69 0.00 20.53 

re0 2.59 5.31 3.07 6.34 2.83 11.79 7.13 8.82 28.50 

re1 21.85 15.44 15.19 18.83 16.85 17.77 16.98 16.75 27.64 

tr11 10.13 8.75 19.18 10.83 8.75 8.75 12.99 9.93 34.06 
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tr23 4.92 4.92 6.67 10.34 6.67 1.59 10.34 5.87 12.35 

wap 10.82 12.30 6.36 12.81 11.31 6.58 7.49 10.98 22.01 

glass 16.42 36.84 4.00 25.81 13.04 14.71 0.00 24.00 32.67 

shuttle 12.44 12.96 0.21 7.25 1.46 3.61 0.00 5.39 5.58 

Kddcup 11.54 15.26 3.40 8.50 21.22 15.66 8.66 15.06 15.98 

Table 5: Performance comparison among many outlier detection methods in terms of Jaccard index 

 

As presented in Table 5, the performance of more outlier detection methods in terms of Jaccard is provided against 

number of datasets. 

 

 
Figure 7: Performance comparison among more outlier detection methods in terms of Jaccard 

 

As president in Figure 7, the performance comparison among more outlier detection methods in terms of Jaccard 

is provided. It is observed from the results that the proposed outlier detection method showed better performance 

over existing methods against all the datasets used in experiments. 

 

Dataset F-measure 

LOF COF LDOF FABOD iForest OPCA TONMF K-means-- LbOD 

ecoli 33.33 55.56 11.11 33.33 55.56 11.11 0.00 61.58 64.21 

yeast 20.54 20.54 9.73 24.32 38.38 11.11 8.11 24.69 67.07 

caltech 4.48 1.49 2.99 14.93 43.28 0.00 1.49 44.37 98.57 

sun09 2.00 4.00 0.00 4.00 4.00 0.00 6.00 6.34 4.44 

fbis 15.36 10.54 9.34 12.05 43.28 8.43 15.36 9.91 38.35 

k1b 0.00 0.00 0.00 1.67 0.00 0.00 3.33 0.00 34.06 

re0 5.05 10.09 5.96 11.93 5.50 21.10 13.30 16.20 44.34 

re1 35.86 26.76 26.38 31.69 28.84 30.17 29.03 28.70 43.28 

tr11 18.39 16.09 32.18 19.54 16.09 16.09 22.99 18.06 50.74 

tr23 9.37 9.37 12.50 18.75 12.50 3.12 18.75 11.08 21.88 

wap 19.52 21.91 11.95 22.71 23.75 12.35 13.94 19.78 36.06 

glass 28.21 53.85 76.90 22.71 23.08 25.64 0.00 37.97 49.18 

shuttle 22.13 22.95 0.41 13.52 2.87 6.97 0.00 10.22 10.56 

Kddcup 20.53 18.65 0.31 11.62 35.01 27.08 15.94 26.03 27.55 

Table 6: Performance comparison among many outlier detection methods in terms of F-measure index 

 

As presented in Table 6, the performance of more outlier detection methods in terms of F-measure is provided 

against number of datasets. 
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Figure 8: Performance comparison among more outlier detection methods in terms of F-measure 

 

As president in Figure 8, the performance comparison among more outlier detection methods in terms of Jaccard 

is provided. It is observed from the results that the proposed outlier detection method showed better performance 

over existing methods against all the datasets used in experiments. 

 

6. DISCUSSION 

We introduce many topics on clustering with outlier reduction in this section. Traditionally, clustering separates 

a large number of points into discrete groups according to the degree of similarity between the points inside the 

same cluster. A firm or soft label is applied to each spot. Despite the fact that robust clustering is intended to 

lessen the influence of outliers, the cluster label is applied to every point, even outliers. In contrast, the issue we 

tackle in this work uses clustering to identify the outlier set and only assign labels to inliers. In technical terms, 

our method is a part of the non-exhaustive clustering, in which certain data points may belong to more than one 

cluster and not all data points are given labels. Our method has a different feature space difference from K-means. 

In addition to easily meeting the concepts of outliers and holoentropy, the partition space also facilitates the K-

means optimization process' spherical structure assumption. 

Extensive attempts have been done to flourish the hot study field of outlier detection from several angles. Very 

few of them do outlier identification and cluster analysis at the same time. With the exception of K-meansthe issue 

of grouping with outliers is expressed as an integer programming challenge using Langrangian Relaxation (LP) 

[18], where the input parameter is the cluster building costs. In addition to having extremely sophisticated 

algorithms, LP also has difficulty setting this parameter in real-world situations, which causes LP to produce 

impractical answers. For this reason, we are unable to disclose LP's performance within the part dedicated to 

experimentation. Our approach begins with the outlier detection objective function and uses a clustering tool to 

solve the problem. This shows how closely related the domains of cluster analysis and outlier identification are. 

 Several fundamental divisions are intended to be combined into one cohesive one via consensus clustering. An 

adaptive KCC utility function for a K-means system is provided for the difficult consensus clustering issue by our 

earlier work, Consensus Clustering (KCC) [49], [50]. An analogous collection of fundamental partitions serves 

as the input for our method, which uses K-means to produce the partition containing outliers. Combining basic 

partitions to establish consensus clustering and identifying outliers are made possible by the proposed partition 

space, which is formed from basic partitions. This perspective views holoentropy as the utility function that 

quantifies the degree of similarity between the final partition and the fundamental partition in B or B ̃. The absence 

of values in fundamental partitions inside the KCC framework does not contribute to the centroid update and is 

not useful. For the proposed method, we are able to outliers automatically.  

 

6. CONCLUSION AND FUTURE WORK 

Our solution for effective detection involved the use of unsupervised machine learning (ML) of outliers from high 

dimensional datasets. An objective function is defined to improve cluster compactness leading to efficiency in 

outlier detection process. Further improvement of clustering process with problem transformation and usage of 

enhanced K-Means could result in an integrated approach that jointly archives quality clustering and outlier 

identification. We proposed an algorithm known as Learning based Outlier Detection (LbOD). Novelty of our 

algorithm lies in simultaneous approach in partition space, objective function and cluster optimization. A 

prototype is built to evaluate the proposed framework and algorithm for its ability to discover outliers considering 

multiple benchmark high dimensional datasets. Our empirical study has revealed that the LbOD algorithm 

outperforms many existing outlier detection techniques. We want to get better in the future our framework by 
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exploiting the usage of ensemble of multiple best performing unsupervised learning models with novel selection 

strategy. 
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