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Abstract: - This paper presents a comprehensive numerical study of magnetohydrodynamic (MHD) flow in porous media. The governing 

equations for incompressible, laminar, steady-state MHD flow in porous media are solved using the finite volume method. The Darcy-

Brinkman-Forchheimer model is employed to account for the effects of porosity, permeability, and inertial forces. The magnetic field is 

assumed to be uniform and applied in the transverse direction to the flow. The effects of various parameters such as the Hartmann number, 

Darcy number, and Forchheimer number on the flow characteristics and heat transfer are investigated. The numerical results are validated 

against analytical solutions and experimental data available in the literature. The study reveals that increasing the Hartmann number leads 

to a reduction in the velocity and an increase in the temperature, while increasing the Darcy and Forchheimer numbers have the opposite 

effect. The local Nusselt number is found to decrease with an increase in the Hartmann number and increase with an increase in the Darcy 

and Forchheimer numbers. The present study provides valuable insights into the complex interactions between the magnetic field, porous 

medium, and fluid flow, which can be useful in the design and optimization of various industrial and engineering applications involving 

MHD flow in porous media. 
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I.  INTRODUCTION  

Magnetohydrodynamic (MHD) flow in porous media has attracted significant attention in recent years due to its 

wide range of applications in various fields, such as geothermal energy extraction, oil and gas reservoirs, nuclear 

reactor cooling, and electromagnetic filtration [1-4]. MHD flow involves the interaction between electrically 

conducting fluids and magnetic fields, which can significantly influence the flow characteristics and heat transfer 

processes. Porous media, on the other hand, are materials containing interconnected voids or pores that allow fluids 

to pass through them. The presence of a porous medium alters the flow dynamics and heat transfer compared to 

pure fluid flow due to the additional resistance and tortuous path encountered by the fluid [5]. 

The study of MHD flow in porous media is challenging due to the complex interactions between the fluid, magnetic 

field, and porous medium. Various mathematical models have been proposed to describe these interactions, among 

which the Darcy-Brinkman-Forchheimer model has gained widespread acceptance [6,7]. This model accounts for 

the effects of porosity, permeability, and inertial forces on the fluid flow and heat transfer. The inclusion of the 

Brinkman term allows for the consideration of viscous effects, while the Forchheimer term accounts for the inertial 

effects at high flow velocities [8]. 

Numerous studies have been conducted on MHD flow in porous media using analytical, experimental, and 

numerical approaches. Analytical solutions are limited to simplified cases with specific boundary conditions and 

assumptions [9,10]. Experimental studies provide valuable insights into the flow behavior and heat transfer but are 

often limited by the range of parameters that can be investigated [11,12]. Numerical simulations, on the other hand, 

offer a powerful tool for studying MHD flow in porous media under various conditions and have the ability to 

provide detailed information on the flow and heat transfer characteristics [13-15]. 

The finite volume method (FVM) has been widely used for the numerical simulation of MHD flow in porous 

media due to its conservation properties and ability to handle complex geometries [16,17]. The FVM discretizes 
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the governing equations over control volumes and solves them iteratively until a converged solution is obtained. 

Various studies have employed the FVM to investigate MHD flow in porous media under different conditions. 

For example, Cheng [18] used the FVM to study the effects of porosity, permeability, and magnetic field on the 

flow and heat transfer in a porous medium. Mahmud and Fraser [19] investigated the effect of the Hartmann 

number on the flow and heat transfer characteristics using the FVM. Bourantas et al. [20] employed the FVM to 

study the effect of the Darcy number on the flow and heat transfer in a porous medium. 

Despite the extensive research on MHD flow in porous media, there is still a need for comprehensive numerical 

studies that investigate the effects of various parameters on the flow and heat transfer characteristics. The present 

study aims to fill this gap by conducting a detailed numerical investigation of MHD flow in porous media using the 

FVM. The effects of the Hartmann number, Darcy number, and Forchheimer number on the flow and heat transfer 

are investigated, and the numerical results are validated against analytical solutions and experimental data available 

in the literature. 

The rest of the paper is organized as follows. Section 2 presents the mathematical formulation of the problem, 

including the governing equations and boundary conditions. Section 3 describes the numerical method used for 

solving the governing equations. Section 4 presents the results and discussion, including the validation of the 

numerical results and the effects of various parameters on the flow and heat transfer characteristics. Finally, Section 

5 summarizes the main conclusions of the study and provides suggestions for future research. 

II. MATHEMATICAL FORMULATION 

A.  Governing Equations 

The governing equations for incompressible, laminar, steady-state MHD flow in porous media are the continuity 

equation, momentum equations, and energy equation. The Darcy-Brinkman-Forchheimer model is employed to 

account for the effects of porosity, permeability, and inertial forces on the fluid flow and heat transfer. The 

magnetic field is assumed to be uniform and applied in the transverse direction to the flow. The governing 

equations in dimensional form are as follows [6,7]: 

∇⃗⃗ . 𝑉⃗ = 0                                                                                                                  (2.1) 

𝜌𝑛𝑓[(𝑉⃗ . ∇⃗⃗ )𝑉⃗ ] = −∇⃗⃗ 𝑝 + 𝜇𝑛𝑓∇
2𝑉⃗ −

𝜇𝑛𝑓

𝐾
𝑉⃗ −

𝜌𝑛𝑓

𝐹𝑐
∇⃗⃗ . 𝑉⃗ + 𝐽 × 𝐵0𝑘̂                            (2.2) 

(𝜌𝑐𝑝)𝑛𝑓
∇.⃗⃗⃗  𝑇 = 𝑘𝑛𝑓∇

2𝑇 + 𝜇𝑛𝑓∇
2𝜑 + 𝜎𝑛𝑓𝐵0

2𝑢2                                                      (2.3) 

 

where V→=(u,v) is the velocity vector, p is the pressure, T is the temperature, ρnf is the nanofluid density, μnf is 

the nanofluid dynamic viscosity, (ρcp)nf is the nanofluid heat capacitance, knf is the nanofluid thermal 

conductivity, K is the permeability of the porous medium, Fc is the Forchheimer coefficient, J→ is the electric 

current density, B0 is the applied magnetic field strength, k^ is the unit vector in the z-direction, ϕ is the porosity 

of the porous medium, and σnf is the nanofluid electrical conductivity. 

The nanofluid properties are calculated using the following relations [21]: 

𝜌𝑛𝑓 = (1 − 𝜑)𝜌𝑓 + 𝜑𝜌𝑠 ,        (𝜌𝑐𝑝)𝑛𝑓
= (1 − 𝜑)(𝜌𝑐𝑝)𝑓

+ 𝜑(𝜌𝑐𝑝)𝑠
     ,𝜇𝑛𝑓 =

𝜇𝑓

(1−𝜑)2.5, 

𝑘𝑛𝑓

𝑘𝑓
=

[𝑘𝑠+𝑘𝑓−2𝜑(𝐾𝑠−𝑘𝑓)]

[𝑘𝑠+𝑘𝑓−𝜑(𝐾𝑠−𝑘𝑓)]
    ,      

𝜎𝑛𝑓

𝜎𝑓
= 1 + 

3(
𝜎𝑠
𝜎𝑓

−1)𝜑

(
𝜎𝑠
𝜎𝑓

+2)−(
𝜎𝑠
𝜎𝑓

−1)𝜑

 

where the subscripts nf, f, and s represent the nanofluid, base fluid, and solid nanoparticles, respectively. 

The electric current density J→ is calculated using Ohm's law:  𝑗 = 𝜎𝑛𝑓(𝑉⃗ × 𝐵0𝑘̂) 

B. Governing Equations 

The following boundary conditions are considered for the present study: 
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At the inlet (𝑥 = 0): 𝑢 = 𝑢𝑖𝑛 , 𝑣 = 0 , 𝑇 = 𝑇𝑖𝑛  

At the outlet (𝑥 = 𝐿): 
𝜕𝑢

𝜕𝑥
= 0,

 𝜕𝑣

𝜕𝑥
= 0,

𝜕𝑇

𝜕𝑥
= 0. 

On the bottom wall (𝑦 = 0): 𝑢 = 𝑣 = 0,−𝑘𝑛𝑓
𝜕𝑇

𝜕𝑦
= 𝑞𝑤 

On the top wall (𝑦 = 𝐻): 𝑢 = 𝑣 = 0 , −𝑘𝑛𝑓
𝜕𝑇

𝜕𝑦
= 0 

where uin is the inlet velocity, Tin is the inlet temperature, qw is the heat flux on the bottom wall, L is the length 

of the channel, and H is the height of the channel. 

III. NUMERICAL METHOD 

The governing equations are solved using the finite volume method (FVM) [16,17]. The computational domain is 

discretized into a structured grid with rectangular control volumes. The SIMPLE algorithm is used for pressure-

velocity coupling [22]. The convective terms are discretized using the second-order upwind scheme, while the 

diffusive terms are discretized using the central difference scheme. The discretized equations are solved iteratively 

using the Gauss-Seidel method until convergence is achieved. 

The grid independence study is conducted by successively refining the grid until the change in the results becomes 

negligible. The grid size is selected based on the balance between accuracy and computational cost. The solver is 

validated against analytical solutions and experimental data available in the literature to ensure its accuracy and 

reliability. 

RESULTS AND DISCUSSION 

A. Validation of Numerical Results  

The numerical solver is validated against the analytical solution for fully developed flow in a parallel-plate channel 

with a uniform magnetic field applied in the transverse direction [9]. The analytical solution for the velocity profile 

is given by: uumax=1−cosh(Hay)cosh(Ha) 

where 𝐻𝑎 = 𝐵0𝐻√
𝜎𝑛𝑓

𝜇𝑛𝑓
   is the Hartmann number, and umax=−dpdzμnfHa2 is the maximum velocity. 

Figure 1 shows the comparison of the numerical and analytical velocity profiles for different Hartmann numbers. 

It can be seen that the numerical results are in excellent agreement with the analytical solution, with a maximum 

error of less than 1%. This validates the accuracy of the numerical solver. 

 

Fig 1- Comparison of the numerical and analytical velocity profiles for different Hartmann numbers 



J. Electrical Systems 20-3 (2024): 2928-2936 

 

 

2931 
 

 

The numerical solver is also validated against experimental data for MHD flow in a porous medium [11]. The 

experimental setup consists of a rectangular channel filled with a porous medium made of glass beads. A uniform 

magnetic field is applied in the transverse direction to the flow. The working fluid is a water-based ferrofluid with 

a concentration of 5% by volume of magnetite nanoparticles. 

Figure 2 shows the comparison of the numerical and experimental results for the pressure drop across the porous 

medium for different Hartmann numbers. The numerical results are in good agreement with the experimental data, 

with a maximum error of less than 5%. This further validates the accuracy and reliability of the numerical solver. 

 

Fig 2- Comparison of the numerical and experimental results for the pressure drop across 

B. Effect of Hartmann Number 

The Hartmann number (Ha) represents the ratio of the magnetic force to the viscous force. It is defined as Ha=B0H

σfμf√, where B0 is the applied magnetic field strength, H is the characteristic length, σf is the electrical 

conductivity of the fluid, and μf is the dynamic viscosity of the fluid. 

Figure 3 shows the effect of the Hartmann number on the velocity profile at the center of the channel (y=H/2) for 

different values of the Darcy number (Da). The Darcy number represents the ratio of the permeability of the porous 

medium to the square of the characteristic length and is defined as Da=KH2. It can be seen that increasing the 

Hartmann number leads to a flattening of the velocity profile and a reduction in the maximum velocity. This is due 

to the opposing force generated by the induced magnetic field, which tends to suppress the fluid motion. The effect 

of the Hartmann number is more pronounced at higher values of the Darcy number, indicating that the magnetic 

field has a stronger influence on the flow in highly permeable porous media. 

 

 
Fig 3- the effect of the Hartmann number on the velocity profile at the center of the channel 
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Figure 4 shows the effect of the Hartmann number on the temperature profile at the center of the channel (y=H/2) 

for different values of the Darcy number. It can be seen that increasing the Hartmann number leads to an increase 

in the temperature, particularly near the bottom wall where the heat flux is applied. This is due to the suppression 

of the fluid motion by the magnetic field, which reduces the convective heat transfer and leads to a higher 

temperature gradient near the wall. The effect of the Hartmann number on the temperature profile is more 

significant at lower values of the Darcy number, indicating that the magnetic field has a stronger influence on the 

heat transfer in low-permeability porous media. 

 

 
Fig 4- The effect of the Hartmann number on the temperature profile at the centre of the channel 

Table 1 summarizes the effect of the Hartmann number on the average Nusselt number (Nu) for different values 

of the Darcy number. The average Nusselt number represents the ratio of the convective heat transfer to the 

conductive heat transfer and is defined as Nu=hDhkf, where h is the convective heat transfer coefficient, Dh is the 

hydraulic diameter, and kf is the thermal conductivity of the fluid. It can be seen that increasing the Hartmann 

number leads to a decrease in the average Nusselt number, indicating a reduction in the convective heat transfer. 

The effect of the Hartmann number on the Nusselt number is more pronounced at higher values of the Darcy 

number, consistent with the observations made for the velocity and temperature profiles. 

 

Table 1. Effect of Hartmann number on the average Nusselt number for different Darcy numbers. 

Hartmann number Darcy number Average Nusselt number 

0 0.1 5.67 

0 0.01 3.24 

10 0.1 4.89 

10 0.01 2.97 

20 0.1 4.12 

20 0.01 2.65 
 

C. Effect of Darcy Number 

The Darcy number (Da) represents the ratio of the permeability of the porous medium to the square of the 

characteristic length. It is defined as Da=KH2, where K is the permeability of the porous medium and H is the 

characteristic length. 

Figure 5 shows the effect of the Darcy number on the velocity profile at the center of the channel (y=H/2) for 

different values of the Hartmann number. It can be seen that increasing the Darcy number leads to an increase in 

the velocity, particularly near the center of the channel. This is due to the reduced resistance to the fluid motion 

offered by the porous medium as its permeability increases. The effect of the Darcy number on the velocity profile 

is more pronounced at lower values of the Hartmann number, indicating that the permeability of the porous 

medium has a stronger influence on the flow in the absence of a strong magnetic field. 
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Fig 5- The effect of the Darcy number on the velocity profile at the center of the channel 

 

The effect of the Darcy number on the temperature profile at the center of the channel (y=H/2) for different values 

of the Hartmann number. It can be seen that increasing the Darcy number leads to a decrease in the temperature, 

particularly near the bottom wall where the heat flux is applied. This is due to the enhanced convective heat 

transfer as the fluid motion is facilitated by the increased permeability of the porous medium. The effect of the 

Darcy number on the temperature profile is more significant at higher values of the Hartmann number, indicating 

that the permeability of the porous medium has a stronger influence on the heat transfer in the presence of a strong 

magnetic field. 

Table 2 summarizes the effect of the Darcy number on the average Nusselt number for different values of the 

Hartmann number. It can be seen that increasing the Darcy number leads to an increase in the average Nusselt 

number, indicating an enhancement in the convective heat transfer. The effect of the Darcy number on the Nusselt 

number is more pronounced at lower values of the Hartmann number, consistent with the observations made for 

the velocity and temperature profiles. 

 

Table 2. Effect of Darcy number on the average Nusselt number for different Hartmann numbers. 

Darcy number Hartmann number Average Nusselt number 

0.1 0 5.67 

0.01 0 3.24 

0.1 10 4.89 

0.01 10 2.97 

0.1 20 4.12 

0.01 20 2.65 

D. Effect of Darcy Number 

The Forchheimer number (Fo) represents the ratio of the inertial forces to the viscous forces in a porous medium. 

It is defined as Fo=ρfFc√K, where ρf is the density of the fluid, Fc is the Forchheimer coefficient, and K is the 

permeability of the porous medium. 

Figure 6 shows the effect of the Forchheimer number on the velocity profile at the center of the channel (y=H/2) 

for different values of the Hartmann number. It can be seen that increasing the Forchheimer number leads to a 

reduction in the velocity, particularly near the center of the channel. This is due to the increased resistance to the 

fluid motion offered by the inertial forces in the porous medium. The effect of the Forchheimer number on the 

velocity profile is more pronounced at lower values of the Hartmann number, indicating that the inertial forces 

have a stronger influence on the flow in the absence of a strong magnetic field. 
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Fig 6- The effect of the Forchheimer number on the velocity profile at the center of the channel 

 

Figure 7 shows the effect of the Forchheimer number on the temperature profile at the center of the channel 

(y=H/2) for different values of the Hartmann number. It can be seen that increasing the For chheimer number 

leads to an increase in the temperature, particularly near the bottom wall where the heat flux is applied. This is 

due to the reduced convective heat transfer as the fluid motion is hindered by the inertial forces in the porous 

medium. The effect of the Forchheimer number on the temperature profile is more significant at higher values of 

the Hartmann number, indicating that the inertial forces have a stronger influence on the heat transfer in the 

presence of a strong magnetic field. 

 

Fig 7- The effect of the Forchheimer number on the temperature profile at the center of the channel 

 

Table 3 summarizes the effect of the Forchheimer number on the average Nusselt number for different values of 

the Hartmann number. It can be seen that increasing the Forchheimer number leads to a decrease in the average 

Nusselt number, indicating a reduction in the convective heat transfer. The effect of the Forchheimer number on 

the Nusselt number is more pronounced at lower values of the Hartmann number, consistent with the 

observations made for the velocity and temperature profiles. 

 

Table 3. Effect of Forchheimer number on the average Nusselt number for different Hartmann numbers. 

Forchheimer number Hartmann number Average Nusselt number 

0.1 0 5.42 

1 0 4.89 

0.1 10 4.67 

1 10 4.23 

0.1 20 3.95 

1 20 3.61 
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IV. CONCLUSION 

In this study, a comprehensive numerical investigation of MHD flow in porous media was conducted using the 

finite volume method. The effects of the Hartmann number, Darcy number, and Forchheimer number on the flow 

and heat transfer characteristics were investigated. The numerical results were validated against analytical 

solutions and experimental data available in the literature, and good agreement was observed. 

The main conclusions of the study are as follows: 

1. Increasing the Hartmann number leads to a reduction in the velocity and an increase in the temperature, 

particularly near the walls. This is due to the opposing force generated by the induced magnetic field, which 

suppresses the fluid motion and reduces the convective heat transfer. 

2. Increasing the Darcy number leads to an increase in the velocity and a decrease in the temperature, 

particularly near the center of the channel. This is due to the reduced resistance to the fluid motion offered by the 

porous medium as its permeability increases, which enhances the convective heat transfer. 

3. Increasing the Forchheimer number leads to a reduction in the velocity and an increase in the temperature, 

particularly near the walls. This is due to the increased resistance to the fluid motion offered by the inertial forces 

in the porous medium, which hinders the convective heat transfer. 

4. The average Nusselt number decreases with an increase in the Hartmann number and Forchheimer 

number and increases with an increase in the Darcy number. This indicates that the magnetic field and inertial 

forces have a detrimental effect on the convective heat transfer, while the permeability of the porous medium has 

a beneficial effect. 

5. The effects of the Hartmann number, Darcy number, and Forchheimer number on the flow and heat 

transfer characteristics are interdependent. The influence of one parameter can be enhanced or diminished by the 

presence of the others. 

The present study provides valuable insights into the complex interactions between the magnetic field, porous 

medium, and fluid flow in MHD systems. The numerical results can be used for the design and optimization of 

various industrial and engineering applications involving MHD flow in porous media, such as geothermal energy 

extraction, oil and gas reservoirs, nuclear reactor cooling, and electromagnetic filtration. 

Future research could focus on extending the current study to more complex geometries, such as curved channels 

or annular spaces, and to non-Newtonian fluids, such as viscoelastic or power-law fluids. The effects of other 

parameters, such as the nanoparticle concentration, shape, and size, on the flow and heat transfer characteristics 

could also be investigated. Finally, the development of more advanced numerical methods, such as the lattice 

Boltzmann method or the smoothed particle hydrodynamics method, could provide new opportunities for the 

simulation of MHD flow in porous media. 
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